On the Riemann Mapping Theorem via Dirichlet Principle

Let G be a simply connected region in \mathbb{C} with a non-trivial sufficiently smooth boundary ∂G parametrized by $c : [0,1] \to \mathbb{C}$, and let $z_0 \in G$. We are looking for a continuous function $f : \overline{G} \to \mathbb{C}$, holomorphic on G, with $f(z_0) = 0$ and

$$|f(z)| = 1 \text{ for all } z \in \partial G. \tag{1}$$

By the maximum principle then $f(G) \subset \mathbb{D}$. Moreover, the winding number

$$n(f \circ c, a) = \frac{1}{2\pi i} \int_0^1 \frac{f'(c(t))c'(t)}{f(c(t)) - a} dt = \frac{1}{2\pi i} \int_c \frac{f'(z)}{f(z) - a} dz$$

is constant on $\mathbb D,$ all values $a\in\mathbb D$ are attained the same number of times. With the ansatz

$$f(z) = (z - z_0)e^{g(z)}$$
(2)

 $f:G\to \mathbb{D}$ has exactly one zero, and hence is bijective.

How to find such an f?

We split g into real and imaginary part:

$$g = u + iv.$$

Then (1) is equivalent with

$$\log|z - z_0| + u(z) = 0 \text{ on } \partial G.$$

We therefore want a continuous function u on \overline{G} , harmonic on G, with prescribed boundary values $u_0(z) := -\log |z - z_0|$ on ∂G . This is now commonly called a *Dirichlet problem*.

Put $\mathcal{F} := \{ \tilde{u} : \bar{G} \to \mathbb{R} \mid \tilde{u}|_{\partial G} = u_0 \}$, where the regularity of the \tilde{u} is assumed to suffice for the following arguments. On \mathcal{F} we consider the functional

$$E(\tilde{u}) := \int_{\bar{G}} \|\operatorname{grad} \tilde{u}\|^2 \, dx dy$$

and take $u \in \mathcal{F}$ which minimizes this functional:

$$E(u) := \min_{\tilde{u} \in \mathcal{F}} E(\tilde{u}).$$

Then for any function $v:\bar{G}\rightarrow \mathbb{C}$ with compact support in G

$$E(u+tv) = \int_{\bar{G}} \|\operatorname{grad} u + t \operatorname{grad} v\|^2 dx dy$$

= $\int_{\bar{G}} \|\operatorname{grad} u\|^2 + 2t \int_{\bar{G}} \langle \operatorname{grad} u, \operatorname{grad} v \rangle dx dy + t^2 \int_{\bar{G}} \|\operatorname{grad} v\|^2 dx dy.$

This is minimal for t = 0 if and only if $\int_{\bar{G}} \langle \operatorname{grad} u, \operatorname{grad} v \rangle dxdy = 0$.

$$\int_{\bar{G}} \langle \operatorname{grad} u, \operatorname{grad} v \rangle \, dx dy = \int_{\bar{G}} \operatorname{div}(v \operatorname{grad} u) dx dy - \int_{\bar{G}} v \Delta u \, dx dy$$
$$= \int_{\partial G} \left\langle \underbrace{v \operatorname{grad} u}_{=0}, \operatorname{unit normal} \nu \right\rangle dO - \int_{\bar{G}} v \Delta u \, dx dy.$$

Besides the product rule for div $v \operatorname{grad} u$ we used Stokes and the information $v|_{\partial G} = 0$. Now

$$\int_{\bar{G}} v\Delta u \, dx dy = 0$$

for all compactly supported v implies $\Delta u = 0$, i.e. u is harmonic. This is referred to as the *Dirichlet principle*.

Locally, u is the real part of a holomorphic function g with derivative

$$g' = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = \frac{\partial u}{\partial x} - i\frac{\partial u}{\partial y}.$$

But this is defined on all of G, and therefore g can be analytically continued along any curve in G. Now G is **simply connected**, and the monodromy theorem applies to give a holomorphic function g with real part u globally defined on G. Let us assume it to be continuous on \overline{G} . Then (2) defines f with the required properties.

This "proof" has several unclear points: The regularity requirements for the boundary, the regularity of the functions involved, but overall the *existence of* the minimizer $u \in \mathcal{F}$ for the energy functional E.