
On the Riemann Mapping Theorem via Dirichlet Principle

Let G be a simply connected region in C with a non-trivial sufficiently smooth
boundary ∂G parametrized by c : [0, 1] → C, and let z0 ∈ G. We are looking
for a continuous function f : Ḡ → C, holomorphic on G, with f(z0) = 0 and

|f(z)| = 1 for all z ∈ ∂G. (1)

By the maximum principle then f(G) ⊂ D. Moreover, the winding number

n(f ◦ c, a) =
1

2πi

∫ 1

0

f ′(c(t))c′(t)

f(c(t))− a
dt =

1

2πi

∫
c

f ′(z)

f(z)− a
dz

is constant on D, all values a ∈ D are attained the same number of times. With
the ansatz

f(z) = (z − z0)e
g(z) (2)

f : G → D has exactly one zero, and hence is bijective.

How to find such an f?

We split g into real and imaginary part:

g = u + iv.

Then (1) is equivalent with

log |z − z0|+ u(z) = 0 on ∂G.

We therefore want a continuous function u on Ḡ, harmonic on G, with pres-
cribed boundary values u0(z) := − log |z − z0| on ∂G. This is now commonly
called a Dirichlet problem.

Put F :=
{
ũ : Ḡ → R

∣∣ ũ|∂G = u0

}
, where the regularity of the ũ is assumed

to suffice for the following arguments. On F we consider the functional

E(ũ) :=

∫
Ḡ

‖ grad ũ‖2 dxdy

and take u ∈ F which minimizes this functional:

E(u) := min
ũ∈F

E(ũ).

Then for any function v : Ḡ → C with compact support in G

E(u + tv) =

∫
Ḡ

‖ grad u + t grad v‖2dxdy

=

∫
Ḡ

‖ grad u‖2 + 2t

∫
Ḡ

〈grad u, grad v〉 dxdy + t2
∫

Ḡ

‖ grad v‖2dxdy.



This is minimal for t = 0 if and only if
∫

Ḡ
〈grad u, grad v〉 dxdy = 0.

But∫
Ḡ

〈grad u, grad v〉 dxdy =

∫
Ḡ

div(v grad u)dxdy −
∫

Ḡ

v∆u dxdy

=

∫
∂G

〈
v grad u︸ ︷︷ ︸

=0

, unit normal ν

〉
dO −

∫
Ḡ

v∆u dxdy.

Besides the product rule for div v grad u we used Stokes and the information
v|∂G = 0. Now ∫

Ḡ

v∆u dxdy = 0

for all compactly supported v implies ∆u = 0, i.e. u is harmonic. This is
referred to as the Dirichlet principle.

Locally, u is the real part of a holomorphic function g with derivative

g′ =
∂u

∂x
+ i

∂v

∂x
=

∂u

∂x
− i

∂u

∂y
.

But this is defined on all of G, and therefore g can be analytically continued
along any curve in G. Now G is simply connected, and the monodromy
theorem applies to give a holomorphic function g with real part u globally
defined on G. Let us assume it to be continuous on Ḡ. Then (2) defines f with
the required properties.

This “proof” has several unclear points: The regularity requirements for the
boundary, the regularity of the functions involved, but overall the existence of
the minimizer u ∈ F for the energy functional E.


