
Sampling from distributive lattices –

the Markov chain approach

Graduiertenkolleg MDS
TU Berlin
April 20., 2009

Stefan Felsner

Technische Universität Berlin
felsner@math.tu-berlin.de



Topics

Markov Chain Monte Carlo

Coupling and CFTP

Distributive Lattices

α-Orientations and Heights

Block Coupling for Heights



The Sampling Problem

• Ω a (large) finite set

• µ : Ω→ [0, 1] a probability distribution

Problem. Sample from Ω according to µ.
i.e., Pr(output = ω) = µ(ω).



The Sampling Problem

• Ω a (large) finite set

• µ : Ω→ [0, 1] a probability distribution

Problem. Sample from Ω according to µ.
i.e., Pr(output = ω) = µ(ω).

There are many hard instances of the sampling problem.
Relaxation: Approximate sampling

i.e., Pr(output = ω) = µ̃(ω) for some µ̃ ≈ µ.



Applications of Sampling

• Get hand on typical examples from Ω.

• Approximate counting.



Preliminaries on Markov Chains

M transition matrix • size Ω×Ω

• entries ∈ [0, 1]

• row sums = 1 (stochastic)
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M transition matrix • size Ω×Ω

• entries ∈ [0, 1]

• row sums = 1 (stochastic)

Intuition:
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M specifies a random walk



Instance of a Markov Chains

(X0, X1, X2, . . . Xr, . . .) an instance of M

• Xi random variable with values in Ω

• Pr(Xi+1 = x | Xi = s) = M(s, x)

Proposition.
Probability distribution of Xt is µt with

µt = µ0 Mt



Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)

=⇒ multiplicity of eigenvalue 1 is one

=⇒ unique π with π = πM.

Fundamental Theorem.
M ergodic =⇒ lim

t→∞µ0 Mt = π.



Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)

=⇒ multiplicity of eigenvalue 1 is one

=⇒ unique π with π = πM.

Fundamental Theorem.
M ergodic =⇒ lim

t→∞µ0 Mt = π.

M symmetric and ergodic

=⇒ MT
1

T = M1
T = 1

T , hence 1M = 1

=⇒ π is the uniform distribution.



Example: Linear Extensions

A Markov chain for linear extensions

Lt = x1, x2, . . . , xn the state at time t.

• Choose i ∈ {1, 2, . . . , n − 1} uniformly.

• If xi and xi+1 are incomparable, then
Lt+1 = x1, x2, . . . , xi−1, xi+1, xi, xi+2, . . . , xn

Proposition. The chain is ergodic and symmetric.



Measuring Convergence

Variation distance
‖µ − µ ′‖VD :=

1

2

∑
x∈Ω

|µ(x) − µ ′(x)|



Measuring Convergence

Variation distance
‖µ − µ ′‖VD :=

1

2

∑
x∈Ω

|µ(x) − µ ′(x)|

Lemma. ‖µ − µ ′‖VD = max
A⊂Ω

(µ(A) − µ ′(A))

A

B

∑
µ =
∑

µ ′ = 1

=⇒ ∑
A =

∑
B

µ ′

µ



Mixing Time

µt
x = δx Mt the distrib. after t steps starting in x

∆(t) := max( ‖µt
x − π‖VD : x ∈ Ω)

τ(ε) = min( t : ∆(t) ≤ ε)

• τ(ε) is the mixing time.

• M is rapidly mixing ⇐⇒ τ(ε) is a polynomial function
of the problem size and log(ε−1).



Mixing Time and Eigenvalues

• M stochastic =⇒ |λ| ≤ 1 for all eigenvalues λ.

• M lazy (i.e., mi,i ≥ 1/2 for all i)

=⇒ λ ≥ 0 for all eigenvalues λ.

• M ergodic =⇒ multiplicity of eigenvalue 1 is one.

• M symmetric =⇒ ONB of eigenvectors.

Proposition. Mixing time, i.e., Convergence rate to π,
depends on second largest eigenvalue.
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Coupling for Distributions

µ, ν distributions on Ω.

A distribution ω on Ω×Ω is a coupling of µ and ν⇐⇒ ω has µ and ν as marginals, i.e.,∑
y ω(x, y) = µ(x) for all x and∑
x ω(x, y) = ν(y) for all y.

Coupling Lemma.
ω a coupling of µ and ν and (X, Y) chosen from ω then

‖µ − ν‖VD ≤ Pr(X 6= Y).



Coupling for Distributions

Lemma. ‖µ − ν‖VD ≤ Pr(X 6= Y).

