
        

Superconvergence of the gradient in a fully discrete FEM scheme:
one-dimensional case
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Abstract

In this paper we study the convergence of a fully discrete linear finite element solu-
tion for a one-dimensional elliptic problem subject to general boundary conditions.
We prove for s ∈ [1, 2] order O(hs) convergence of solution and gradient if the exact
solution is in the Sobolev space Hs+1(0, L). The method is equivalent to a finite
difference scheme on a nonuniform mesh and the obtained convergence is then a
so-called supraconvergence result for solution and gradient.

1 Introduction
We consider the discretization of the differential equation

Au := −(au′)′ + (bu)′ + cu = f in (0, L) ⊂ IR (1)

subject to either Dirichlet boundary conditions

u(0) = α0, u(L) = αL (2)

or third kind boundary conditions

− (au)′(0) + β0u(0) = γ0, (au)′(L) + βLu(L) = γL. (3)

Our scheme can be written as a finite difference approximation on the general non uniform
grid

IIh := {0 = x0 < x1 < . . . < xN−1 < xN = L},
where h is a vector of mesh-sizes hj := xj+1 − xj, j = 0, . . . , N − 1. Let xj+1/2 :=
xj + hj/2, j = 0, . . . , N − 1. By Wh := {uh, vh, wh, . . .} we denote the space of grid
functions defined on IIh. We introduce the centered divided finite differences

(δvh)j :=
vj+1 − vj−1

xj+1 − xj−1
, (δ(1/2)vh)j+1/2 :=

vj+1 − vj
xj+1 − xj

, (δ(1/2)vh)j :=
vj+1/2 − vj−1/2

xj+1/2 − xj−1/2
, (4)
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where vj := vh(xj), and vj+1/2 is used as far as it makes sense. Our scheme has the form

Ahuh := −δ(1/2)(aδ(1/2)uh) + δ(buh) + cuh = fh in II′h (5)

together with the discretized boundary conditions

u0 = α0, uN = αL (6)

or
− δ(auh)0 + β0u0 = γ0, δ(auh)N + βLuN = γL (7)

in the case (2) or (3), respectively. Here, for boundary conditions of type (7) II′h := IIh
and we have introduced auxiliary variables u−1 and uN+1 corresponding to auxiliary grid
points x−1 := −h0 and xN+1 := L + hN−1. In the case of Dirichlet boundary conditions
II′h := IIh\{x0, xN}. In (5) the grid function fh approximating the right-hand side of (1) is
given by

fj :=
2

hj−1 + hj

∫ xj+1/2

xj−1/2

f(x) dx , j = 0, . . . , N, (8)

where for the sake of a simpler notation we introduced the additional mesh-sizes h−1 :=
hN := 0 and points x−1/2 := 0, xN+1/2 := L.

In Section 2 we show the interesting relation that the scheme (5) with (6) or (7),
respectively, is equivalent to a linear finite element method with quadrature. This fact
will also be used for studying the convergence properties of the scheme.

There are no restrictions made on the nonuniformity of the grid IIh. We consider
the behaviour of the scheme for a sequence of grids IIh, h ∈ H, with maximal mesh-size
hmax := max{hj, j = 0, . . . , N − 1} tending to zero. The scheme (5) is in general first
order accurate only (it is of second order on uniform grids). One purpose of the present
paper is to show that nevertheless the solutions uh are second order accurate. This fact is
usually expressed by saying that the scheme is supraconvergent. But the scheme exhibits
an interesting additional feature in that the first order derivatives are also second order
accurately approximated. This latter fact is a superconvergent behaviour of the fully
discrete linear finite element method that is already nonstandard for the simpler situation
of uniform partitions. The regularity assumption u ∈ H3(0, L) for the continuous solution
u to obtain that result, which is contained in the main theorem of this note (Theorem 2
of Section 3), is minimal. The present kind of superconvergence is different from the one
obtained by postprocessing (see e.g. [1] and the literature cited there).

Supraconvergence of finite difference schemes for BVODE’s is well established in the
literature (see [6], [7], [9], [10], [14], [19] and [22]). Different methods of proof have been
used by the various authors. The present paper still presents an other kind of proof
following the reasoning in [13] for the equidistant case which has two advantages: it
allows to obtain the error estimates under optimal smoothness assumptions for the exact
solution and it may be extended to the two-dimensional case. The latter will be done
in a forthcoming paper by the authors. In this note we also consider general two-point
boundary conditions (2) and (3), which was not done so far in the literature. Naturally, the
phenomenon of supraconvergence in more than one dimension has already been studied in
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the literature (see e.g. [3] - [5], [17], [20]). Also superconvergence results for the gradient
have been obtained (see e.g. [2], [13], [16], [18], [21], [24], [25]). Another direction of
interest lies in setting up discretisation schemes that work also for coefficients with low
smoothness in the differential equation (1). The assumptions in [8], [11], [12], [15] and
[23] are weaker than ours in this paper as stated at the end of Section 2 .

