Sampling from distributive lattices – the Markov chain approach

Graduiertenkolleg MDS TU Berlin April 20., 2009

Stefan Felsner

Technische Universität Berlin felsner@math.tu-berlin.de

Topics

Markov Chain Monte Carlo

Coupling and CFTP

Distributive Lattices

 α -Orientations and Heights

Block Coupling for Heights

The Sampling Problem

- Ω a (large) finite set
- $\mu: \Omega \to [0, 1]$ a probability distribution

Problem. Sample from Ω according to μ . i.e., $\Pr(\mathsf{output} = \omega) = \mu(\omega)$.

The Sampling Problem

- Ω a (large) finite set
- $\mu: \Omega \to [0, 1]$ a probability distribution

Problem. Sample from Ω according to μ . i.e., $\Pr(\mathsf{output} = \omega) = \mu(\omega)$.

There are many hard instances of the sampling problem. Relaxation: Approximate sampling i.e., $Pr(output = \omega) = \tilde{\mu}(\omega)$ for some $\tilde{\mu} \approx \mu$.

Applications of Sampling

- Get hand on typical examples from Ω .
- Approximate counting.

Preliminaries on Markov Chains

M transition matrix

- size $\Omega \times \Omega$
- entries $\in [0, 1]$
- row sums = 1 (stochastic)

Preliminaries on Markov Chains

M transition matrix

- size $\Omega \times \Omega$
- entries $\in [0, 1]$
- row sums = 1 (stochastic)

Intuition:

M specifies a random walk

Instance of a Markov Chains

 $(X_0,X_1,X_2,\ldots X_r,\ldots)$ an instance of ${\bf M}$

- X_i random variable with values in Ω
- $\Pr(X_{i+1} = x \mid X_i = s) = \mathbf{M}(s, x)$

Proposition.

Probability distribution of X_t is μ_t with

 $\mu_t=\mu_0\,\mathbf{M}^t$

Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)

 \implies multiplicity of eigenvalue 1 is one

$$\implies$$
 unique π with $\pi = \pi \mathbf{M}$.

Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)

 \implies multiplicity of eigenvalue 1 is one

$$\implies$$
 unique π with $\pi = \pi \mathbf{M}$.

 \mathbf{M} symmetric and ergodic

- $\implies \mathbf{M}^{\mathsf{T}} \mathbb{1}^{\mathsf{T}} = \mathbf{M} \mathbb{1}^{\mathsf{T}} = \mathbb{1}^{\mathsf{T}}, \text{ hence } \mathbb{1}\mathbf{M} = \mathbb{1}$
- $\implies \pi$ is the uniform distribution.

Example: Linear Extensions

A Markov chain for linear extensions

 $L_t = x_1, x_2, \ldots, x_n$ the state at time t.

- Choose $i \in \{1, 2, ..., n-1\}$ uniformly.
- If x_i and x_{i+1} are incomparable, then $L_{t+1} = x_1, x_2, \dots, x_{i-1}, x_{i+1}, x_i, x_{i+2}, \dots, x_n$

Proposition. The chain is ergodic and symmetric.

Measuring Convergence

Variation distance

$$\|\mu - \mu'\|_{VD} := \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \mu'(x)|$$

Measuring Convergence

Variation distance
$$\|\mu - \mu'\|_{VD} := \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \mu'(x)|$$

Lemma.
$$\|\mu - \mu'\|_{VD} = \max_{A \subset \Omega} (\mu(A) - \mu'(A))$$

$$\sum \mu = \sum \mu' = 1$$

$$\mu'$$

$$\mu$$

$$A \qquad \mu$$

$$\Rightarrow \sum A = \sum B$$

Mixing Time

 $\mu_x^t = \delta_x \, \mathbf{M}^t$ the distrib. after t steps starting in x

 $\Delta(t) := \max(\|\mu_x^t - \pi\|_{VD} : x \in \Omega)$

 $\tau(\varepsilon) = \min(t : \Delta(t) \le \varepsilon)$

- $\tau(\varepsilon)$ is the mixing time.
- **M** is rapidly mixing $\iff \tau(\varepsilon)$ is a polynomial function of the *problem size* and $\log(\varepsilon^{-1})$.

