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Abstract. Rogers proved in a constructive way that every packing
lattice Λ of a symmetric convex body K in Rn is contained in a packing
lattice whose covering radius is less than 3. By a slight modification of
Rogers’ approach better bounds for lp-balls are obtained. Together with

Rogers’ constructive proof this leads, for instance, to a simple O(nn/2)
running time algorithm that refines successively the packing lattice Dn

(checkboard lattice) of the unit ball Bn and terminates with a packing

lattice Λ with density δ(Λ, Bn) > 2−1.197n. We have also implemented
this algorithm and in small dimensions (≤ 25) and for certain simple
structured start lattices like Zn or Dn the algorithm often terminates
with packing lattices achieving the best known lattice densities.

1. Introduction

Let Kn
o be the set of all convex bodies K ⊂ Rn in the n-dimensional

Euclidean space Rn, which are symmetric with respect to the origin 0, i.e.,
K = −K. The norm (or distance function) induced by K is given by
| · |K : Rn → R≥0 with |x|K = min{ρ ≥ 0 : x ∈ ρK}. In the case of the
lp-(unit) balls Bn

p = {x ∈ Rn :
∑n

i=1 |xi|p ≤ 1} ∈ Kn
o , we write |x|p instead

of |x|Bn
p

= (
∑n

i=1 |xi|p)1/p, and for the Euclidean unit ball Bn
2 we will often

use the notation Bn.
Let Ln be the family of all n-dimensional lattices Λ ⊂ Rn, i.e., Λ is a

discrete subgroup generated by n linearly independent vectors b1, . . . , bn ∈
Rn, called a basis of Λ. Hence, Λ = BZn, where B is the matrix with
columns b1, . . . , bn, and det Λ = | detB| is called the determinant of the
lattice.

A lattice Λ ∈ Ln is called a packing lattice of K ∈ Kn
o if |b|K ≥ 2 for all

b ∈ Λ \ {0}. In words, two different lattice translate g1 + K and g2 + K,
g1 6= g2 ∈ Λ, have no interior points in common. The set of all lattice
packings of K ∈ Kn

o will be denoted by P(K). For Λ ∈ P(K),

δ(Λ,K) =
vol (K)

det Λ
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is the density of the lattice packing Λ + K, i.e., the amount (percentage)
of space which is covered by the packing Λ + K. Here vol (K) denotes the
volume, i.e., the n-dimensional Lebesgue measure of K. The density of a
densest lattice packing is denoted by δ(K), that is

δ(K) = sup {δ(Λ,K) : Λ ∈ P(K)} .
It is well known that this sup is attained and for further basic facts and
notations from Geometry of Numbers we refer to [7, 23, 24].

Somehow contrary to the packing concept, a lattice Λ ∈ Ln is called a
covering lattice of K if K + Λ = Rn, i.e., the whole space is covered by the
lattice translates. The smallest dilation factor µ such that a lattice Λ is a
covering lattice of µK is called covering radius or inhomogeneous minimum
of Λ with respect to K and it is denoted by µ(Λ,K). Hence,

µ(Λ,K) = min{µ ≥ 0 : Λ + µK = Rn}
= max{dK(x,Λ) : x ∈ Rn},

where dK(x,Λ) = min{|x−b|K : b ∈ Λ} is the distance of a point x from the
lattice Λ. With respect to the lattice, the covering radius is homogeneous
of degree 1, i.e., for λ ∈ R>0 we have

(1.1) µ(λΛ,K) = λµ(Λ,K).

Again, for K = Bn
p we write dp(x,Λ) and for p = 2 just d(x,Λ). Points

h ∈ Rn having maximal distance to the lattice Λ, i.e., dK(h,Λ) = µ(Λ,K)
are called deep holes. The covering property Λ + µ(Λ,K)K = Rn implies
vol (µ(Λ,K)K) ≥ det Λ and so for Λ ∈ P(K) we certainly have the bound

(1.2) δ(Λ,K) ≥
(

1

µ(Λ,K)

)n

.

