Remark on a Resolvent Inequality for the Second Order Central Divided Difference Operator

Rolf Dieter Grigorieff*

In the recent paper [1] H.W.J. Lenferink and M.N. Spijker proved in Corollary 3.2 the resolvent inequality

$$\|(\xi I - A_h)^{-1}\|_{\infty} \le C_{\alpha} |\xi|^{-1}, \quad \xi \in \mathbb{C} \setminus \{0\}, \quad |\arg(\xi)| \le \alpha$$

where $\alpha \in [0,\pi)$ and A_h is the difference operator

$$A_h u_h(x_j) := (u_h(x_{j+1}) - 2u_h(x_j) + u_h(x_{j-1}))/h^2, \quad j = 1, \dots, n-1,$$

 $n \ge 2$, acting on grid-functions u_h defined on the uniform grid $\{x_j = x_0 + jh, j = 0, ..., n\}$ such that $u_h(x_0) = u_h(x_n) = 0$. $\|\cdot\|_{\infty}$ denotes the maximum norm for grid functions resp. the corresponding operator norm. The constant C_{α} is shown to be independent of n if $x_0 = 0$, $x_n = 1$, nh = 1. The proof relies on a result by V. Thomée [2]. Another proof using some clever direct calculations (see [1]) was suggested by M. Crouzeix. In this note we also give a direct proof which is quite elementary and at the same time shows that C_{α} also can be taken independent of x_0, x_n .

Proposition. Let $\alpha \in [o,\pi)$ be given. Then (*) holds with a constant C_{α} independent of $x_0, x_n, h, n \in \mathbb{N}, n \geq 2$.

Proof. The discrete Green's function $g_h = g_h(x_j, x_k; \zeta)$ is defined by the equations

$$\begin{split} (\xi I - A_h) \; g_h(x_j, \, x_k \; ; \; \xi) &= h^{-1} \; \delta_{jk} \; , \qquad j, k = 1, \, \dots \, , n \, -1 \\ g_h(x_o, \, x_k \; ; \; \xi) &= g_h(x_n, \, x_k \; ; \; \xi) = 0 \; , \qquad k = 1, \, \dots \, , n \, -1 \; , \end{split}$$

 δ_{jk} denoting Kronecker's symbol. The solution of

$$(\zeta I - A_h)u_h = f_h \;, \qquad u_h(x_0) = u_h(x_n) = 0$$

is then given by

$$u_h(x_j) = h \sum_{k=1}^{n-1} g_h(x_j, x_k; \xi) f_h(x_k), \quad j = 0, ..., n.$$

Clearly,

^{*} Fachbereich Mathematik, Technische Universität Berlin, Strasse d. 17. Juni 135, 10623 Berlin, Germany. e-mail: grigo@math.tu-berlin.de

$$\| (\xi I - A_h)^{-1} \|_{\infty} = \max_{j=1,\dots,n-1} h \sum_{k=1}^{n-1} | g_h(x_j, x_k; \xi) |.$$

Let λ be the solution with $|\lambda| > 1$ of the quadratic equation $\lambda^2 - (2 + h^2 \zeta)\lambda + 1 = 0$, i.e.

$$\lambda = 1 + \frac{h^2 \zeta}{2} + \sqrt{\left(\frac{h^2 \zeta}{2}\right)^2 + h^2 \zeta}$$

(here we take the branch of the function $\sqrt{z(z+2)}$ which is positive for z=1, where the complex plane is slit along (-2,0)).

It is easy to check that g_h is given by

$$g_{h}(x_{j}, x_{k}; \xi) = \frac{h}{\lambda - \lambda^{-1}} \frac{1}{\lambda^{n} - \lambda^{-n}} \begin{cases} (\lambda^{n-k} - \lambda^{-n+k}) (\lambda^{j} - \lambda^{-j}), & j = 0, \dots, k \\ (\lambda^{k} - \lambda^{-k}) (\lambda^{n-j} - \lambda^{-n+j}), & j = k, \dots, n. \end{cases}$$