Proof. We use µ(z) =
∑

y ω(z, y) ≥ ω(z, z)
ν(z) =

∑
x ω(x, z) ≥ ω(z, z).

Pr(X 6= Y) = 1 − Pr(X = Y)

=
∑

z

µ(z) −
∑

z

ω(z, z)

≥
∑

z

µ(z) −
∑

z

min(µ(z), ν(z))

=
∑

z:ν≤µ

µ(z) − ν(z)

= max
A⊂Ω

(
µ(A) − ν(A)

)
= ‖µ − ν‖VD



Coupling for Markov Chains

A coupling for M is a sequence (Z0, Z1, Z2, . . .) with
Zi = (Xi, Yi) such that (X0, X1, X2, . . .) and (Y0, Y1, Y2, . . .)

are instances for M.

In particular

Pr(Xi+1 = x ′ | Zi = (x, y)) =

Pr(Xi+1 = x ′ | Xi = x) = M(x, x ′)



Coupling and Mixing Times

Zi = (Xi, Yi) a coupling for M.

Theorem [Döblin 1938 ].
If Pr

(
XT 6= YT | Z0 = (x0, y0)

)
< ε for every initial (x0, y0)

and T steps =⇒ τ(ε) ≤ T

Proof. Choose y0 from stationary distribution π

Yt is in stationary distribution π for all t

Xt is in distribution µt
x0

.

Pr
(
XT 6= YT | Z0 = (x0, y0)

)
< ε

Coupling Lemma =⇒ maxx ‖µT
x − π‖VD < ε

definition of τ =⇒ τ(ε) ≤ T



Example :
Linear Extensions of Width 2 Orders
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Linear extensions are paths.

The Markov chain and the coupling

• choose position k and s ∈ {↑, ↓}
• Flip the path at position k in direction s (if possible)



Linear Extensions of Width 2 Orders
the Analysis

• dist(X, Y) = Area between paths ≤ n2

• E(dist(Xi+1, Yi+1)) ≤ dist(Xi, Yi)

The distance is a projection to a random walk on the line

=⇒ expected coupling time O(n4 log n).

=⇒ τ(ε) ∈ O(n4 log n log ε−1).



Coupling From the Past

M a Markov chain on Ω

F a family of maps f : Ω→ Ω such that for random f ∈ F :

Pr(f(x) = x ′) = M(x, x ′)



Coupling From the Past

M a Markov chain on Ω

F a family of maps f : Ω→ Ω such that for random f ∈ F :

Pr(f(x) = x ′) = M(x, x ′)

Coupling-FTP

F← idΩ

repeat

choose f ∈ F at random

F← F ◦ f

until F is a constant map

return F(x)



Coupling From the Past



Coupling From the Past

Theorem. The state returned by Coupling-FTP is
exactly(!) in the stationary distribution.



Monotone Coupling From the Past:
An Example

The problem with CFTP is the need of functions f on Ω.



Monotone Coupling From the Past:
An Example

The problem with CFTP is the need of functions f on Ω.

Order relation <Ω on Ω with 0̂ and 1̂

• x <Ω x ′ =⇒ f(x) <Ω f(x ′)

for all f ∈ F

Example:

Objects:
Lattice path in a grid
F = { fk,s : apply position k and direction s to all paths }

This family is monotone!
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Distributive Lattices

Fact. L is a finite distributive lattice ⇐⇒
there is a poset P such that that L is isomorphic to the
inclusion order on downsets of P.

P

LP

654

1 2 3



Markov Chains on Distributive
Lattices

A natural Markov chain on LP (lattice walk):

Identify state with downset D

• choose x ∈ P

choose s ∈ {↑, ↓}
• depending on s move to D + x or D − x

(if possible)

Fact. The chain is ergodic and symmetric,
i.e, π is uniform.



Monotone Coupling on Distributive
Lattices

The coupling family F :

fx,s: Use element x and direction s for all D.
Is monotone!

=⇒ uniform sampling from distributive lattices is easy.



Monotone Coupling on Distributive
Lattices

The coupling family F :

fx,s: Use element x and direction s for all D.
Is monotone!

=⇒ uniform sampling from distributive lattices is easy.

Q: Is it fast (rapidly mixing)?

A: In most cases not.



Slow Mixing

• On distributive lattices based on Kleitman-Rothschild
posets the mixing time of the lattice walk is
exponential.

