Distributive Lattices from Graphs

VI Jornadas de Matemática Discreta y Algorítmica
Universitat de Lleida
21-23 de julio de 2008

Stefan Felsner y Kolja Knauer
Technische Universität Berlin
felsner@math.tu-berlin.de
The Talk

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes
Contents

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes
Definition. Given $G = (V, E)$ and $\alpha : V \rightarrow \mathbb{IN}$. An α-orientation of G is an orientation with $\text{outdeg}(v) = \alpha(v)$ for all v.
Definition. Given $G = (V, E)$ and $\alpha : V \to \mathbb{N}$.
An α-orientation of G is an orientation with $\text{outdeg}(v) = \alpha(v)$ for all v.

- Reverting directed cycles preserves α-orientations.
Definition. Given $G = (V, E)$ and $\alpha : V \to \mathbb{IN}$. An α-orientation of G is an orientation with $\text{outdeg}(v) = \alpha(v)$ for all v.

- Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has the structure of a distributive lattice.

- Diagram edge \sim revert a directed essential/facial cycle.
Example 1: Spanning Trees

Spanning trees are in bijection with α_T orientations of a rooted primal-dual completion \tilde{G} of G

- $\alpha_T(v) = 1$ for a non-root vertex v and $\alpha_T(v_e) = 3$ for an edge-vertex v_e and $\alpha_T(v_r) = 0$ and $\alpha_T(v_r^*) = 0$.
Question. How does a change of roots affect the lattice?
Example 2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is a bijection between f-factors of G and α_f orientations:

- Define α_f such that $\text{indeg}(u) = f(u)$ for all $u \in U$ and $\text{outdeg}(w) = f(w)$ for all $w \in W$.

Example. A matching and the corresponding orientation.
Example 3: Eulerian Orientations

- Orientations with \(\text{outdeg}(v) = \text{indeg}(v) \) for all \(v \), i.e. \(\alpha(v) = \frac{d(v)}{2} \)
Example 4: Schnyder Woods

A plane triangulation with outer triangle $F = \{a_1, a_2, a_3\}$.

A coloring and orientation of the interior edges of G with colors $1, 2, 3$ is a Schnyder wood of G iff

- Inner vertex condition:

- Edges $\{v, a_i\}$ are oriented $v \rightarrow a_i$ in color i.
Digression: Schnyder’s Theorem

The incidence order P_G of a graph G

Theorem [Schnyder 1989].

A Graph G is planar $\iff \dim(P_G) \leq 3$.
Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection.

Proof.
- All edges incident to \(a_i \) are oriented \(\rightarrow a_i \).
 Prf: \(G \) has \(3n - 9 \) interior edges and \(n - 3 \) interior vertices.
- Define the path of an edge:
- The path is simple (Euler), hence, ends at some \(a_i \).
Theorem. The set of Schnyder woods of a plane triangulation G has the structure of a distributive lattice.
A Dual Construction: c-Orientations

- Reorientations of directed cuts preserve flow-difference (\#forward arcs $-$ \#backward arcs) along cycles.

Theorem [Propp 1993]. The set of all orientations of a graph with prescribed flow-difference for all cycles has the structure of a distributive lattice.

- Diagram edge \sim push a vertex ($\neq v_\dagger$).
Theorem [Khuller, Naor and Klein 1993].
The set of all integral flows respecting capacity constraints \((\ell(e) \leq f(e) \leq u(e))\) of a planar graph has the structure of a distributive lattice.

\[0 \leq f(e) \leq 1 \]

- Diagram edge \(\sim\) add or subtract a unit of flow in ccw oriented facial cycle.
\(\Delta \)-Bonds

\[G = (V, E) \] a connected graph with a prescribed orientation.

