Contact Representations of Planar Graphs: Combinatorial Structure and Algorithm \mathcal{X}

March 15, 2022
38th EuroCG
Perugia

Stefan Felsner

Technische Universität Berlin
felsner@math.tu-berlin.de

Outline

Segment Contacts - Quadrangulations
 Algorithm \mathcal{X} does its job

Algorithm \mathcal{X}
The abstract view
Homothetic Triangle Contact Representations
Monster packing and Algorithm \mathcal{X}
Square Contact Representations Including an existence proof

More Contact Representations - Pentagons
5-color trees and the coin theorem

Segment Contact Representations

A quadrangulation with a segment contact representation.

Induced separating Decompositions

The contact representation induces a separating decomposition on the quadrangulation.

Separating Decompositions

$G=(V, E)$ a plane quadrangulation with outer face
$F=\{s, x, t, y\}$.
A coloring and orientation of the edges of G with colors red and blue is a separating decomposition of G iff

Separating Decompositions and 2-Orientations

Theorem.
Separating decompositions and 2-orientations are in bijection.
Proof.

- Define the path of an edge:

- The path is simple (Euler), hence, ends in a sink: in the red s or in the blue t.

Sketch: Compute Segment Contact Representations

- Compute a separating decomposition.
- Separate the two trees - 2-page book embedding.

Alternating and Full Binary Trees

Proposition. There is bijection between on-sided and binary trees that preserves types (left/right) of nodes.

Sketch: Compute Segment Contact Representations

- The two binary trees obtained from the separating decomposition fit together.

More Problems for Segment Contact Representations

Add some conditions.

- Find a representation in a square such that all intersect the diagonal.
(We just saw a solution)
- Find a representation such that all inner rectangles are squares.

The dissection of rectangles into squares
Brooks, Smith, Stone and Tutte 1940.

- Find a representation such that each inner rectangle has its own prescribed aspect ratio.
(aspect ratio universality)

Segment Contact Squarings

Computing a Segment Contact Squaring

Step I: Compute a separating decomposition on Q.
This describes the contacts of the segments.
(combinatorial or abstract contact representation)

Equations

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& \quad x_{1}=x_{2}+x_{3} \\
& x_{1}+x_{3}+x_{5}=x_{7}+x_{8} \\
& \quad x_{2}=x_{3}+x_{4} \\
& \quad \vdots
\end{aligned}
$$

Step II: Set up a linear system of equations: $A_{S} \cdot x=e_{1}$

Equations

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& \quad x_{1}=x_{2}+x_{3} \\
& \\
& x_{1}+x_{3}+x_{5}=x_{7}+x_{8} \\
& x_{2}=x_{3}+x_{4} \\
& \quad \vdots
\end{aligned}
$$

Step II: Set up a linear system of equations: $A_{S} \cdot x=e_{1}$

- A_{S} is a square matrix.

Theorem. $\operatorname{det}\left(A_{S}\right) \neq 0$.

The Determinant

- A_{S} is a bipartite adjacency matrix of a bipartite graph H.
- $\operatorname{det}\left(A_{S}\right)=\sum_{\pi} \operatorname{sign}(\pi) \prod a_{i, \pi(i)}$
- $\operatorname{det}\left(A_{S}\right)=\sum_{M} \operatorname{sign}(M)$, with M perfect matching of H.
- $\operatorname{sign}(M)=\operatorname{sign}\left(M^{\prime}\right)$ for all M and M^{\prime} perfect matching. Face cycles: length 4, odd number of minus signs.
- H has a perfect matching.

Solve the System

Flip the Negative

- The boundary of the negative contains no complete segment.
- Hence, the boundary is a directed cycle in the separating decomposition
- Flip boundaries of negative areas to get the good separating decomposition and the squaring.

The Squaring

- The method also works for given aspect ratios.
- Alternative algorithms exist.

Example: electric flow in bipolar networks.

Algorithm \mathcal{X}

Algorithm \mathcal{X} a Coarse Description

Aim for a contact representation of G.

- Compute a combinatorial representation - directed graph D.
- Extract linear equations: $A_{D}=e_{1}$.
- Show that A_{D} is square and $\operatorname{det} A_{D} \neq 0$.
- Solve the system.

Solution positive - Done.