2 The variational formulation
The linear finite element scheme that is equivalent to (5) and (6) or (7), respectively, can
be written with the aid of the piecewise linear interpolation of a grid function vh with
break points in IIh which we denote by Phvh. We restrict ourselves to the case of boundary
conditions (3), the Dirichlet case (2) is similar but slightly simpler. Let ah denote the
sesquilinear form

ah(vh, wh) :=
N−1∑

j=0

hj[aj+1/2(Phvh)
′
j − (Ph(bvh))j+1/2](Phwh)

′
j

+ (chvh, wh)h + (β0 − b0)v0w0 + (βL + bN)vNwN .

(9)

Here ch := Rhc ∈ Wh, where Rh denotes the pointwise restriction to the grid IIh, and

(vh, wh)h :=
N∑

j=0

hj−1 + hj

2
vjwj, vh, wh ∈ Wh. (10)

The finite difference scheme (5) and (7) is equivalent to the variational problem to find
uh ∈ Wh such that

ah(uh, vh) = (fh, vh)h + γ0v0 + γLvN ∀vh ∈ Wh. (11)

The formulation (11) corresponds to the variational formulation of the continuous problem
(1) and (3) to find u ∈ H1(0, L) such that

a(u, v) = (f, v)0 + γ0v(0) + γLv(L) ∀v ∈ H1(0, L), (12)

where (·, ·)0 denotes the standard inner product in L2(0, L) and for v, w ∈ H1(0, L)

a(v, w) := (av′, w′)0 − (bv, w′)0 + (cv, w)0 + (β0 − b(0))v(0)w(0) + (βL + b(L))v(L)w(L).

The coefficients in the differential equation are assumed to be smooth enough, e.g. a ∈
C[0, L] and b, c ∈ W 2,∞(0, L) is sufficient.

3 The main result
The main result of this paper in Theorem 2 relies on the following inverse stability result.
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Theorem 1 Assume that the variational problem belonging to (1) and (2) or (3), respec-
tively, is uniquely solvable. Then there exists a positive constant C such that for h ∈ H
with hmax small enough

‖Phvh‖1 ≤ C sup
0 $=wh∈Wh

|ah(vh, wh)|
‖Phwh‖1

∀vh ∈ Wh. (13)

The proof is similar to the one of Theorem 2 in [4] and we do not reproduce it here again.

Theorem 2 Assume that the variational problem belonging to (1) and (2) or (3), respec-
tively, is uniquely solvable. Then the discretised problem (5) and (6) or (7), respectively,
has a unique solution uh for h ∈ H with hmax sufficiently small. Assume that for some
s ∈ [1, 2] the solution u of (1) and (2) or (3), respectively, lies in Hs+1(0, L). Then there
holds the error estimate

‖PhRhu− Phuh‖1 ≤ C




N−1∑

j=0

h2s
j ‖u‖2

Hs+1(xj ,xj+1)




1/2

≤ Chs
max‖u‖Hs+1(0,L). (14)

Proof: Let uh be the solution of (5) and (7). Then uh is solution of the variational
problem (11). By means of the stability inequality (13) an estimate to ‖PhRhu− Phuh‖1

will be obtained by bounding

ah(Rhu− uh, vh) = ah(Rhu, vh) − (fh, vh)h − γ0v0 − γLvN . (15)

By the definition of fh in (8) we obtain after an integration and a summation by parts
(recall that x−1/2 = 0 and xN+1/2 = L)

(fh, vh)h = −
N−1∑

j=0

[(au′)(xj+1/2) − (bu)(xj+1/2)](vj+1 − vj) +
N∑

j=0

(
∫ xj+1/2

xj−1/2

cu dx)vj

+[(au′)(0) − (bu)(0)]v0 − [(au′)(L) − (bu)(L)]vN .