With \(x \in \mathbb{Z}^E \) and \(C \) cycle we define the circular flow difference

\[
\Delta_x(C) := \sum_{e \in C^+} x(e) - \sum_{e \in C^-} x(e).
\]

With \(\Delta \in \mathbb{Z}^C \) and \(\ell, u \in \mathbb{Z}^E \) let \(B_G(\Delta, \ell, u) \) be the set of \(x \in \mathbb{Z}^E \) such that \(\Delta_x = \Delta \) and \(\ell \leq x \leq u \).
The Lattice of \(\Delta \)-Bonds

Theorem [Felsner, Knauer 2007].
\(\mathcal{B}_G(\Delta, \ell, u) \) is a distributive lattice.
The cover relation is vertex pushing.
\(B_G(\Delta, l, u)\) is the set of \(x \in \mathbb{R}^E\) such that

- \(\Delta_x = \Delta\) (circular flow difference)
- \(l \leq x \leq u\) (capacity constraints).

Special cases:

- \(c\)-orientations are \(B_G(\Delta, 0, 1)\)
 \((\Delta(C) = |C^+| - c(C))\).
- Circular flows on planar \(G\) are \(B_{G^*}(0, l, u)\)
 \((G^* \text{ the dual of } G)\).
- \(\alpha\)-orientations.
Contents

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes
ULD Lattices

Definition. [Dilworth]
A lattice is an upper locally distributive lattice (ULD) if each element has a unique minimal representation as meet of meet-irreducibles, i.e., there is a unique mapping $x \rightarrow M_x$ such that

- $x = \bigwedge M_x$ (representation.) and
- $x \neq \bigwedge A$ for all $A \subseteq M_x$ (minimal).

$$0 = a \land e = \bigwedge \{a, b, c, d, e\}$$
Proposition.

A lattice it is ULD and LLD \iff it is distributive.
A coloring of the edges of a digraph is a \textit{U-coloring} iff

- arcs leaving a vertex have different colors.
- completion property:

\begin{align*}
A \quad \rightarrow \quad \text{completion property:} \quad \rightarrow \quad \text{completion property:}
\end{align*}

\textbf{Theorem.}
A digraph D is acyclic, has a unique source and admits a \textit{U-coloring} $\iff D$ is the diagram of an ULD lattice.

\iff Unique 1.
Examples of U-colorings
Examples of U-colorings

- Chip firing game with a fixed starting position (the source), colors are the names of fired vertices.

- Δ-bond lattices, colors are the names of pushed vertices. (Connected, unique 0).
More Examples

Some LLD lattices with respect to inclusion order:

- Subtrees of a tree (Boulaye ’67).
- Convex subsets of posets (Birkhoff and Bennett ’85).
- Convex subgraphs of acyclic digraphs (Pfaltz ’71).

 (C is convex if with x, y all directed (x, y)-paths are in C).
- Convex sets of an abstract convex geometry, this is an universal family of examples (Edelman ’80).
Contents

Lattices from Graphs

Proving Distributivity: ULD-Lattices

Embedded Lattices and D-Polytopes
Embedded Lattices

A \mathcal{U}-coloring of a distributive lattice L yields a cover preserving embedding $\phi : L \to \mathbb{Z}^{\#\text{colors}}$.
A U-coloring of a distributive lattice L yields a cover preserving embedding $\phi : L \rightarrow \mathbb{Z}^{\#\text{colors}}$.

In the case of Δ-bond lattices there is a polytope $P = \text{conv}(\phi(L))$ in \mathbb{R}^{n-1} such that

$$\phi(L) = P \cap \mathbb{Z}^{n-1}$$

- This is a special property:
Definition. A polytope P is a D-polytope if with $x, y \in P$ also $\max(x, y), \min(x, y) \in P$.

- A D-polytope is a (infinite!) distributive lattice.
- Every subset of a D-polytope generates a distributive lattice in P. E.g. Integral points in a D-polytope are a distributive lattice.
D-Polytopes

Remark. Distributivity is preserved under

• scaling
• translation
• intersection

Theorem. A polytope P is a D-polytope iff every facet inducing hyperplane of P is a D-hyperplane, i.e., closed under \max and \min.
Theorem. An hyperplane is a D-hyperplane iff it has a normal $e_i - \lambda_{ij} e_j$ with $\lambda_{ij} \geq 0$.