- Show that negative variables in the solution correspond to directed cycles in D which can be flipped ($D \rightarrow D^{\prime}$).
- Try again with D^{\prime}.

Homothetic Triangle Contact Representations

Triangle Contact Representation

Theorem [de Fraysseix, Ossona de Mendez and Rosenstiehl]. Triangulations have triangle contact representations.

Homothetic Triangle Contact Representations

Theorem [Gonçalves, Lévêque, Pinlou 2010].
Every 4-connected triangulation has a triangle contact representation with homothetic triangles.

Triangle Contact Representations

Proof uses Schramm's "Monster Packing Theorem".
Theorem. Let T be a planar triangulation with outer face $\{a, b, c\}$ and let C be a simple closed curve partitioned into arcs $\left\{C_{a}, C_{b}, C_{c}\right\}$. For each interior vertex v of T prescribe a convex set P_{v} containing more than one point. Then there is a contact representation of T with homothetic copies.

Remark.

In general homothetic copies of the P_{v} can degenerate to a point.
This is impossible if T is 4-connected and all the P_{v} are homothetic triangles.

Schnyder Woods

$G=(V, E)$ a plane triangulation, $F=\left\{a_{1}, a_{2}, a_{3}\right\}$ the outer triangle.
A coloring and orientation of the interior edges of G with colors $1,2,3$ is a Schnyder wood of G iff

- Inner vertex condition:

- Edges $\left\{v, a_{i}\right\}$ are oriented $v \rightarrow a_{i}$ in color i.

Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection.

Proof.

- All edges incident to a_{i} are oriented $\rightarrow a_{i}$.
G has $3 n-9$ interior edges and $n-3$ interior vertices.
- Define the path of an edge:

- The path is simple (Euler), hence, ends at some a_{i}.
- Two path starting at a vertex do not meet again (Euler).

Schnyder Woods as Abstract Triangle Contact

 Representations

Triangle Contacts and Equations

The abstract triangle contact representation implies equations for the sidelength:
$x_{i}+x_{j}+x_{k}+x_{\ell}=1$ and $x_{a}+x_{b}+x_{c}=x_{v}$ and $x_{d}=x_{v}$ and $x_{e}=x_{v}$ and $x_{d}+x_{e}=x_{w}$ and \ldots

The System of Equations

- The matrix A_{S} is square.
- A_{S} corresponds to a bipartite graph

Every face has length 6 and two negative signs.

- The bipartite graph has a perfect matching.

Theorem. $\operatorname{det} A_{S} \neq 0$.

- The system of equations has a unique solution.

Negatve Variables

In the solution some variables may be negative.

- The boundary of the negative variables induces a directed cycle in the Schnyder wood.

Flipping Cycles

From the bijection
Schnyder woods \Longleftrightarrow 3-orientations it follows that cycles can be reverted (flipped).

The Status of Algorithm \mathcal{X} in this Case

- Homothetic triangle contact representations are an instance for Algorithm \mathcal{X}.
- We have not been able to prove that the algorithm stops. In practice, however, it does!

The Status of Algorithm \mathcal{X} in this Case

- Homothetic triangle contact representations are an instance for Algorithm \mathcal{X}.
- We have not been able to prove that the algorithm stops. In practice, however, it does!

Program written by Julia Rucker.

The Status of Algorithm \mathcal{X} in this Case

Theoretical support:
Theorem. A negative triangle becomes positive by flipping.

Squarings of Inner Triangulations.

Squarings for Inner Triangulations

Theorem [O. Schramm 1993]. The squaring of a 5-connected inner triangulation exists and it is is unique.

O. Schramm Square Tilings with prescribed Combinatorics. 1993 Schramm uses extremal lengths,
Lovász gave a proof using convex corners.

Transversal structures

Proposition. 4-connected inner triangulations of a quadrangle admit transversal structures (a.k.a. regular edge labeling).

A Systems of Equations

 transversal structure \Longrightarrow rectangular dissection (abstract squaring).

- red rectangles and red circles $=$ variables
- white circles $=$ equations

Properties of the System

- The matrix A_{T} is a square matrix.
- The bipartite graph has facial cycles of length 10 with four negative signs \Longrightarrow perfect matchings have the same sign.
- The graph has a perfect matching

Flips on Transversal Structures

- It is possible to associate a digraph D to a inner triangulation with a transversal structure such that negative variables induce a directed boundary cycle which can be reverted.
- We describe the elementary flips directly:

A Program

Written by Thomas Picchetti

Existence Reproved (Hendrik Schrezenmaier)

Theorem.