Hence, upper bounds on the so called packing-covering ratio µ(K) of K ∈ Kn
o

defined by

µ(K) = min {µ(Λ,K) : Λ ∈ P(K)} .
give lower bounds on δ(K). Rogers [33] seems to be the first who studied
this ratio and among others he proved

(1.3) µ(K) ≤ 3−1/n · 3
which leads via (1.2) to the “bad” lower bound δ(K) ≥ 3−(n−1). The mean-
ing of µ(K), however, is to measure covering properties of packing lattices,
rather than proving good lower bounds on δ(K). Nevertheless, it was shown
by Butler [5] by a probabilistic argument that

µ(K) ≤ 2 + o(1),

as n approaches infinity. Hence, this result gives “almost” the Minkowski-
Hlawka bound

δ(K) ≥ 2−(n−1)
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which is still the best possible bound for general K ∈ Kn
o (cf., e.g., [23]).

For lp-balls, p > 2, and related highly symmetric convex bodies there are
exponentially better bounds available (cf., e.g., [21, 36]). The best known

lower bound for the sphere is δ(Bn) ≥ (n−1)2−(n−1) and it is due to Ball [1].
Another probabilistic-based approach to bound µ(K) is due to Bourgain
[4] where also the convexity modulus of K plays a role.

Rogers obtained (1.3) in a constructive manner; he showed that un-
der the assumption µ(Λ,K) > 3, i.e., we have “big” deep holes, one can
find/construct a packing lattice Λ1 ∈ P(K) containing Λ with det Λ1 =
1
3 det Λ. Hence, as long as µ(Λ,K) > 3 we can always refine our packing
lattice and get a “smaller” one. Since the determinant of a packing lattice
of K can not be smaller than the volume of K, this shows µ(K) < 3. The

additional factor of 3−1/n in (1.3) comes from a final scaling argument. This
successive refinement approach was rediscovered by Banaszczyk [2], and
he also pointed out that this approach leads to a finite algorithm for calcu-
lating “dense” packings of K ∈ Kn

o . A detailed description of this algorithm
is given by Micciancio [31, Theorem 4.4].

In a recent paper, Dadush [16, Theorem 15] uses this Greedy-algorithm of

Rogers as one of many ingredients in a deterministic 2O(n) time and poly(n)
space algorithm which, in particular, for a “well-described” o-symmetric con-
vex body computes a packing lattice of density at least 3−n. This algorithm
is also based on recent and quite involved results/concepts form Convex
Geometry as well as from Computational Geometry of Numbers and there
seems to be no efficient way to implement this approach, even in the special
case of a ball.

Here we firstly observe that a slight modification of Rogers’ refinement
argumentation leads to better bounds for lp-balls, 1 < p <∞. To this end,
let p ≥ 2, q = p/(p− 1) and for x ∈ [0, 1] let

f1(p, x) =
1

2
(1− xq)1/q,

f2(p, x) =
1

3

(
2 (1 + xp)q−1 − (1− xp)q−1

)1/q
.

f1(p, x) is montonously decreasing in x whereas f2(p, x) is montonously in-
creasing. Since f1(p, 0) > f2(p, 0) and f1(p, 1) < f2(p, 1) there exists an
unique point βp ∈ (0, 1) with f1(p, βp) = f2(p, βp). For instance, for p = 2
we get

β2 =

√
5

21
and f1(2, β2) =

√
4

21
∼ 1

2.2913
∼ 2−1.1962.

Moreover, by definition of f2(p, x) we also have f1(p, βp) = f2(p, βp) >
f2(p, 0) = 1

3 as well as limp→∞ f1(p, βp) = limp→∞ f2(p, βp) = 1
3 . Finally, we

extend both functions to the range 1 < p ≤ 2 by setting f1(p, x) = f1(q, x),
f2(p, x) = f2(q, x).
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Proposition 1.1. Let Λ ∈ P(Bn
p ), n ≥ 2. Then Λ is contained in a packing

lattice Λ ∈ P(Bn
p ) with

µ(Λ, Bn
p ) <

1

f1(p, βp)
,

and, hence, δ(Λ, Bn
p ) > f1(p, βp)

n.

When writing this note we discovered that the case p = 2 was already
proved by Davenport in 1952 [17]. Since the impact of this bound on
µ(Λ, Bn) to the optimal covering lattice density of spheres was inferior to
the main result of Davenport’s paper, this result of Davenport seems to have
been lost. In fact, it was also reproved in the authors Habilitationsschrift
[26] in relation to dense finite lattice sphere packings.

