On minimal solutions of linear Diophantine equations

Martin Henk Robert Weismantel∗

Abstract
This paper investigates the region in which all the minimal solutions of a linear diophantine equation lie. We present best possible inequalities which must be satisfied by these solutions and thereby improve earlier results.

Keywords: Linear Diophantine equations, Hilbert basis, pointed rational cones.

1 Introduction

For two nonnegative integral vectors \(a \in \mathbb{N}^n, b \in \mathbb{N}^m, n, m \geq 1 \), let

\[
\mathcal{L}(a, b) = \{(x, y) \in \mathbb{N}^n \times \mathbb{N}^m : a^\top x = b^\top y\}
\] (1.1)

be the set of all nonnegative solutions of the linear Diophantine equation \(a^\top x = b^\top y\). Here we are interested in the minimal solutions of this linear Diophantine equation, where \((x, y) \in \mathcal{L}(a, b)\) is called minimal if it can not be written as the sum of two other elements of \(\mathcal{L}(a, b) \setminus \{0\}\). The set of all minimal solutions is denoted by \(\mathcal{H}(a, b)\). By definition we have

\[
\mathcal{L}(a, b) = \left\{ \sum_{i=1}^p q_i h^i : q_i, p \in \mathbb{N}, h^i \in \mathcal{H}(a, b) \right\}
\]

and \(\mathcal{H}(a, b)\) is a minimal subset of \(\mathcal{L}(a, b)\) having this generating property.

In other words, \(\mathcal{H}(a, b)\) is the Hilbert basis of the pointed rational cone

\[
\mathcal{C}(a, b) = \{(x, y) \in \mathbb{R}^n_{\geq 0} \times \mathbb{R}^m_{\geq 0} : a^\top x = b^\top y\}. \] (1.2)

A Hilbert basis of an arbitrary pointed rational polyhedral cone \(\mathcal{C} \subset \mathbb{R}^n\) is defined as the unique minimal generating system (w.r.t. nonnegative integral combinations) of the semigroup \(\mathcal{C} \cap \mathbb{Z}^n\). Observe, that \(\mathcal{C}(a, b) \cap \mathbb{N}^n \times \mathbb{N}^m = \mathcal{L}(a, b)\). The existence of such a system of finite cardinality was already shown by Gordan [G1873] for any rational cone. Van der Corput [Cor31] proved the uniqueness for pointed rational cones.

The set \(\mathcal{H}(a, b)\) of all minimal solutions of a linear Diophantine equation has been studied for a long time in various contexts, see e.g., [Ehr79], [FT95],

∗Supported by a Gerhard-Hess-Forschungsförderpreis of the German Science Foundation (DFG).
[Gre88] and the references within. The purpose of this note is to generalize a result of Lambert [Lam87] and Diaconis, Graham & Sturmfels [DGS94] by proving that the elements of $\mathcal{H}(a, b)$ satisfy a certain system of inequalities.

We assume throughout that $a = (a_1, \ldots, a_n)^T \in \mathbb{N}^n$, $b = (b_1, \ldots, b_m)^T \in \mathbb{N}^m$, $n \geq m \geq 1$, and $a_1 \leq a_2 \leq \cdots \leq a_n$, $b_1 \leq b_2 \leq \cdots \leq b_m$. It is not hard to see that

$$C(a, b) = \text{pos} \{ b_j e^i + a_i e^{n+j} : 1 \leq i \leq n, 1 \leq j \leq m \},$$

where pos denotes the positive hull and $e^i \in \mathbb{R}^{n+m}$ denotes the i-th unit vector. A trivial system of valid inequalities for the elements of $\mathcal{H}(a, b)$ is given by the facet defining hyperplanes of the zonotope

$$\left\{ (x, y) \in \mathbb{R}^{n+m} : (x, y)^T = \sum_{i,j} \lambda_{ij} (b_j e^i - a_i e^{n+j}), 0 \leq \lambda_{ij} \leq 1 \right\},$$

because it is well known (and easy to see) that the Hilbert basis of a pointed rational cone is contained in the zonotope spanned by the generators of the cone. Stronger inequalities were given by Lambert [Lam87] and Diaconis, Graham & Sturmfels [DGS94]. They proved that every $(x, y)^T \in \mathcal{H}(a, b)$ satisfies

$$\sum_{i=1}^n x_i \leq b_m \quad \text{and} \quad \sum_{j=1}^m y_j \leq a_n. \quad (1.3)$$