• The mixing time of the lattice walk is exponential for
random bipartite graphs with degrees ≥ 6.
(Dyer, Frieze and Jerrum)



Fast Mixing

• The mixing time of the lattice walk is polynomial for
random bipartite graphs with max-degree ≤ 4. (Dyer
and Greenhill)

In several situations where planarity plays a role rapid
mixing could be proven:

• Monotone paths in the grid.

• Lozenge tilings of an a× b× c hexagon.

• Domino tilings of a rectangle.
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alpha-Orientations

Definition. Given G = (V, E) and α : V → IN.
An α-orientation of G is an orientation with
outdeg(v) = α(v) for all v.

Example.

Two orientations for the same α.



Potentials and Lattice Structure

Definition. An α-potential for G is a mapping
℘ : Faces (G)→ ZZ such that ℘(outer) = 0 and

• |℘(C) − ℘(C ′)| ≤ 1, if C and C ′ share an edge e.

• ℘(Cl(e)) ≤ ℘(Cr(e)) for all e

relative to some fixed α-orientation.

Lemma. There is a bijection between α-potentials and
α-orientations.



Potentials and Lattice Structure

Definition. An α-potential for G is a mapping
℘ : Faces (G)→ ZZ such that ℘(outer) = 0 and

• |℘(C) − ℘(C ′)| ≤ 1, if C and C ′ share an edge e.

• ℘(Cl(e)) ≤ ℘(Cr(e)) for all e

relative to some fixed α-orientation.

Lemma. There is a bijection between α-potentials and
α-orientations.

Theorem. α-potentials are a distributive lattice with
(℘1 ∨ ℘2)(C) = max

{
℘1(C), ℘2(C)

}
and

(℘1 ∧ ℘2)(C) = min
{
℘1(C), ℘2(C)

}
.



Counting and Sampling

Proposition. Counting α-orientations is #P-complete for

• planar maps with d(v) = 4 and α(v) ∈ {1, 2, 3} and

• planar maps with d(v) ∈ {3, 4, 5} and α(v) = 2.

Problem.

• Is counting 3-orientations in triangulations
#P-complete?

• Is counting 2-orientations in quadrangulations
#P-complete?



Approximate Counting

Fact. The fully polynomial randomized approximation
scheme for counting perfect matchings of bipartite graphs
(Jerrum, Sinclair and Vigoda 2001) can be used for
approximate counting of α-orientations.



Approximate Counting

Fact. The fully polynomial randomized approximation
scheme for counting perfect matchings of bipartite graphs
(Jerrum, Sinclair and Vigoda 2001) can be used for
approximate counting of α-orientations.

• What about the lattice walk?



Lattice Walks for alpha-Orientations

Theorem [Fehrenbach 03 ].
• Sampling Eulerian orientations of simply connected
patches of the quadrangular grid using the LW Markov
chain is polynomial.

Theorem [Creed 05 ].
• Sampling Eulerian orientations of simply connected
patches of the triangular grid using the LW Markov chain
is polynomial.

• Sampling Eulerian orientations of patches of the
triangular grid with holes using the LW Markov chain can
be exponential.



alpha-Orientations and Heights

G planar

Definition. An α-potential for G is a mapping
℘ : Faces (G)→ ZZ such that ℘(outer) = 0 and

• |℘(C) − ℘(C ′)| ≤ 1, if C and C ′ share an edge e.

• ℘(Cl(e)) ≤ ℘(Cr(e)) for all e

relative to some fixed α-orientation.

Definition. A k-height for G is a mapping
H : Faces (G)→ {0, ..., k} such that

• |H(C) − H(C ′)| ≤ 1, if C and C ′ share an edge e.
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Height Lattices

Definition. A k-height for G is a mapping
H : Faces (G)→ {0, ..., k} such that

• |H(C) − H(C ′)| ≤ 1, if C and C ′ share an edge e.

Proposition. k-heights are a distributive lattice with

(H1 ∨ H2)(C) = max
{
H1(C), H2(C)

}
and

(H1 ∧ H2)(C) = min
{
H1(C), H2(C)

}
.



Sampling from Height Lattices

We can use monotone CFTP to sample uniformly from
height lattices.



Sampling from Height Lattices

We can use monotone CFTP to sample uniformly from
height lattices.

A random 2-height on the 400× 400 square-grid.
(38240593 steps)



Block Dynamics

• Experiments strongly suggest rapid mixing
Our guess ckN

4 log(N).

• A rigorous proof of rapid mixing for 2-heights on torus
grids. We use block dynamics.



Block Dynamics

• Experiments strongly suggest rapid mixing
Our guess ckN

4 log(N).

• A rigorous proof of rapid mixing for 2-heights on torus
grids. We use block dynamics.