As mentioned before, Rogers’ approach is constructive and, in particular,
the proof of Proposition 1.1 will imply

Theorem 1.2. Let Λ ∈ P(Bn
p ), n ≥ 2, and let γ(p,Λ) = δ(Bn

p )/δ(Λ, Bn
p ). A

lattice Λ ∈ P(Bn
p ) as in Proposition 1.1 can be constructed via O(3n γ(p,Λ))

calls of the function dp(x,Λ) and additional O(n2 3n log γ(p,Λ)) arithmetic
operations.

For simple structured lattices like Zn, Dn = {z ∈ Zn :
∑n

i=1 zi ≡ 0 mod

2} or An = {z ∈ Zn+1 :
∑n+1

i=1 zi = 0} the distance function dp(x,Λ) can
easily be calculated, see, e.g., [14]. In particular, for Dn it can be done in
O(n) arithmetic operations. Moreover,

√
2Dn is a packing lattice of the unit

ball Bn with density

δ(
√

2Dn, Bn) = 2−n/2−1 vol (Bn) = 2−n/2−1
πn/2

Γ(n/2 + 1)

∼ 2−n/2−1
πn/2

√
π n(n/(2e))n/2

=
1

2

√
π e

n

√
π nnn/2

by Stirling’s formula. By the result of Kabatyanskǐı and Levenshtěın [28]

(see also [13]) we know δ(Bn) < 2−0.599n+o(1) and so Theorem 1.2 implies

Corollary 1.3. A packing lattice Λ ∈ P(Bn) with δ(Λ, Bn) > 2−1.1962n can

be constructed in running time O(nn/2).

This bound on the density seems also to be a bit better then other known
constructive results which are based on algebraic codes and exponential
algorithms, cf., e.g., the bounds in [8, 29, 35].

We have also implemented an algorithm based on the construction in
Theorem 1.2. The running time of this algorithm as well as the density
of the constructed packing lattices depend on the lattice with which we
start the algorithm, i.e., with which we begin the refinement process. The
following three tables contain the numerical results for the start lattices 2Zn,√

2Dn and
√

2An in dimensions up to 25. In the tables we denote by ∆
the determinant of the packing lattice found by the algorithm. A bold and
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stared dimension indicates that the corresponding density coincides with the
density of the densest (known) lattices packing of Bn, for which we refer to
the book [15] or to the online catalogue [32].

n ∆
2 4
3 8
4? 8
5 16
6 16
7? 16

n ∆
8? 16
9 32
10 32
11 32
12 32
13 32

n ∆
14 32
15 32
16? 16
17? 16
18 16
19 16

n ∆
20? 8
21 8
22 4
23? 2
24? 1
25 2

Table 1.1. Density results for 2Zn

n ∆
2 4

3? 4
√

2
4? 8

5? 8
√

2
6 16

7 16
√

2

n ∆
8? 16

9? 16
√

2
10 32

11 32
√

2
12 32

13 32
√

2

n ∆
14 32

15? 16
√

2
16? 16

17 16
√

2
18 16

19? 8
√

2

n ∆
20? 8

21? 4
√

2
22 4

23 2
√

2
24? 1

25?
√

2

Table 1.2. Density results for
√

2Dn

n ∆

2? 2
√

3

3? 4
√

2

4 4
√

5

5 8
√

3

6 8
√

7
7? 16

n ∆
8 24

9 16
√

5

10 16
√

11

11 16
√

6

12 16
√

13

13 16
√

7

n ∆

14 8
√

15

15? 16
√

2

16 8
√

17
17 24

18 4
√

19

19 4
√

10

n ∆

20 2
√

21

21 2
√

11

22
√

23

23 2
√

3
24 5

25
√

13

Table 1.3. Density results for
√

2An

The remaining “not best possible” dimensions in these tables are 6, 10,
11, 12, 13, 14, 18 and 22. Except for dimension 22 we also found for these
dimensions certain “simple structured” start lattices such that the algorithm
ends with the best known lattice densities; details will be given in the last
section.
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Remark 1.4.

i) As already mentioned, the running time of the algorithm depends
on the start lattice and it grows exponentially with the dimension.
For instance, the dimensions 18 and 24 with the start lattice 2Zn

takes 4.57 and 209, 937 CPU seconds, respectively, and with the start
lattice

√
2Dn only 0.28 and 23 seconds1.

ii) Except for dimensions 11, 12, 13 the best known possible packing lat-
tices in dimensions up to 25 are laminated lattices (see [15]). They
are defined inductively and so it might be not surprising that a refine-
ment procedure also ends up with these lattices. Also in dimensions
11, 12, 13 the densities in Table 1.1 coincide with the maximal den-
sities of laminated lattices in these dimensions (see [15]).

