
On the proof of Artin’s homology criterion

Lemma 1. Let c : [0, 1] → G and φ : [0, 1] → [0, 1] be continuous with
φ(0) = 0, φ(1) = 1. Then

(i) For cinv(t) := c(1− t)
cinv ∼

G
	c.

(ii) For cφ := c(φ(t))
cφ ∼

G
c.

(iii) For α ∈]0, 1[ define c1(t) := c(αt) and c2(t)((1− t)α + t)). Then

c ∼
G

c1 ⊕ c2.

(iv) For c1, c2 : [0, 1] → G with c1(1) = c2(0)

c1c2 ∼
G

c1 ⊕ c2.

Lemma 2. Any 1-chain c in a region G is homologous in G to a 1-chain
c̃ =

∑n
j=1 mjγj with “edge path” curves

γj(t) = (1− t)aj + tbj, 0 ≤ t ≤ 1, (1)

where Re aj = Re bj or Im aj = Im bj. If c is a 1-cycle, so is c̃.

Theorem 3 (Artin’s criterion). A 1-cycle c is homologous to 0 in a region
G, if and only if

n(c, a) = 0 for any a /∈ G.

Proof. If c ∼
G

0, then n(c, a) = 0 for all a /∈ G by Cauchy’s integral theorem.

We prove the converse.

Step 1. By the lemmas we may assume that c is a formal linear combination
of edge pathes.
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We choose a compact rectangle R
that contains |c| in its interior, and
subdivide this rectangle into rec-
tangles Rj, 1 ≤ j ≤ n, by dra-
wing horizontal and vertical lines
through each initial- or endpoint
of each of the edges in c. The
Rj are considered compact, so ad-
jacent rectangles overlap on their
boundaries. We denote by Rj also
the patch [0, 1]2 → C that maps the
unit square in the obvious way onto
the rectangle Rj, and we denote by
E the set of edges of the Rj, i.e. the
sides of the Rj : [0, 1]2 → C.

R

G

c

2

Then, again by Lemma 1, we have

c ∼
G

∑
γ∈E

m(γ)γ.

To save notation we assume

c =
∑
γ∈E

m(γ)γ. (2)

Step 2. We choose aj in the interior of Rj for any j ∈ {1, . . . , n}. We then
define a 2-chain

C∗ =
n∑

j=1

n(c, aj)Rj.

If a ∈ Rj \G, then by assumption n(c, a) = 0, and the same is true for all ã in
the same connected component of C \ |c|, in particular for ã = aj. Therefore
Rj has coefficient 0 in C∗, and C∗ is a 2-chain in G.

Step 3. We have

c∗ := ∂C∗ =
n∑

j=1

n(c, aj)∂Rj =:
∑
γ∈E

m∗(γ)γ,

and we claim that m∗(γ) = m(γ) for all γ, see (2). Then

∂C∗ = c,
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and we proved c ∼
G

0 as desired. First we have

n(c∗, ak) =
n∑

j=1

n(c, aj)n(∂Rj, ak) = n(c, ak) (3)

for any k ∈ {1, . . . , n}. The same is true for k = 0, if we choose a0 ∈ C \R,
which we do.

Assume m∗(γ0)−m(γ0) = m0 6= 0 for some γ0 ∈ E . Then there is a j0 (in ge-
neral we have the choice of two) such that Rj0 contains ⊕γ or 	γ as one of its
sides. Assume the sign is ⊕, the other case is similar. Put

c# := c∗ 	 c	m0 ∂Rj0 .

This is a 1-cycle, and from (3) we see

n(c#, ak) = −m0 n(∂Rj0 , ak) = −m0 δj0k

for k ∈ {0, . . . , n}. Moreover c# does not contain γ0.

There are two possible cases: γ0 lies on the boundary of R. Then aj0 and a0 lie
in the same connected component of C \ |c#|, and

0 = n(c#, a0) = n(c#, aj0) = −m0.

Contradiction.

The other possibility is that γ0 is a common side of Rj0 and some Rj1 . Then the
same argument holds with aj1 instead of a0, and we get again a contradiction.

3