Every inner triangulation G of a 4-gon admits a squaring.
Proof (Sketch)

- Let R be a rectangulation of G with aspect ratio vector α_{0} and transversal structure T_{0}.
- Let $\alpha_{1}=\mathbf{1}$ be the aspect ratio vector of a squaring and let $\ell=\left\{\alpha_{t}: t \in[0,1]\right\}$ be the line from α_{0} to α_{1}.
- The set A_{0} of all aspect ratio vectors β representable by T_{0} is a subset of \mathbf{R}^{n} containing α_{0}. The set is defined by polynomial inequalities (positivity) with polynomials of bounded degree (determinant, Cramer's rule).
- When ℓ leaves A_{0} some variables change their sign in T_{0} this set corresponds to a flippable set, this defines T_{1} and A_{1}.
- Continue until α_{1} is reached.

Pentagon contact representations

Pentagon Contact Representations

G an inner triangulation of the 5 -gon a_{1}, \ldots, a_{5}

- Existence
- Uniqueness
- Combinatorial structure
- Computation

Homothetic Pentagon Contact Representations

Theorem.
Every triangulation of a 5-gon has a contact representation with homothetic pentagons.

Proof: Use Schramm's "Monster Packing Theorem".

With pentagons there are no degeneracies.

The combinatorial structure: five color forests

Definition (Five color forest) Orientation and coloring of inner edges of inner triangulation of 5-gon a_{1}, \ldots, a_{5}, s.t.

- no incoming edge of color i
\Rightarrow outgoing edge of color $i-2$ or $i+2$ exists

Theorem
Regular pentagon contact representation induces five color forest on its contact graph.

Five color forests $\leftrightarrow(5,2)$-orientations

- outdeg $(\bullet)=5$
- outdeg(○) $=2$

Five color forests $\leftrightarrow(5,2)$-orientations

Theorem
There is a bijection between the five color forests and
$(5,2)$-orientations of a graph G.

Abstract contact representations

- Compute a five color forest.
- This yields an abstract contact representation.

A system of linear equations

Variables:

- one side length for each vertex: x_{v}
- four side lengths for each face: $x_{f}^{(1)}, \ldots, x_{f}^{(4)}$

Equations:

- five for each vertex: $x_{v}=$ sum of touching face side lengths
- two for each face: $x_{f}^{(3)}=x_{f}^{(1)}+\phi x_{f}^{(2)}, \quad x_{f}^{(4)}=\phi x_{f}^{(1)}+x_{f}^{(2)}$
- one inhomogeneous: length of upper segment $=1$

System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

Lemma
The system $A_{F} X=\mathbf{e}_{1}$ is uniquely solvable.
Lemma
$x \geq 0 \Leftrightarrow$ there is a regular pentagon contact repr. inducing F

Algorithm \mathcal{X} for Pentagons

- Guess a five color forest F
- Case 1: solution of $A_{F} X=\mathbf{e}_{1}$ is nonnegative
- construct contact repr. from solution
- Case 2: solution contains negative and nonnegative variables
- Lemma: neg. and nonneg. variables are separated by oriented cycles in the $(5,2)$-orientation

- change orientation of these cycles
- restart with new (5, 2)-orientation, resp. five color forest

The Status

It works!

But, we have no proof that the process always ends.

5-gons

13-gons

27-gons

Before you ask:
Yes circle contact representations are accumulation points.

The Efficiency of Algorithm \mathcal{X}

- For each pair (n, K) the dot is the average over 100 random graphs.

The End

Visit and enjoy:

www3.math.tu-berlin.de/diskremath/research/kgon-representations/index.html

History and acknowledgments:

- First ideas go back to discussions with Jan Kratochvil, Ileana Streinu and Alexander Wolff (Bertinoro 2007).
- Important contributions came from Torsten Ueckerdt, Hendrik Schrezenmaier and Raphael Steiner.
- Programming was done by Thomas Picchetti, Nadine Raasch, Julia Rucker and Manfred Scheucher.