The densest lattice packings are only known in dimensions 2 up to 8 by
classical results of Lagrange, Gauss, Korkine&Zolotaref and Blichfeldt (see,
e.g., [23]) and in dimension 24 where it was recently shown by Cohn&Kumar
[12] that the Leech lattice is indeed the best one. For more information on
the geometry of lattice sphere packings we refer to [20, 37] and the references
within.

For the state of the art on upper bounds on (general) sphere packings
in low dimensions and asymptotically, see [10, 11, 13]. It seems likely that
in (very) small dimensions ≤ 8 optimal lattice sphere packings yield the
optimal density among all sphere packings. So far this has only be verified
by Thue in dimension 2 and by the proof of the Kepler conjecture by Hales
in dimension 3 (see, e.g., [25]).

In recent years there has also been a lot of progress in the computational
treatment of (general) packing problems for which refer to [16, 18, 19, 27, 30,
39, 40] and the references given there. In particular, the algorithm by Mar-
cotte&Torquato [30] is a bit in the same spirit as the one described here, but
there a given start lattice is properly “disturbed” instead of refined. Regard-
ing concrete densities of (lattice) packings of convex bodies different from
spheres not much seems to be known. For lp-balls in dimension 3 see [39],
for an algorithm for computing a densest lattice packing of 3-dimensional
polytopes see [3] and for packing results of the l1-balls we refer to [22].

Also the packing-covering ratio has been extensively studied in recent
years in low dimensions, see, e.g., [42, 43, 44]. In particular, in [44] Chuan-
ming Zong gives a best possible upper bound on µ(K) for two dimensional
o-symmetric convex bodies.

Rogers [34] also studied the (lattice) packing-covering ratio of infinite
dimensional Banach spaces and proved the analogous result there. Recently,
Swanepoel [38] determined the packing-covering ratio of lp-sequence spaces
in the non lattice case.

1On a 3.1 GHz Intel Core i7 processor.
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2. Proof of Proposition 1.1

Rogers proof of (1.3) as well as Banaszczyk’s proof in [2] are based on
the following observation: Suppose we have a packing lattice Λ ∈ P(K) of
K ∈ Kn

o and assume that there exists an a ∈ Λ such that

(2.1)

∣∣∣∣13a− b

∣∣∣∣
K

≥ 2 for all b ∈ Λ.

Then

(2.2) Λ1 = Z
1

3
a + Λ = Λ ∪

(
1

3
a + Λ

)
∪
(

2

3
a + Λ

)
∈ P(K),

i.e., Λ1 is again a packing lattice of K. This follows immediately from
Λ ∈ P(K), |23a− b|K = |13a− (a− b)|K and (2.1).

Of course, the same reasoning shows that

(2.3) Λ1 = Z
1

2
a + Λ = Λ ∪

(
1

2
a + Λ

)
∈ P(K),

provided

(2.4)

∣∣∣∣12a− b

∣∣∣∣
K

≥ 2 for all b ∈ Λ.

Hence, as long as we can find an a ∈ Λ satisfying (2.1) or (2.4) we can refine
our given packing lattice. In order to find those points we use the deep holes
and for the results on the lp-balls Bn

p we also need Clarkson’s inequality
(see, e.g., [6, pp. 117], [9])

(2.5) |x + y|qp + |x− y|qp ≥ 2
(
|x|pp + |y|pp

)q−1
for 2 ≤ p <∞ and x,y ∈ Rn. Here q = p/(p− 1) and for 1 < p ≤ 2 the sign
in (2.5) is reversed.

Proof of Proposition 1.1. We start with p ≥ 2 and let Λ ∈ P(Bn
p ) with

(2.6) µ = µ(Λ, Bn
p ) ≥ f1(p, βp)−1.

In the following we show that the lower bound (2.6) implies that we can
find a lattice of type (2.2) or (2.3) which is still a packing lattice of Bn

p . For
simplification we just write | · | instead of | · |p and β for βp.