Here we show

Theorem 1. Every $(x, y)^T \in \mathcal{H}(a, b)$ satisfies the $n + m$ inequalities

$$[J_l] : \sum_{i=1}^n x_i + \sum_{j=1}^{l-1} \left[\frac{b_l - b_j}{a_n} \right] y_j \leq b_l + \sum_{j=l+1}^m \left[\frac{b_l - b_j}{a_1} \right] y_j, \quad l = 1, \ldots, m,$$

$$[I_k] : \sum_{j=1}^m y_j + \sum_{i=1}^{k-1} \left[\frac{a_k - a_i}{b_m} \right] x_i \leq a_k + \sum_{i=k+1}^n \left[\frac{a_k - a_i}{b_1} \right] x_i, \quad k = 1, \ldots, n,$$

where $[x]$ ($\lfloor x \rfloor$) denotes the smallest integer not less than x (the largest integer not greater than x).

Observe, that $[J_m]$ and $[I_n]$ are generalizations of the inequalities stated in (1.3).

2 Proof of Theorem 1

In the following we denote by \leq (respectively by $<$) the usual partial order, i.e., for two vectors x, y we write $x \leq y$ if for each coordinate holds $x_i \leq y_i$ and we write $x < y$ if, in addition, there exists a coordinate with $x_j < y_j$. The proof of Theorem 1 relies on the following observation.

Lemma 1. Let $(\tilde{x}, \tilde{y})^T \in \mathcal{L}(a, b)$ and let $(x^1, y^1)^T, (x^2, y^2)^T \in \mathbb{N}^{n+m}$ such that $0 < (x^2 - x^1, y^2 - y^1)^T < (\tilde{x}, \tilde{y})^T$ and $a^T x^1 - b^T y^1 = a^T x^2 - b^T y^2$. Then $(\tilde{x}, \tilde{y})^T$ is not an element of $\mathcal{H}(a, b)$.

Proof. Let $(z_x, z_y) = (x^2 - x^1, y^2 - y^1)$. By assumption we have $(z_x, z_y)^T, (\tilde{z} - z_x, \tilde{y} - z_y)^T \in \mathcal{L}(a, b) \setminus \{0\}$. Thus $(\tilde{x}, \tilde{y}) = (\tilde{z} - z_x, \tilde{y} - z_y) + (z_x, z_y)$ can be written as a non trivial combination of two elements of $\mathcal{L}(a, b) \setminus \{0\}$. □
Proof of Theorem 1. Let \((\tilde{x}, \tilde{y})^T \in \mathcal{H}(a, b)\). By symmetry it suffices to consider only the inequalities \([j, l], l = 1, \ldots, m\). Let us fix an index \(l \in \{1, \ldots, m\}\) and let \(\xi = \sum_{i=1}^{n} \tilde{x}_i, \upsilon = \sum_{j=1}^{m} \tilde{y}_j\). We choose a sequence of points \(x^i \in \mathbb{N}^n\), \(0 \leq i \leq \xi\), such that

\[
0 = x^0 < x^1 < x^2 < \cdots < x^\xi = \tilde{x}.
\]

(2.1)

Next we define recursively a sequence of points \(y^j \in \mathbb{N}^m\), \(0 \leq j \leq \upsilon\), by \(y^0 = 0\) and \(y^j = y^{j-1} + e^d(j), j \geq 1\), where the index \(d(j)\) is given by \(d(j) = \min\{1 \leq d \leq m : y^{j-1}_d + e^d \leq \tilde{y}_d\}\). Observe that here \(e^d\) denotes the \(d\)-th unit vector in \(\mathbb{R}^m\). Obviously, we have

\[
0 = y^0 < y^1 < y^2 < \cdots < y^\upsilon = \tilde{y}.
\]

(2.2)

For two points \(x \in \mathbb{N}^n, y \in \mathbb{N}^m\) let \(r(x, y) = a^T x - b^T y\) and for a given point \(x^i\) let \(y^{\mu(i)}\) be the unique point such that

\[
r(x^i, y^{\mu(i)}) = \min \{r(x^i, y^j) : r(x^i, y^j) \geq 0, 0 \leq j \leq \upsilon\}.
\]

For abbreviation we set \(r(i) = r(x^i, y^{\mu(i)})\). It is easy to see that \(r(i) \in \{0, \ldots, b_m - 1\}\) and

\[
0 = y^{\mu(0)} \leq y^{\mu(1)} \leq \cdots \leq y^{\mu(\xi)} = \tilde{y}.
\]

