Lower bound for the maximal number of facets of a $0 / 1$ polytope

A. Giannopoulos
(joint work with D. Gatzouras and N. Markoulakis)

We will discuss a lower bound for the maximal possible number of facets of a $0 / 1$ polytope in \mathbb{R}^{n}. Let

$$
g(n):=\max \left\{f_{n-1}\left(P_{n}\right): P_{n} \text { is a } 0 / 1 \text { polytope in } \mathbb{R}^{n}\right\}
$$

where $f_{n-1}(\cdot)$ denotes the number of facets. Fukuda and Ziegler asked what the behaviour of $g(n)$ is as $n \rightarrow \infty$. The best known upper bound to date is $g(n) \leq$ $30(n-2)$! (for n large enough), proved by Fleiner, Kaibel and Rote. In the other direction, a major breakthrough was made by Bárány and Pór in 2001; they proved that

$$
g(n) \geq\left(\frac{c n}{\log n}\right)^{n / 4}
$$

where $c>0$ is an absolute constant. We will show that the exponent $n / 4$ can in fact be improved to $n / 2$:

Theorem: There exists a constant $c>0$ such that

$$
g(n) \geq\left(\frac{c n}{\log ^{2} n}\right)^{n / 2}
$$

The existence of $0 / 1$ polytopes with many facets is established by a refinement of the probabilistic method developed by Bárány and Pór.