Because of the symmetry in g_h it is sufficient to estimate

$$R := \max_{j=1,...,n-1} h \sum_{k=1}^{j} |g_h(x_j, x_k; \xi)|.$$

Since $|\lambda| > 1$ we have

$$|\lambda^{k} - \lambda^{-k}| \le 2 |\lambda|^{k}, \quad |\lambda - \lambda^{-1}| \ge |\lambda| - 1, \quad |\lambda^{n} - \lambda^{-n}| \ge |\lambda|^{n} - 1$$

and, consequently, summing up a geometrical series,

$$R \leq \max_{j=1,\ldots,n-1} \frac{4h^2 \left| \lambda \right|}{\left(\left| \lambda \right| - 1 \right)^2} \, \frac{\left| \lambda \right|^n - \left| \lambda \right|^{n-j}}{\left| \lambda \right|^n - 1} \leq \frac{4h^2 \left| \xi \right| \left| \lambda \right|}{\left(\left| \lambda \right| - 1 \right)^2} \, \frac{1}{\left| \xi \right|} \; .$$

Since $\lambda = \lambda(h^2 \xi)$ we have to bound the right-hand side as a function of $z := h^2 \xi$ in the sector $|\arg(z)| \le \alpha$, $z \ne 0$. Evidently, $|\lambda(z)| \ne 1$ for all these z. Moreover,

$$\limsup_{z \to 0} \frac{\left| z \right| \left| \lambda(z) \right|}{\left(\left| \lambda(z) \right| - 1 \right)^2} \le \frac{1}{\cos^2 \frac{\alpha}{2}}, \quad \lim_{z \to \infty} \frac{\left| z \right| \left| \lambda(z) \right|}{\left(\left| \lambda(z) \right| - 1 \right)^2} = 1.$$

Hence, the assertion follows.

Remark 1. For $\alpha \in [0,\pi)$ also

$$\left\| (\zeta I - A_h)^{-1} \right\|_p \le C_\alpha |\zeta|^{-1}, \quad \zeta \in \mathbb{C} \setminus \{0\}, \quad |\arg(\zeta)| \le \alpha$$

holds true for $p \in [1, \infty]$. Here

$$\|u_h\|_p := \left(h \sum_{j=1}^{n-1} |u_h(x_j)|^p\right)^{1/p}.$$

Remark 2. Let $\{x_j, j=0, ..., n\}$, $n \ge 2$, be a nonuniform grid with mesh-sizes $h_j := x_{j+1} - x_j$, j = 0, ..., n-1. Let A_h be the second divided difference operator acting on grid-functions u_h with $u_h(x_0) = u_h(x_n) = 0$, i.e.

$$A_h u_h(x_j) = \frac{2}{h_{j-1} + h_j} \left[\frac{u_h(x_{j+1}) - u_h(x_j)}{h_j} - \frac{u_h(x_j) - u_h(x_{j-1})}{h_{j-1}} \right], \quad j = 1, \dots, n-1.$$

Defining

$$\|u_h\|_2 := \left(\sum_{j=1}^{n-1} \frac{h_{j-1} + h_j}{2} |u_h(x_j)|^2\right)^{1/2}$$

the above estimate $\binom{*}{*}$ holds true for p=2 with C_{α} independent of the grid and $x_0, x_n, n \in \mathbb{N}$, $n \ge 2$ (in fact $C_{\alpha} = 1 / \sin \alpha$ for $\alpha \in [\pi/2, \pi)$ and $C_{\alpha} = 1$ for $\alpha \in [0, \pi/2]$).

Remark 3. Let $\alpha \in [0,\pi)$ and $m,M \in \mathbb{R}$ be given with $m \le x_0 < x_n \le M$. Then, there exists a constant $C = C(\alpha, m, M)$ independent of $x_0, x_n, h, n \in \mathbb{N}$, $n \ge 2$, such that

$$(+) \qquad \left\| (\zeta I - A_h)^{-1} \right\|_p \le \frac{C}{1 + |\zeta|}, \quad \zeta \in \mathbb{C} \setminus \{0\}, \quad \left| \arg(\zeta) \right| \le \alpha$$

for $p \in [1, \infty]$. The estimate (+) holds true also for nonequidistant grids with p = 2 where C does not depend on the grid as well as not on $x_0, x_n, h, n \in \mathbb{N}$, $n \ge 2$.

References

- [1] H.W.J. Lenferink, M.N. Spjker: A generalization of the numerical range of a matrix. Rapportnr. TW-88-09, Rijksuniversiteit te Leiden, Netherlands, Division of Applied Mathematics
- [2] V. Thomée: Stability of difference schemes in the maximum-norm. J. Different. Equ. 1, 273 292 (1965)