(2.3)

Moreover, by definition of \(y^j\) we have the relation

\[
r(i) \geq b_l \implies y_j^{\mu(i)} = \tilde{y}_j, 1 \leq j \leq l.
\]

(2.4)

So we have assigned to each \(i \in \{0, \ldots, \xi - 1\}\) its residue \(r(i)\) and now we count the number of different residues which may occur. To this end let

\[
R_l = \{i \in \{0, \ldots, \xi - 1\} : r(i) < b_l\},
\]

and for \(l + 1 \leq j \leq m\) let

\[
R_j = \{i \in \{0, \ldots, \xi - 1\} : b_l \leq r(i) < b_j, y_j^{\mu(i)} = \tilde{y}_j - 1, y_j^{\mu(i)} < \tilde{y}_j\}.
\]

Since \(\{0, \ldots, \xi - 1\} = \bigcup_{j=1}^{m} R_j\) we have

\[
\sum_{i=1}^{n} \tilde{x}_i \leq \#R_l + \sum_{j=l+1}^{m} \#R_j.
\]

(2.5)

By Lemma 1, (2.1), (2.2) we have

\[
\#R_l = \#\{r(i) : i \in R_l\} \leq b_l.
\]

(2.6)

We claim that for \(j = l + 1, \ldots, m\)

\[
\#R_j \leq \left\lceil \frac{b_j - b_l}{a_1} \right\rceil \tilde{y}_j.
\]

(2.7)

To show this let \(\zeta \in \{0, \ldots, \tilde{y}_j - 1\}\) and let \(x^{i_1} < \cdots < x^{i_\tau}\) be all vectors of the \(x\)-sequence (cf. (2.1)) satisfying \(y_j^{\mu(i)} = \zeta\) and \(i \in R_j\). By construction we have \(y^{\mu(i_1)} = y^{\mu(i_2)} = \cdots = y^{\mu(i_\tau)}\) and so

\[
(\tau - 1)a_1 \leq a^T x^{i_\tau} - a^T x^{i_1} = r(i_\tau) - r(i_1) \leq (b_j - 1) - b_l.
\]
\[\sum_{i=1}^{\bar{n}} \bar{x}_i \leq \# R_l + \sum_{j=l+1}^{m} \left[\frac{b_j - b_l}{a_l} \right] \tilde{y}_j. \]

(2.8)

In the following we estimate the number of residues in \(\{0, \ldots, b_l - 1\} \) which are not contained in \(\{r(i) : i \in R_l\} \).

To do this we have to extend our \(x \)-sequence. For \(v \in \mathbb{N} \) let \(p_v, q_v \in \mathbb{N} \) be the uniquely determined numbers with \(v = p_v \xi + q_v, 0 \leq q_v < \xi \), and let

\[\bar{x}^v = p_v x^\xi + x^{q_v}. \]

Observe that \(r(\bar{x}^v, y) = p_v b^T \tilde{y} - b^T y + a^T x^{q_v}. \) For \(s \in \{1, \ldots, l-1\} \) and \(t \in \{0, \ldots, \tilde{y}_s - 1\} \) let \(y^{s,t} \) be the point of the \(y \)-sequence (cf. (2.10)) with coordinates

\[y_{s,t}^j = t, \quad y_{s,t}^j = \tilde{y}_j, \quad 1 \leq j \leq s - 1, \quad \text{and} \quad y_{s,t}^j = 0, s + 1 \leq j \leq m. \]

For such a vector \(y^{s,t} \) let \(\bar{x}^{(s,t)} \) be the point of the \(\bar{x} \)-sequence such that

\[r(\bar{x}^{(s,t)}, y^{s,t}) = \min \{ r(\bar{x}^i, y^{s,t}) : r(\bar{x}^i, y^{s,t}) \geq b_s, i \in \{0, \xi, \xi^2, \xi^3, \ldots\} \}. \]

Observe that such a point \(\bar{x}^{(s,t)} \) exists, because \(t \in \{0, \ldots, \tilde{y}_s - 1\} \). Moreover, \(\bar{x}^{(s,t)} \) belongs to the “original” \(x \)-sequence. In particular, we have

\[b_s \leq r(\bar{x}^{(s,t)}, y^{s,t}) < b_s + a_n. \]

(2.9)