Mixing Time and Eigenvalues

- **M** stochastic $\implies |\lambda| \le 1$ for all eigenvalues λ .
- $\label{eq:minimum} \begin{array}{ll} \bullet & \mathbf{M} \mbox{ lazy (i.e., } m_{i,i} \geq 1/2 \mbox{ for all } i) \\ & \longrightarrow \ \lambda \geq 0 \mbox{ for all eigenvalues } \lambda. \end{array}$
- M ergodic \implies multiplicity of eigenvalue 1 is one.
- **M** symmetric \implies ONB of eigenvectors.

Proposition. Mixing time, i.e., Convergence rate to π , depends on second largest eigenvalue.

Topics

Markov Chain Monte Carlo

Coupling and CFTP

Distributive Lattices

 α -Orientations and Heights

Block Coupling for Heights

Coupling for Distributions

 μ , ν distributions on Ω .

A distribution ω on $\Omega \times \Omega$ is a coupling of μ and ν $\iff \omega$ has μ and ν as marginals, i.e., $\sum_{y} \omega(x, y) = \mu(x)$ for all x and $\sum_{x} \omega(x, y) = \nu(y)$ for all y.

Coupling Lemma.

 ω a coupling of μ and ν and (X, Y) chosen from ω then

 $\|\mu - \nu\|_{VD} \le \Pr(X \neq Y).$

Coupling for Distributions

Lemma. $\|\mu - \nu\|_{VD} \leq \Pr(X \neq Y).$ We use $\mu(z) = \sum_{y} \omega(z, y) \ge \omega(z, z)$ Proof. $\mathbf{v}(z) = \sum_{x} \mathbf{\omega}(x, z) \ge \mathbf{\omega}(z, z).$ $\Pr(X \neq Y) = 1 - \Pr(X = Y)$ $=\sum \mu(z) - \sum \omega(z,z)$ $\geq \sum \mu(z) - \sum \min(\mu(z), \mathbf{v}(z))$ $=\sum \mu(z) - \nu(z)$ $z: \nu \leq \mu$ $= \max_{A \subset \Omega} \left(\mu(A) - \nu(A) \right) = \|\mu - \nu\|_{VD}$

Coupling for Markov Chains

A coupling for **M** is a sequence $(Z_0, Z_1, Z_2, ...)$ with $Z_i = (X_i, Y_i)$ such that $(X_0, X_1, X_2, ...)$ and $(Y_0, Y_1, Y_2, ...)$ are instances for **M**.

In particular

$$\begin{array}{lll} \Pr(X_{i+1} = x' \mid Z_i = (x,y)) & = & \\ & \Pr(X_{i+1} = x' \mid X_i = x) & = & \mathbf{M}(x,x') \end{array}$$

Coupling and Mixing Times

 $Z_i = (X_i, Y_i)$ a coupling for **M**.

 $\begin{array}{ll} \textbf{Theorem [D\"oblin 1938].}\\ \text{If }\Pr\left(X_T\neq Y_T\mid Z_0=(x_0,y_0)\right)<\epsilon \ \text{for every initial }(x_0,y_0)\\ \text{and T steps} \qquad \qquad \Longrightarrow \ \tau(\epsilon)\leq T \end{array}$

Proof. Choose y_0 from stationary distribution π Y_t is in stationary distribution π for all t X_t is in distribution $\mu_{x_0}^t$.

$$\begin{split} &\Pr\left(X_T \neq Y_T \mid Z_0 = (x_0, y_0)\right) < \epsilon \\ &\text{Coupling Lemma} \implies \max_x \|\mu_x^T - \pi\|_{VD} < \epsilon \\ &\text{definition of } \tau \implies \tau(\epsilon) \leq T \end{split}$$

Example : Linear Extensions of Width 2 Orders

Linear extensions are paths.

The Markov chain and the coupling

- choose position k and $s \in \{\uparrow, \downarrow\}$
- Flip the path at position k in direction s (if possible)

Linear Extensions of Width 2 Orders the Analysis

- $dist(X, Y) = Area between paths \leq n^2$
- $E(dist(X_{i+1}, Y_{i+1})) \leq dist(X_i, Y_i)$

The *distance* is a projection to a random walk on the line

$$\implies$$
 expected coupling time $O(n^4 \log n)$.

$$\implies \tau(\varepsilon) \in O(n^4 \log n \log \varepsilon^{-1}).$$

M a Markov chain on Ω

 \mathcal{F} a family of maps $f: \Omega \to \Omega$ such that for random $f \in \mathcal{F}$:

 $\Pr(f(x) = x') = \mathbf{M}(x, x')$

 ${\bf M}$ a Markov chain on ${\boldsymbol \Omega}$

 \mathcal{F} a family of maps $f: \Omega \to \Omega$ such that for random $f \in \mathcal{F}$:

 $\Pr(f(x) = x') = \mathbf{M}(x, x')$

```
Coupling-FTP

F \leftarrow id_{\Omega}

repeat

choose f \in \mathcal{F} at random

F \leftarrow F \circ f

until F is a constant map

return F(x)
```


Theorem. The state returned by **Coupling-FTP** is exactly(!) in the stationary distribution.