$(\Leftarrow) \lambda_{ij} e_i + e_j$ together with e_k with $k \neq i, j$ is a basis. The coefficient of $\max(x, y)$ is the \max of the coefficients of x and y.

(\Rightarrow) Let $n = \sum_i a_i e_i$ be the normal vector. If $a_i > 0$ and $a_j > 0$, then $x = a_j e_i - a_i e_j$ and $y = -x$ are in n^\perp but $\max(x, y)$ is not.
Consider $\ell, u \in \mathbb{Z}^m$ and a Λ-weighted network matrix N_Λ of a connected graph. (Rows of N_Λ are of type $e_i - \lambda_{ij}e_j$ with $\lambda_{ij} \geq 0$.)

- **[Strong case, $\text{rank}(N_\Lambda) = n]$**
 The set of $p \in \mathbb{Z}^n$ with $\ell \leq N_\Lambda^\top p \leq u$ is a distributive lattice.

- **[Weak case, $\text{rank}(N_\Lambda) = n - 1]$**
 The set of $p \in \mathbb{Z}^{n-1}$ with $\ell \leq N_\Lambda^\top(0, p) \leq u$ is a distributive lattice.
A Second Graph Model for D-Polytopes

(Rows of \(N_\Lambda \) are of type \(e_i - \lambda_{ij}e_j \) with \(\lambda_{ij} \geq 0 \).)

Theorem [Felsner, Knauer 2008].
Let \(Z = \ker(N_\Lambda) \) be the space of \(\Lambda \)-circulations. The set of \(x \in \mathbb{Z}^m \) with

- \(\ell \leq x \leq u \) (capacity constraints)
- \(\langle x, z \rangle = 0 \) for all \(z \in Z \)
 (weighted circular flow difference).

is a distributive lattice \(D_G(\Lambda, \ell, u) \).

- Lattices of \(\Delta \)-bonds are covered by the case \(\lambda_{ij} = 1 \).
The Strong Case

For a cycle C let

$$\gamma(C) := \prod_{e \in C^+} \lambda_e \prod_{e \in C^-} \lambda_e^{-1}.$$

A cycle with $\gamma(C) \neq 1$ is strong.

Proposition. $\text{rank}(N_{\Lambda}) = n$ iff it contains a strong cycle.

Remark.
C strong \implies there is no circulation with support C.
A fundamental basis for the space of Λ-circulations:

- Fix a 1-tree T, i.e, a unicyclic set of n edges. With $e \not\in T$ there is a circulation in $T + e$
A fundamental basis for the space of Λ-circulations:

- Fix a 1-tree T, i.e., a unicyclic set of n edges. With $e \not\in T$ there is a circulation in $T + e$
In the theory of generalized flows, i.e., flows with multiplicative losses and gains, these objects are known as bicycles.
In the theory of generalized flows, i.e., flows with multiplicative losses and gains, these objects are known as bicycles.

Further topic: D-polytopes and optimization.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.
Conclusion

• Δ-bond lattices generalize previously known distributive lattices from graphs.

• U-colorings yield pretty proves for UL-distributivity and distributivity.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

Finally:
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.

- U-colorings yield pretty proves for UL-distributivity and distributivity.

- D-polytopes are related to generalized network matrices.

Finally: Don’t forget Schnyder’s Theorem.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.

- U-colorings yield pretty proves for UL-distributivity and distributivity.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.
- U-colorings yield pretty proves for UL-distributivity and distributivity.
- D-polytopes are related to generalized network matrices.

Finally:
Conclusion

- Δ-bond lattices generalize previously known distributive lattices from graphs.

- U-colorings yield pretty proves for UL-distributivity and distributivity.

- D-polytopes are related to generalized network matrices.

Finally: Don’t forget Schnyder’s Theorem.
The End