Let \(r_{s,t} = \{ \bar{x}^i : b_s \leq r(\bar{x}^i, y^{s,t}) < b_l \} \). Obviously, by (2.9) we have

\[\# r_{s,t} \geq [(b_l - b_s)/a_n]. \]

(2.10)

Now we study the cardinality of

\[\bar{R} = \bigcup_{s=1}^{l-1} \left(\bigcup_{t=0}^{\tilde{y}_s - 1} \{ r(\bar{x}^i, y^{s,t}) : b_s \leq r(\bar{x}^i, y^{s,t}) < b_l \} \right) \]

and we show

\[\# \bar{R} \geq \sum_{s=1}^{l-1} \left[\frac{b_l - b_s}{a_n} \right] \tilde{y}_s. \]

(2.11)

Suppose the contrary. Then, by (2.10), we can find \(s', s'' \in \{1, \ldots, l-1\}, t \in \{0, \ldots, \tilde{y}_{s'} - 1\}, t' \in \{0, \ldots, \tilde{y}_{s''} - 1\} \) and vectors \(\bar{x}^{s',t} \), \(\bar{x}^{s'',t'} \) of the \(\bar{x} \)-sequence such that \(r(\bar{x}^{s',t}, y^{s',t'}) = r(\bar{x}^{s'',t'}, y^{s'',t'}) \). We may assume \(y^{s',t} < y^{s'',t'} \) and therefore \(\bar{x}^{s',t} < \bar{x}^{s'',t'} \), i.e., \(v \leq w \). Since

\[r(\bar{x}^{s',t}, y^{s',t'}) = p_v b^T \tilde{y} - b^T y^{s',t'} + a^T x^{q_v} = p_w b^T \tilde{y} - b^T y^{s',t'} + a^T x^{q_v} = r(\bar{x}^{s'',t'}, y^{s'',t'}) \]

we get \(p_w \in \{p_v, p_v + 1\} \).

a) If \(p_w = p_v \), then \(0 < \bar{x}^{s',t} - \bar{x}^{s''} = x^{q_v} - x^{q_v} < x^{\xi} \) and we can apply Lemma 1 to \((\bar{x}^{s',t}, y^{s',t'})^T, (\bar{x}^{s''}, y^{s'',t'})^T \) which yields the contradiction \((\bar{x}, \tilde{y}) \notin \mathcal{H}(a, b) \).

b) If \(p_w = p_v + 1 \), then \(0 < \bar{x}^{s',t} - \bar{x}^{s''} = x^{\xi} + x^{q_v} - x^{q_v} \). Since

\[a^T (x^{q_v} - x^{q_v}) = b^T \tilde{y} + b^T y^{s',t'} - b^T y^{s',t'} > 0 \]
we have \(x^q < x^q \) and thus \(0 < x^w - x^v < x^\xi \). Hence, also in this case we can apply Lemma 1 and obtain a contradiction.

Next we claim that
\[
\widehat{R} \cap \{ r(i) : i \in R_l \} = \emptyset. \tag{2.12}
\]
Otherwise there exist \(x^w, y^{s,t} \) with \(y_s \leq r(x^w, y^{s,t}) < b_l \) and \(x^\xi, y^{\mu(i)} \), \(0 \leq i \leq \xi - 1 \), such that \(r(x^w, y^{s,t}) = r(x^\xi, y^{\mu(i)}) \). Since \(r(x^w, y^{s,t}) \geq b_s \) but \(y^{s,t}_s < y^{\mu(i)}_s \), we have \(y^{s,t} \neq y^{\mu(i)} \) (cf. (2.4)). Hence, we may assume \(y^{s,t} < y^{\mu(i)} \) or \(y^{\mu(i)} < y^{s,t} \).

(a) If \(y^{s,t} < y^{\mu(i)} \) then \(\bar{x}^s < \bar{x}^w \) and thus \(v < i < \xi \). Again, by Lemma 1 we find \((\tilde{x}, \tilde{y}) \notin \mathcal{H}(a, b)\).

(b) If \(y^{\mu(i)} < y^{s,t} \) then \(\bar{x}^w < \bar{x}^\xi \). As above, it is easy to see that \(p_i \in \{0,1\} \) and that in both cases Lemma 1 can be applied in order to get a contradiction.