Monotone Coupling From the Past: An Example

The problem with CFTP is the need of functions f on Ω .

Monotone Coupling From the Past: An Example

The problem with CFTP is the need of functions f on Ω . Order relation $<_{\Omega}$ on Ω with $\hat{0}$ and $\hat{1}$

• $x <_{\Omega} x' \implies f(x) <_{\Omega} f(x')$ for all $f \in \mathcal{F}$

Example:

Objects:

Lattice path in a grid

 $\mathcal{F} = \{ f_{k,s} : \text{apply position } k \text{ and direction } s \text{ to all paths} \}$ This family is monotone!

Topics

Markov Chain Monte Carlo

Coupling and CFTP

Distributive Lattices

 α -Orientations and Heights

Block Coupling for Heights

Distributive Lattices

Fact. \mathcal{L} is a finite distributive lattice \iff there is a poset P such that that \mathcal{L} is isomorphic to the inclusion order on downsets of P.

Markov Chains on Distributive Lattices

A *natural* Markov chain on \mathcal{L}_{P} (lattice walk):

Identify state with downset D

- choose $x \in P$ choose $s \in \{\uparrow, \downarrow\}$
- depending on s move to D + x or D x (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

Monotone Coupling on Distributive Lattices

The coupling family \mathcal{F} :

 $f_{x,s}$: Use element x and direction s for all D. Is monotone!

 \implies uniform sampling from distributive lattices is easy.

Monotone Coupling on Distributive Lattices

The coupling family \mathcal{F} :

 $f_{x,s}$: Use element x and direction s for all D. Is monotone!

 \implies uniform sampling from distributive lattices is easy.

Q: Is it fast (rapidly mixing)?

A: In most cases not.

Slow Mixing

- On distributive lattices based on Kleitman-Rothschild posets the mixing time of the lattice walk is exponential.
- The mixing time of the lattice walk is exponential for random bipartite graphs with degrees ≥ 6.
 (Dyer, Frieze and Jerrum)

Fast Mixing

• The mixing time of the lattice walk is polynomial for random bipartite graphs with max-degree ≤ 4 . (Dyer and Greenhill)

In several situations where planarity plays a role rapid mixing could be proven:

- Monotone paths in the grid.
- Lozenge tilings of an $\mathbf{a} \times \mathbf{b} \times \mathbf{c}$ hexagon.
- Domino tilings of a rectangle.

Topics

Markov Chain Monte Carlo

Coupling and CFTP

Distributive Lattices

α -Orientations and Heights

Block Coupling for Heights

alpha-Orientations

Definition. Given G = (V, E) and $\alpha : V \to IN$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

Example.

Two orientations for the same α .

Potentials and Lattice Structure

Definition. An α -potential for G is a mapping \wp : Faces (G) $\rightarrow \mathbb{Z}$ such that $\wp(\text{outer}) = 0$ and

- $|\wp(C) \wp(C')| \le 1$, if C and C' share an edge e.
- $\wp(C^{l(e)}) \le \wp(C^{r(e)})$ for all erelative to some fixed α -orientation.

Lemma. There is a bijection between α -potentials and α -orientations.

Potentials and Lattice Structure

Definition. An α -potential for G is a mapping \wp : Faces (G) $\rightarrow \mathbb{Z}$ such that $\wp(\text{outer}) = 0$ and

- $|\wp(C) \wp(C')| \le 1$, if C and C' share an edge e.
- $\wp(C^{l(e)}) \le \wp(C^{r(e)})$ for all erelative to some fixed α -orientation.

Lemma. There is a bijection between α -potentials and α -orientations.

