Stability of Discrete Orthogonal Projections for Continuous Splines in L_p -Spaces

R.D. Grigorieff¹ and I.H. $Sloan^2$

Abstract

In this paper L_p stability and convergence properties of discrete orthogonal projections on the finite element space S_h of continuous polynomial splines of order r are proved. The discrete inner products are defined by composite quadrature rules with positive weights on a sequence of nonuniform grids. It is assumed that the basic quadrature rule Q has at least r quadrature points in order to resolve S_h , but no accuracy is required. The main results are derived under minimal further assumptions, for example the rule Q is allowed to be non-symmetric, and no quasi-uniformity of the mesh is required. The corresponding stability of the orthogonal L_2 -projections has been studied by de Boor [1] and by Crouzeix and Thomée [2]. Stability of the first derivative of the projection is also proved, under an assumption (unless p = 1) of local quasi-uniformity of the mesh.

- [1] C. de Boor: A bound on the L^{∞} -norm of L^{2} -approximation by splines in term of a global mesh ratio. Math. Comp. **30**, 765-771 (1976).
- [2] M. Crouzeix and V. Thomée: The stability in L_p and W_p^1 of the L_2 -projection onto finite element function spaces. Math. Comp. **48**, 521-532 (1987).

 $^{^1{\}rm Technische Universität Berlin, Strasse des 17. Juni 135, D-10623 Berlin, Germany.
email: grigo@math.tu-berlin.de$

²School of Mathematics, University of New South Wales, Sydney 2052, Australia. email: I.Sloan@unsw.edu.au