Finally, we note that (2.6), (2.12) and (2.11) imply
\[
\#R_l \leq b_l - \sum_{s=1}^{l-1} \left(\frac{b_l - b_s}{a_n} \right) \bar{y}_s,
\]
which proves inequality \([J_l] \) (cf. (2.8)).\(\square\)

3 Remarks

Theorem 1 shows that the minimal solutions of a linear Diophantine equation in the region that one obtains from intersecting the zonotope associated with the generators of \(C(a, b) \) with all the halfspaces induced by the inequalities \([I_k] \), \(k = 1, \ldots, n \) and \([J_l] \), \(l = 1, \ldots, m \). We believe that a stronger statement is true: every element of \(\mathcal{H}(a, b) \) is a convex combination of 0 and the generators \(b_j e^i + a_i e^{i+j} \) of \(C(a, b) \). More formally, let
\[
P(a, b) = \text{conv} \{ 0, b_j e^i + a_i e^{i+j} : 1 \leq i \leq n, 1 \leq j \leq m \}.
\]
We conjecture that

Conjecture 1. \(\mathcal{H}(a, b) \subset P(a, b) \).\(^1\)

We remark that there is an example by Hosten and Sturmfels showing that if one replaces \(P(a, b) \) by the “smaller” polytope \(\tilde{P}(a, b) = \text{conv} \{ 0, (b_j e^i + a_i e^{i+j})/\gcd(b_j, a_i) : 1 \leq i \leq n, 1 \leq j \leq m \} \), then \(\mathcal{H}(a, b) \not\subset \tilde{P}(a, b) \).

For \(m = 1 \) Theorem 1 implies the inclusion \(\mathcal{H}(a, b) \subset P(a, b) \). This can easily be read off from the representation
\[
P(a, b) = \left\{ (x, y)^T \in \mathbb{R}^n \times \mathbb{R} : a^T x = b_1 y, \ x, y \geq 0, \sum_{i=1}^n x_i \leq b_1 \right\}.
\]

It is not difficult to check that the inequalities \([I_k] \) and \([J_l] \) of Theorem 1 “without rounding” define facets of \(P(a, b) \).

Proposition 1. For \(l = 1, \ldots, m \) let
\[
J_l = \left\{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^m : \sum_{i=1}^n x_i + \sum_{j=1}^{l-1} \frac{b_l - b_j}{a_n} y_j \leq b_l + \sum_{j=l+1}^m \frac{b_j - b_l}{a_n} y_j \right\}
\]
\(^1\)This conjecture was independently made by Hosten and Sturmfels, private communication.
and for $k = 1, \ldots, n$ let
\[
I_k = \left\{ (x, y) \in \mathbb{R}^n \times \mathbb{R}^m : \sum_{j=1}^m y_j + \sum_{i=1}^{k-1} \frac{a_k - a_i}{b_m} x_i \leq a_k + \sum_{i=k+1}^n \frac{a_i - a_k}{b_1} x_i \right\}.
\]

Then we have $P(a, b) \subset J_l$, $P(a, b) \subset I_k$. Moreover, $P(a, b) \cap J_l$ and $P(a, b) \cap I_k$ are facets of $P(a, b)$, $1 \leq l \leq m$, $1 \leq k \leq n$.

Proof. It is quite easy to check that all vectors $b_j e^i + a_i e^n + l, 1 \leq i \leq n, 1 \leq j \leq m$, are contained in J_l, $l = 1, \ldots, m$. Moreover, the inequality corresponding to J_l is satisfied with equality by the $n + m - 1$ linearly independent points $b_i e^i + a_i e^n + l, 1 \leq i \leq n, b_j e^i + a_i e^n + j, 1 \leq j \leq l - 1, b_j e^i + a_i e^n + j, l + 1 \leq j \leq m$.

The halfspaces I_k can be treated in the same way.

Elementary considerations show that for $m = 2$ the polytope $P(a, b)$ can be written as $P(a, b) = \{(x, y)^T \in \mathbb{R}^n \times \mathbb{R}^2 : a^T x = b^T y; x, y \geq 0, (x, y)^T \in I_k, 1 \leq k \leq n\}$, and thus Theorem 1 and Proposition 1 imply that the conjecture is "almost true" when $m = 2$ (or respectively, for $n = 2$).

Acknowledgements. We would like to thank Robert T. Firla and Bianca Spille for helpful comments.

References

Otto-von-Guericke-Universität Magdeburg, FB Mathematik / IMO, Universitätsplatz 2, D-39106 Magdeburg, Germany, \{henk,weismantel\}@imo.math.uni-magdeburg.de