Taking the definitions of ah and the boundary conditions (3) into account an estimate of
(15) will be obtained by the sum of bounds for the quantities

Ia : =
N−1∑

j=0

hjaj+1/2[(PhRhu)′j − u′(xj+1/2)](Phvh)
′
j

Ib : =
N−1∑

j=0

hj[(bu)(xj+1/2) −
(bu)(xj) + (bu)(xj+1)

2
](Phvh)

′
j

Ic : =
N∑

j=0

[
hj−1 + hj

2
(cu)(xj) −

∫ xj+1/2

xj−1/2

(cu)(x) dx]vj.

Estimate for Ia: Let the function w be defined by w(ξ) := u(xj + ξhj) for ξ ∈ [0, 1]. We

have

u′(xj+1/2) − (Phu)′j :=
1

hj
[w′(

1

2
) − w(1) + w(0)]. (16)
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The functional

λ(g) = g′(
1

2
) − g(1) + g(0)

is bounded on W 2,1(0, 1) and vanishes for g = 1, ξ and ξ2. Thus the Bramble-Hilbert
Lemma gives the existence of a positive constant C such that

|λ(g)| ≤ C‖g(r)‖L1(0,1)

for r ∈ {2, 3}. The last estimate applied to g := w and (16) yield

|u′(xj+1/2) − (PhRhu)′j| ≤ Chs−1
j ‖u(s+1)‖L1(xj ,xj+1) ≤ Chs−1/2

j ‖u‖Hs+1(xj ,xj+1) (17)

for u ∈ Hs+1(xj, xj+1), s ∈ 1, 2. By interpolation the outer inequality (17) holds for all
s ∈ [1, 2] and we obtain the bound

|Ia| ≤ C‖a‖∞




N−1∑

j=0

h2s
j ‖u‖2

Hs+1(xj ,xj+1)




1/2

‖Phvh‖1 foru ∈ Hs+1(0, L) and s ∈ [1, 2]. (18)

Estimate for Ib: Let w be defined as before but with u replaced by bu. Then

(bu)(xj) + (bu)(xj+1)

2
− (bu)(xj+1/2) =

w(0) + w(1)

2
− w(

1

2
).

The functional

λ(g) :=
g(0) + g(1)

2
− g(

1

2
)

is bounded on W 2,1(0, 1) and vanishes for g = 1 and ξ. Again by the Bramble-Hilbert
Lemma the estimate

|λ(g)| ≤ C‖g′′‖L1(0,1), g ∈ W 2,1(0, 1),

holds and we obtain the bound

|Ib| ≤ C‖b‖∞,2




N−1∑

j=0

h4
j‖u‖2

H2(xj ,xj+1)




1/2

‖Phvh‖1. (19)

Estimate for Ic: Recall that x−1/2 = 0, xN+1/2 = L, h−1 = hN = 0. Thus Ic may be
written as the sum

Ic = 2I1 + 2I2 (20)

with

I1 :=
N−1∑

j=0

[
hj

2
((cu)j + (cu)j+1) −

∫ xj+1

xj

cu dx](vj + vj+1)

and

I2 :=
N−1∑

j=0

[
hj

2
((cu)j+1 − (cu)j) +

∫ xj+1/2

xj

cu dx−
∫ xj+1

xj+1/2

cu dx](vj+1 − vj).
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The sum in I1 contains the errors of the trapezoidal rule that can be bounded with the
aid of the Bramble-Hilbert Lemma by

|hj

2
((cu)j + (cu)j+1) −

∫ xj+1

xj

cu dx| ≤ Ch2
j‖(cu)′′‖L1(xj ,xj+1)

for u ∈ W 2,1(xj, xj+1). Since Phvh is piecewise linear the estimate

|I1| ≤ C‖c‖2,∞




N−1∑

j=0

h4
j‖u‖2

H2(xj ,xj+1)




1/2

‖Phvh‖0 (21)

follows. In I2 we have only the first order bound

|hj

2
((cu)j+1 − (cu)j) +

∫ xj+1/2

xj

cu dx−
∫ xj+1

xj+1/2

cu dx| ≤ Chj‖(cu)′‖L1(xj ,xj+1)

for u ∈ W 1,1(xj, xj+1). But the factor (vj+1 − vj) allows us to estimate I2 with the same
order as I1 by

|I2| ≤ C‖c‖1,∞




N−1∑

j=0

h4
j‖u‖2

H1(xj ,xj+1)




1/2

‖Phvh‖1. (22)

The first inequality in (14) now follows from the bounds (18), (19), (21) and (22). For
the proof of the second one first use the first one with s = 1 and s = 2 and estimate each
hj by hmax. The proof for the remaining s ∈ (1, 2) is then obtained by interpolation.
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