Let h ∈ Rn be a deep hole of Λ with respect to Bn
p , i.e., µ = dp(h,Λ).

Then

(2.7) |h− b| ≥ µ for all b ∈ Λ.

a) First we assume

(2.8) ∃a ∈ Λ with

∣∣∣∣h− 1

2
a

∣∣∣∣ ≤ β µ.
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With respect to this a we consider the refined lattice Λ1 = Λ∪ (12a+Λ) and
next we verify that it is still a packing lattice of Bn

p . To this end let b ∈ Λ,

x = h− b and y = h− 1
2a. By Clarkson’s inequality (2.5) we obtain

|y|q + |x− y|q =

∣∣∣∣y − 1

2
x +

1

2
x

∣∣∣∣q +

∣∣∣∣y − 1

2
x− 1

2
x

∣∣∣∣q
≥ 2

(∣∣∣∣y − 1

2
x

∣∣∣∣p +

∣∣∣∣12x
∣∣∣∣p)q−1

,

and thus ∣∣∣∣12a− b

∣∣∣∣q = |x− y|q ≥ 2

(∣∣∣∣y − 1

2
x

∣∣∣∣p +

∣∣∣∣12x
∣∣∣∣p)q−1

− |y|q.

In view of (2.7) we have
∣∣y − 1

2x
∣∣ , ∣∣12x∣∣ ≥ 1

2µ and so we obtain

(2.9)

∣∣∣∣12a− b

∣∣∣∣ ≥ µ (1− βq)
1
q = 2µ f1(p, β).

Hence, due to (2.6) and (2.4) this shows Λ1 ∈ P(Bn
p ).

b) Now we assume that there exists no a ∈ Λ such that (2.8) holds. Then
for all b ∈ Λ

(2.10)

∣∣∣∣23h− 1

3
b

∣∣∣∣ =
2

3

∣∣∣∣h− 1

2
b

∣∣∣∣ > 2

3
β µ.

Observe, in view of the homogeneity of the covering radius (cf. (1.1)) there
always exists a a ∈ Λ with |h− 1

2a| ≤
1
2µ. Hence, in view of our assumption

in this case b) we know

(2.11) β ≤ 1

2
.

Also by the homogeneity of the covering radius we find

(2.12) ∃a ∈ Λ with

∣∣∣∣h− 1

3
a

∣∣∣∣ ≤ 1

3
µ.

With respect to this a we now consider the refined lattice Λ1 = Λ ∪ (13a +

Λ)∪ (23a+ Λ) and as before we verify that it is still a packing lattice of Bn
p .

Here we set y = h − 1
3a and x = h − b for a fixed but arbitrary b ∈ Λ.

Then by (2.5) we get

|y − x|q +

∣∣∣∣y +
1

3
x

∣∣∣∣q ≥ 2

(∣∣∣∣y − 1

3
x

∣∣∣∣p +

∣∣∣∣23x
∣∣∣∣p)q−1

,∣∣∣∣y − 1

3
x

∣∣∣∣p +

∣∣∣∣y +
1

3
x

∣∣∣∣p ≤ 2

(
|y|q +

∣∣∣∣13x
∣∣∣∣q)p−1

,

where for the second inequality we plug y − 1
3x and y + 1

3x into the right

hand side of (2.5). Substituting
∣∣y + 1

3x
∣∣q from the second into the first
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inequality leads to

|y − x|q ≥ 2

(∣∣∣∣y − 1

3
x

∣∣∣∣p +

∣∣∣∣23x
∣∣∣∣p)q−1

−

(
2

(
|y|q +

∣∣∣∣13x
∣∣∣∣q)p−1

−
∣∣∣∣y − 1

3
x

∣∣∣∣p
)q−1

.

By (2.10) and (2.12) we conclude∣∣∣∣13a− b

∣∣∣∣q = |y − x|q ≥ 2

((
2

3
βµ

)p

+

∣∣∣∣23x
∣∣∣∣p)q−1

−

(
2

((
1

3
µ

)q

+

∣∣∣∣13x
∣∣∣∣q)p−1

−
(

2

3
βµ

)p
)q−1

.