Theorem. α -potentials are a distributive lattice with $(\wp_1 \lor \wp_2)(C) = \max \{ \wp_1(C), \wp_2(C) \}$ and $(\wp_1 \land \wp_2)(C) = \min \{ \wp_1(C), \wp_2(C) \}.$

Counting and Sampling

Proposition. Counting α -orientations is #P-complete for

- planar maps with d(v) = 4 and $\alpha(v) \in \{1, 2, 3\}$ and
- planar maps with $d(\nu) \in \{3, 4, 5\}$ and $\alpha(\nu) = 2$.

Problem.

- Is counting 3-orientations in triangulations #P-complete?
- Is counting 2-orientations in quadrangulations #P-complete?

Approximate Counting

Fact. The fully polynomial randomized approximation scheme for counting perfect matchings of bipartite graphs (Jerrum, Sinclair and Vigoda 2001) can be used for approximate counting of α -orientations.

Approximate Counting

Fact. The fully polynomial randomized approximation scheme for counting perfect matchings of bipartite graphs (Jerrum, Sinclair and Vigoda 2001) can be used for approximate counting of α -orientations.

• What about the lattice walk?

Lattice Walks for alpha-Orientations

Theorem [Fehrenbach 03].

• Sampling Eulerian orientations of simply connected patches of the quadrangular grid using the LW Markov chain is polynomial.

Theorem [Creed 05].

• Sampling Eulerian orientations of simply connected patches of the triangular grid using the LW Markov chain is polynomial.

• Sampling Eulerian orientations of patches of the triangular grid with holes using the LW Markov chain can be exponential.

alpha-Orientations and Heights

G planar

Definition. An α -potential for G is a mapping \wp : Faces (G) $\rightarrow \mathbb{Z}$ such that $\wp(\text{outer}) = 0$ and

- $|\wp(C) \wp(C')| \le 1$, if C and C' share an edge e.
- $\wp(C^{l(e)}) \le \wp(C^{r(e)})$ for all erelative to some fixed α -orientation.

Definition. A k-height for G is a mapping H : Faces $(G) \rightarrow \{0, ..., k\}$ such that

• $|H(C) - H(C')| \le 1$, if C and C' share an edge e.

Topics

Markov Chain Monte Carlo

Coupling and CFTP

Distributive Lattices

 α -Orientations and Heights

Block Coupling for Heights

Height Lattices

Definition. A k-height for G is a mapping H : Faces $(G) \rightarrow \{0, ..., k\}$ such that

• $|H(C) - H(C')| \le 1$, if C and C' share an edge e.

Proposition. k-heights are a distributive lattice with

 $(H_1 \lor H_2)(C) = \max \{H_1(C), H_2(C)\}$ and $(H_1 \land H_2)(C) = \min \{H_1(C), H_2(C)\}.$

Sampling from Height Lattices

We can use monotone CFTP to sample uniformly from height lattices.

Sampling from Height Lattices

We can use monotone CFTP to sample uniformly from height lattices.

A random 2-height on the 400×400 square-grid. (38240593 steps)

Block Dynamics

- Experiments strongly suggest rapid mixing Our guess $c_k N^4 \log(N)$.
- A rigorous proof of rapid mixing for 2-heights on torus grids. We use block dynamics.

Block Dynamics

- Experiments strongly suggest rapid mixing Our guess $c_k N^4 \log(N)$.
- A rigorous proof of rapid mixing for 2-heights on torus grids. We use block dynamics.

Block dynamics:

- choose a block $B \in \mathcal{B}$ such that $\Pr(f \in B) = \Pr(g \in B)$.
- choose heights for all faces in B respecting the heights on the border ∂B (uniform distribution).

Example

 choose heights for all faces in B respecting the heights on the border ∂B (uniform distribution).

Using Block Dynamics

Fact. The comparison technique yields: If block dynamics is rapidly mixing then this also holds for the single step lattice walk.

Bound the mixing time via coupling

- Given instances H and H' choose the same block B for replacement in both.
- dist(H, H') := $\sum_{f} |H(f) H'(f)|$

Path Coupling

- With H and H' define $H = H_0, H_1, \dots, H_d = H'$ such that $dist(H_i, H_{i+1}) = 1$.
- Do the coupled block move on each H_i .

Goal: $E(dist(H_{i}^{+}, H_{i+1}^{+})) \le 1$

• Consider f with $H_i(f) \neq H_{i+1}(f)$

$$f \in B \implies dist(H_i^+, H_{i+1}^+) = 0$$

 $f \notin B \cup \partial B \implies dist(H_i^+, H_{i+1}^+) = 1$

 $f \in \partial B$. (The hard case) We sample from different distributions.

