Crash Course: Schnyder Woods and Applications

Dagstuhl Seminar 10461 – Schematization – November 15. 2010

Stefan Felsner

Technische Universität Berlin felsner@math.tu-berlin.de

Schnyder Woods

G = (V, E) a plane triangulation, $F = \{a_1, a_2, a_3\}$ the outer triangle.

A coloring and orientation of the interior edges of G with colors 1,2,3 is a Schnyder wood of G iff

• Inner vertex condition:

• Edges $\{\nu, a_i\}$ are oriented $\nu \to a_i$ in color i.

Schnyder Woods - Trees

• The set T_i of edges colored i is a tree rooted at a_i .

Proof. Count edges in a cycle — Euler \neq

Schnyder Woods - Paths

Paths of different color have at most one vertex in common.

3-orientations

Definition. A 3-orientation of a planar triangulation with a triangle a_1 , a_2 , a_3 is an orientation of edges such that every vertex ν ($\nu \neq a_i$, i = 1, 2, 3) has out-degree 3.

• A Schnyder wood induces a 3-orientation.

3-orientations

Theorem. Up to a permutations of colors a 3-orientation induces a unique Schnyder wood.

Proof.

- Claim: All edges incident to a_i are oriented $\rightarrow a_i$. G has 3n - 9 interior edges and n - 3 interior vertices.
- Define the path of an edge:

• The path is simple (Euler), hence, ends at some a_i .

Schnyder Woods - Regions

• Every vertex has three distinguished regions.

Schnyder Woods - Regions

• If $u \in R_i(v)$ then $R_i(u) \subset R_i(v)$.

Schnyder Woods – Generalized

G a 3-connected planar graph with special vertices a_1, a_2, a_3 on the outer face.

Axioms for 3-coloring and orientation of edges:

(W1 - W2) Rule of edges and half-edges:

(W4) No face boundary is a directed cycle in one color.

Schnyder Woods - Regions

- If $u \in R_i^o(v)$ then $R_i(u) \subset R_i(v)$.
- If $u \in \partial R_i(v)$ then $R_i(u) \subseteq R_i(v)$ (equality, iff there is a bi-directed path between u and v.)

Drawings by Counting Faces

$$\begin{split} \varphi_i(\nu) &= \# \text{ faces in } R_i(\nu). \\ \text{Embed } \nu \text{ at } (\varphi_1(\nu), \varphi_2(\nu)) \end{split}$$

Theorem. 3-connected planar graphs admit convex drawings on the $(f - 1) \times (f - 1)$ grid.

More Compact Drawings – Step I: Reduction

Reduce the face count by merging edges.

Step II: Drawing

Draw the reduced graph by counting faces on the $(f^{\downarrow} - 1) \times (f^{\downarrow} - 1)$ grid.

Step III: Drawing More

Reinsert the 'merge edges'.

Counting Faces in Schnyder Regions II

Embed ν at $(\phi_1(\nu), \phi_2(\nu), \phi_3(\nu))$

The vertices generate an orthogonal surface.

Counting Faces in Schnyder Regions II

Embed ν at $(\phi_1(\nu), \phi_2(\nu), \phi_3(\nu))$

The orthogonal surface supports the Schnyder wood.

Weighted Count

Theorem. Every coplanar orhogonal surface supporting a Schnyder wood S can be obtained from weighted regions.

Triangles and Graphs

A triangle contact representation with homothetic triangles.

Triangle Contact Representations

Conjecture. [Bertinoro 2007]

Every 4-connected triangulation has a triangle contact representation with homothetic triangles.

Triangle Contact Representations

Gonçalves, Lévêque, Pinlou (GD 2010) observe that the conjecture follows from a corollary of Schramm's "Monster Packing Theorem" from *Combinatorially Prescribed Packings* and applications to Conformal and Quasiconformal Maps.

Theorem. Let T be a planar triangulation with outer face $\{a, b, c\}$ and let C be a simple closed curve partitioned into arcs $\{P_a, P_b, P_c\}$. For each interior vertex ν of T prescribe a convex set Q_{ν} containing more than one point. Then there is a contact representation of T with homothetic copies.

Remark. In general homothetic copies of the Q_{ν} can degenerate to a point. Gonçalves et al. show that this is impossible if T is 4-connected.

Combinatorial Methods

de Fraysseix, de Mendez and Rosenstiehl construct triangle contact representations of triangulations.

Take vertices in order of increasing red region:

Edge-Coplanar Orthogonal Surfaces

Edge-Coplanar Orthogonal Surfaces

A Schnyder wood induces an *abstract triangle contact representation*. Equations for the sidelength: $x_a + x_b + x_c = x_v$ and $x_d = x_v$ and $x_e = x_v$ and $x_d + x_e = x_w$

and ...

Solving the Equations

Theorem. The system of equations has a unique solution.

The proof is based on counting matchings. In the solution some variables may be **negative**. Still the solution yields a triangle contact representation.

Flipping Cycles

Proposition. The boundary of a negative area is a directed cycle in the underlying Schnyder wood.

From the bijection

Schnyder woods \iff 3-orientations we see that cycles can be reverted (flipped).

Resolving

A new Schnyder wood yields new equations and a new solution.

Theorem. A negative triangle becomes positive by flipping.

Additional Applications of Schnyder Woods

- Dimension Theory of Posets. (W. Schnyder, G. Brightwell, W.T. Trotter, S. Felsner)
- Visibility Representations. (C.C. Lin, H. Lu, I-F. Sun, H. Zhang)
- Counting:

(E. Fusy, O. Bernardi, G. Schaeffer)

- Greedy Routing.
 - (R. Dhandapani, X. He)

The End

Thank you.