According to (2.7) we may substitute |x| by λµ with λ ≥ 1 which leads to∣∣∣∣13a− b

∣∣∣∣q ≥ (2

3
µ

)q (
2 (βp + λp)q−1 −

(
21−p (1 + λq)p−1 − βp

)q−1)
≥
(

2

3
µ

)q (
2 (βp + λp)q−1 − (λp − βp)q−1

)
,

where the last inequality follows from 1 + λq ≤ 2λq, since λ ≥ 1. Calculat-
ing the derivative with respect to λ of the function on the right hand side
and taking into account β ≤ 1/2 (cf. (2.11)), 1 ≤ q ≤ 2, shows that it is
monotonously increasing for λ ≥ 1. Hence, we finally get∣∣∣∣13a− b

∣∣∣∣ ≥ 2µ
1

3

(
2(1 + βp)q−1 − (1− βp)q−1

)1/q
= 2µf2(p, β).(2.13)

Thus, again due to (2.6) and (2.1) this shows Λ1 ∈ P(Bn
p ).

So we have shown that as long as (2.6) holds the packing lattice Λ is
contained in a packing lattice Λ1 with det Λ1 ∈ {12 det Λ, 13 det Λ}. Since the
determinant of a packing lattice can not be too small we can repeat this
refinement process only finitely many times.

Finally, we remark that in the case 1 < p ≤ 2 the sign in Clarkson’s
inequality (2.5) is reversed and so we get the same bounds as in (2.9) and
(2.13) with p and q interchanged.

�

3. A simple algorithm

The proof of Proposition 1.1 immediately suggests the following simple
algorithm for finding a packing lattice Λ with δ(Λ, Bn

p ) > f1(p, βp)
n (cf. also

[31, Theorem 4.4]):

S0 Input: Λ(0) ∈ P(Bn
p ) given by a basis c

(0)
1 , . . . , c

(0)
n ∈ Qn and for

which we can evaluate dp(x,Λ
(0)).
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In the lth step, l ≥ 0, we want to find a a(l) ∈ Λ(l) such that (2.4) or (2.1)

is satisfied, i.e., we want to find a point of the lattice 1
2Λ(l) or 1

3Λ(l) having

maximal distance to Λ(l). This can easily be done by examine the 2n (3n)

points of 1
2Λ(l) (13Λ(l)) contained in a fundamentell cell of Λ(l). Thus we

determine

S1 For k = 2, 3 determine

σ
(l)
k = max

{
dp

(
1

k

n∑
i=1

wi c
(l)
i ,Λ

(l)

)
: wi ∈ {0, 1, k − 1}, 1 ≤ i ≤ n

}
,

and let

(3.1) a
(l)
k =

n∑
i=1

wi c
(l)
i ∈ Λ(l)

be a point attaining this maximal distance (after scaling by 1/k). If σk(l) ≥ 2
then the lattice

(3.2) Λ(l+1) =

k−1⋃
m=0

(m
k
a
(l)
k + Λ(l)

)
is a new packing lattice of Bn

p of determinant 1
k det Λ(l) (cf. (2.4), (2.1)).

A basis c
(l+1)
1 , . . . , c

(l+1)
n of Λ(l+1) is obtained by replacing a c

(l)
i with

wi 6= 0 in the representation (3.1) by the vector 1
ka

(l)
k . Due to the coset

representation (3.2) we can also easily compute the distance to Λ(l+1) by
setting

(3.3) dp(x,Λ
(l+1)) = min

{
dp

(
x− m

k
a
(l)
k ,Λ

(l)
)
,m = 0, .., k − 1

}
.

S2 Determine a basis of Λ(l+1) and update the distance function accord-
ing to (3.3).

In order to estimate the running time we assume that we first consider
only lattice refinements of type (2.3), i.e., k = 2, and then we continue with
k = 3, i.e., lattices of type (2.2).

The determination of σ
(l)
2 costs 2n calls of dp

(
1
2

∑n
i=1wi c

(l)
i ,Λ

(l)
)

which

by the recursion (3.3) leads to

2n 2l calls of dp

(
x,Λ(0)

)
.

The calculation of a vector of the type 1
2

∑n
i=1wi c

(l)
i takes O(n2) arithmetic

operations and assuming that we execute L2 times the refinement with k = 2,
then the running time of this part of the algorithm is bounded by

O(n2 2n L2) arithmetic operations +O(2n+L2) calls of dp

(
x,Λ(0)

)
.
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Next we continue with refinements of lattices of type (2.2). The calculation

of σ
(l)
3 costs 3n calls of dp

(
1
3

∑n
i=1wi c

(l)
i ,Λ

(l)
)

, which by the recursion (3.3)

leads in the r-th execution of this second refinements to

3n 2L2 3r calls of dp

(
x,Λ(0)

)
.