Block dynamics:

• choose a block B ∈ B such that Pr(f ∈ B) = Pr(g ∈ B).

• choose heights for all faces in B respecting the heights
on the border ∂B (uniform distribution).



Example

• choose heights for all faces in B respecting the heights
on the border ∂B (uniform distribution).



Using Block Dynamics

Fact. The comparison technique yields:
If block dynamics is rapidly mixing then this also holds for
the single step lattice walk.

Bound the mixing time via coupling

• Given instances H and H ′ choose the same block B for
replacement in both.

• dist(H, H ′) :=
∑

f |H(f) − H ′(f)|



Path Coupling

• With H and H ′ define H = H0, H1, . . . , Hd = H ′ such
that dist(Hi, Hi+1) = 1.

• Do the coupled block move on each Hi.

Goal: E(dist(H+
i , H+

i+1)) ≤ 1

• Consider f with Hi(f) 6= Hi+1(f)

f ∈ B =⇒ dist(H+
i , H+

i+1) = 0

f 6∈ B ∪ ∂B =⇒ dist(H+
i , H+

i+1) = 1

f ∈ ∂B. (The hard case)
We sample from different distributions.



The Hard Case

Set up a monotone coupling

Hi ≥ Hi+1 =⇒ H+
i ≥ H+

i+1

(more about the existence later).

E(dist(H+
i , H+

i+1)) = E
(∑

f

|H+
i (f) − H+

i+1(f)|
)

= E
(∑

f

H+
i (f) − H+

i+1(f)
)

= E
(∑

f

H+
i (f)

)
− E

(∑
f

H+
i+1(f)

)



Combining the Cases

δ := max(E(Hh) − E(Hh ′) : h, h ′ heights on ∂B

with dist(h, h ′) = 1)

For Hi, Hi+1 with dist(Hi, Hi+1) = 1 and a random block
move on B with |B| = k2 we get

E(dist(H+
i , H+

i+1)) ≤ 1 +
4kδ − k2

|B|

Hence we need: 4kδ − k2 ≤ 0



A Computer Proof

Blocks of size 6× 6 suffice

• There are 3, 3 · 109 possible h for the boundary.

• For a given h there are up to 3, 7 · 1012 compatible H

for the block.

(work done by Daniel Heldt)



Stochastic Dominance and Strassen’s

Definition. Stochastic dominance for distributions p1 and
p2 on an ordered set (A,≤)

p1 ≤stoch p2 ⇐⇒ ∑
a∈F

p1(a) ≤
∑
a∈F

p2(a) for all filter F ⊆ A

Theorem [Strassen ]. If p1 ≤stoch p2 on (A,≤) then there
is a distribution q on A×A with

• q(x, y) > 0 =⇒ x ≤ y

•
∑

y q(x, y) = p1(x) and
∑

x q(x, y) = p2(y)

(p1 and p2 are the marginals of q).



Existence of a Monotone Coupling

Strassen’s Theorem implies the existence of the monotone
block coupling if we can show that for h1 ≤ h2 distributions
on ∂B the induced distributions on B are in stochastic
dominance.

Consider the intervals A = D1 and B = D2 of the height
lattice over blocks.

We need that for every filter F of D:

|A ∩ F|

|A|
≤ |B ∩ F|

|B|



Existence of a Monotone Coupling

Goal: |A ∩ F||B| ≤ |B ∩ F||A|

Restrict attention to the lattice L spanned by min A and
max B. L is distributive, A is an ideal, B a filter of L.

Define f1 = χA∩F, f2 = χB, f3 = χB∩F and f4 = χA.

Lemma. f1(u)f2(v) ≤ f3(u ∨ v)f4(u ∧ v)

Ahlswede Daykin 4-Functions Theorem:

f1(U)f2(V) ≤ f3(U ∨ V)f4(U ∧ V)

We only need this for U = V = L.



Summary for Height Sampling

Theorem. The lattice walk for 2-heights on the square
torus grid is rapidly mixing.

• Block dynamics and comparison method
• Monotone coupling from Strassen’s via 4-FT.
• Valid blocks (6× 6) from massive computations.



Summary for Height Sampling

Theorem. The lattice walk for 2-heights on the square
torus grid is rapidly mixing.

• Block dynamics and comparison method
• Monotone coupling from Strassen’s via 4-FT.
• Valid blocks (6× 6) from massive computations.

Extension. The lattice walk for 2-heights on the planar
traingulations is rapidly mixing.

Problems.
• k > 2.
• Other planar graphs.
• α-orientations.



The End



The End

Thank you.