The Hard Case

Set up a monotone coupling

$$H_i \geq H_{i+1} \implies H_i^+ \geq H_{i+1}^+$$

(more about the existence later).

$$E(dist(H_{i}^{+}, H_{i+1}^{+})) = E\left(\sum_{f} |H_{i}^{+}(f) - H_{i+1}^{+}(f)|\right)$$
$$= E\left(\sum_{f} H_{i}^{+}(f) - H_{i+1}^{+}(f)\right)$$
$$= E\left(\sum_{f} H_{i}^{+}(f)\right) - E\left(\sum_{f} H_{i+1}^{+}(f)\right)$$

Combining the Cases

$$\begin{split} \delta &:= \max(\mathsf{E}(\mathsf{H}_h) - \mathsf{E}(\mathsf{H}_{h'}) \ : h, h' \text{ heights on } \partial \mathsf{B} \\ & \text{ with } \mathsf{dist}(h, h') = 1) \end{split}$$

For H_i, H_{i+1} with $dist(H_i, H_{i+1}) = 1$ and a random block move on B with $|B| = k^2$ we get

$$\mathsf{E}(\mathsf{dist}(\mathsf{H}^+_{i},\mathsf{H}^+_{i+1})) \leq 1 + \frac{4k\delta - k^2}{|\mathcal{B}|}$$

Hence we need: $4k\delta - k^2 \leq 0$

A Computer Proof

Blocks of size 6×6 suffice

- There are $3, 3 \cdot 10^9$ possible h for the boundary.
- For a given h there are up to $3, 7 \cdot 10^{12}$ compatible H for the block.

(work done by Daniel Heldt)

Stochastic Dominance and Strassen's

Definition. Stochastic dominance for distributions p_1 and p_2 on an ordered set (A, \leq)

$$p_1 \leq_{stoch} p_2 \iff \sum_{a \in F} p_1(a) \leq \sum_{a \in F} p_2(a) \text{ for all filter } F \subseteq A$$

Theorem [Strassen]. If $p_1 \leq_{stoch} p_2$ on (A, \leq) then there is a distribution q on $A \times A$ with

•
$$q(x,y) > 0 \implies x \le y$$

•
$$\sum_{y} q(x,y) = p_1(x)$$
 and $\sum_{x} q(x,y) = p_2(y)$
(p₁ and p₂ are the marginals of q).

Existence of a Monotone Coupling

Strassen's Theorem implies the existence of the monotone block coupling if we can show that for $h_1 \leq h_2$ distributions on ∂B the induced distributions on B are in stochastic dominance.

Consider the intervals $A = D_1$ and $B = D_2$ of the height lattice over blocks.

We need that for every filter F of \mathcal{D} :

$$\frac{|A \cap F|}{|A|} \le \frac{|B \cap F|}{|B|}$$

Existence of a Monotone Coupling

Goal: $|A \cap F||B| \le |B \cap F||A|$

Restrict attention to the lattice L spanned by $\min A$ and $\max B$. L is distributive, A is an ideal, B a filter of L.

Define
$$f_1 = \chi_{A \cap F}$$
, $f_2 = \chi_B$, $f_3 = \chi_{B \cap F}$ and $f_4 = \chi_A$.

Lemma. $f_1(u)f_2(v) \le f_3(u \lor v)f_4(u \land v)$

Ahlswede Daykin 4-Functions Theorem:

 $f_1(U)f_2(V) \leq f_3(U \lor V)f_4(U \land V)$

We only need this for U = V = L.

Summary for Height Sampling

Theorem. The lattice walk for 2-heights on the square torus grid is rapidly mixing.

- Block dynamics and comparison method
- Monotone coupling from Strassen's via 4-FT.
- Valid blocks (6×6) from massive computations.

Summary for Height Sampling

Theorem. The lattice walk for 2-heights on the square torus grid is rapidly mixing.

- Block dynamics and comparison method
- Monotone coupling from Strassen's via 4-FT.
- Valid blocks (6×6) from massive computations.

Extension. The lattice walk for 2-heights on the planar traingulations is rapidly mixing.

Problems.

- k > 2.
- Other planar graphs.
- α -orientations.

The End

The End

Thank you.