Assuming that we perform L3 steps of these second refinements of the
algorithm, the running time of this part is bounded by

O(n2 3n L3) arithmetic operations +O(3n 3L32L2) calls of dp

(
x,Λ(0)

)
.

Regarding the overall numbers of steps of the algorithm, we observe that
in each step the density is either doubled (k = 2) or tripled (k = 3) and so
we have

2L2 3L3 ≤
δ(Bn

p )

δ(Λ(0), Bn
p )
.

This implies the running time in Theorem 1.2.

4. Numerical results

The differences between our implementation of the algorithm and its de-
scription in the last section are essentially the following:

i) Instead of computing the maximum σ
(l)
k , k = 2, 3, we take as a(l)

the “first” vector a(l) =
∑n

i=1wi c
(l)
i for which dp

(
1
ka

(l),Λ(l)
)
≥ 2.

Here “first” refers to the reverse lexicographic order on the coefficient
vectors w.

ii) We first look for refinements with k = 2 and if we can not find a

vector a
(l)
2 with dist p(

1
2a

(l)
l ,Λ

(l)) ≥ 2 we continue with k = 3. If
already the first execution with k = 3 does not lead to a refinement,
then we go one step back and try to get an improvement in the step
before with a factor k = 3 instead of k = 2 and we then continue.

In order to also obtain – in addition to the results in Tables 1.1, 1.2 – the
densities of the densest known packing lattices in the dimensions 6, 10, 11, 12,
13, 14, 18 via this implementation of the algorithm we need a bit more nota-
tion. Let Λki , 1 ≤ i ≤ r, be ki-dimensional lattices, then (Λk1 , . . . ,Λkr) de-
notes the k1+· · ·+kr-dimensional lattice where each Λki is embedded into the
linear space generated by unit vectors ej , k1+· · ·+ki−1+1 ≤ j ≤ k1+· · ·+ki.
For instance, (2Z1, 2

√
3Z1) denotes the 2-dimensional lattice with basis

(2, 0)ᵀ, (0, 2
√

3)ᵀ.

n = 6? Start lattice: (A2, A2, A2).
Here only one step with factor 1/3 is carried out, and the resulting
lattice is the well-known lattice E6 of determinant 8

√
3. We can use

the coset representation in order to compute the distance function
dp(x, E

6).
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n = 10? Start lattice: (
√

2D4, E6).
Output: Lattice with det Λ = 16

√
3

n = 11? Start lattice: (A2, A2, A2, A2, A2, 2Z1).
Output: Lattice with det Λ = 18

√
3

n = 12? Start lattice: (A2, A2, A2, A2, A2, A2).
Output: Lattice with det Λ = 27

n = 13? Start lattice: (A2, A2, A2, A2, A2, A2,
√

12Z1).
Output: Lattice with det Λ = 18

√
3

n = 14? Start lattice: (
√

2D12, A2).
Output: Lattice with det Λ = 16

√
3

n = 18? Start lattice: (
√

2D16, A2).
Output: Lattice with det det Λ = 8

√
3

Unfortunately, we could not find a suitable start lattice for getting the best
known packing lattice in dimension 22. We have also done few experiments
in dimension 26− 31 and in Table 4.1 are the best results/determinants we
obtained so far.

n start lattice ∆

26? (
√

2D25,
√

6Z1)
√

3

27 (
√

2D24, 2Z3) 2

28
√

2D28 or (
√

2D24, 2Z4) 2

29 (
√

2D24, 2Z5) 2

30
√

2D30 or (
√

2D24, 2Z6) 2

31
√

2D31
√

2

Table 4.1. Some results in dimensions 26− 31

In dimensions 26, 27, 28, 29, 31 these determinants coincide with the best
laminated packing lattices. We have also verified/double checked the pack-
ing property of the constructed lattices via the program shvec by Frank
Vallentin [41].

We conclude with a problem (question): Can the lattice
√

2Dn always be
refined to a packing lattice of Bn of density ≥ 2−n?
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