Contact Representations of Planar Graphs: Combinatorial Structure and Algorithm ${\cal X}$

March 15, 2022 38th EuroCG Perugia

Stefan Felsner

Technische Universität Berlin felsner@math.tu-berlin.de

Outline

Segment Contacts – Quadrangulations

Algorithm $\mathcal X$ does its job

Algorithm \mathcal{X}

The abstract view

Homothetic Triangle Contact Representations

Monster packing and Algorithm ${\mathcal X}$

Square Contact Representations

Including an existence proof

More Contact Representations – Pentagons

5-color trees and the coin theorem

Segment Contact Representations

A quadrangulation with a segment contact representation.

Induced separating Decompositions

The contact representation induces a separating decomposition on the quadrangulation.

Separating Decompositions

G = (V, E) a plane quadrangulation with outer face $F = \{s, x, t, y\}.$

A coloring and orientation of the edges of G with colors red and blue is a separating decomposition of G iff

Separating Decompositions and 2-Orientations

Theorem.

Separating decompositions and 2-orientations are in bijection.

Proof.

• Define the path of an edge:

• The path is simple (Euler), hence, ends in a sink: in the red s or in the blue t.

Sketch: Compute Segment Contact Representations

- Compute a separating decomposition.
- Separate the two trees 2-page book embedding.

Alternating and Full Binary Trees

Proposition. There is bijection between on-sided and binary trees that preserves types (left/right) of nodes.

Sketch: Compute Segment Contact Representations

• The two binary trees obtained from the separating decomposition fit together.

More Problems for Segment Contact Representations

Add some conditions.

• Find a representation in a square such that all intersect the diagonal.

(We just saw a solution)

• Find a representation such that all inner rectangles are squares.

The dissection of rectangles into squares Brooks, Smith, Stone and Tutte 1940.

• Find a representation such that each inner rectangle has its own prescribed aspect ratio.

(aspect ratio universality)

Segment Contact Squarings

Computing a Segment Contact Squaring

Step I: Compute a separating decomposition on Q. This describes the contacts of the segments. (combinatorial or abstract contact representation)

Equations

Step II: Set up a linear system of equations: $A_S \cdot x = e_1$

Equations

Step II: Set up a linear system of equations: $A_S \cdot x = e_1$

• A₅ is a square matrix.

Theorem. det(A_S) \neq 0.

The Determinant

- A_S is a bipartite adjacency matrix of a bipartite graph H.
- $det(A_S) = \sum_{\pi} sign(\pi) \prod a_{i,\pi(i)}$
- $det(A_S) = \sum_M sign(M)$, with M perfect matching of H.
- sign(M) = sign(M') for all M and M' perfect matching.
 Face cycles: length 4, odd number of minus signs.
- *H* has a perfect matching.

Solve the System

Flip the Negative

- The boundary of the negative contains no complete segment.
- Hence, the boundary is a directed cycle in the separating decomposition
- Flip boundaries of negative areas to get the good separating decomposition and the squaring.

The Squaring

- The method also works for given aspect ratios.
- Alternative algorithms exist. Example: electric flow in bipolar networks.

Algorithm \mathcal{X}

Algorithm \mathcal{X} a Coarse Description

Aim for a contact representation of G.

- Compute a combinatorial representation directed graph *D*.
- Extract linear equations: $A_D = e_1$.
 - Show that A_D is square and det $A_D \neq 0$.
- Solve the system.
 Solution positive Done.
 - Show that negative variables in the solution correspond to directed cycles in D which can be flipped $(D \rightarrow D')$.
- Try again with D'.

Homothetic Triangle Contact Representations

Triangle Contact Representation

Theorem [de Fraysseix, Ossona de Mendez and Rosenstiehl **]**. Triangulations have triangle contact representations.

Homothetic Triangle Contact Representations

Theorem [Gonçalves, Lévêque, Pinlou 2010]. Every 4-connected triangulation has a triangle contact representation with homothetic triangles.

Triangle Contact Representations

Proof uses Schramm's "Monster Packing Theorem".

Theorem. Let *T* be a planar triangulation with outer face $\{a, b, c\}$ and let *C* be a simple closed curve partitioned into arcs $\{C_a, C_b, C_c\}$. For each interior vertex *v* of *T* prescribe a convex set P_v containing more than one point. Then there is a contact representation of *T* with homothetic copies.

Remark.

In general homothetic copies of the P_v can degenerate to a point. This is impossible if T is 4-connected and all the P_v are homothetic triangles.

Schnyder Woods

G = (V, E) a plane triangulation, $F = \{a_1, a_2, a_3\}$ the outer triangle. A coloring and orientation of the interior edges of G with colors 1,2,3 is a Schnyder wood of G iff

Inner vertex condition:

• Edges $\{v, a_i\}$ are oriented $v \rightarrow a_i$ in color *i*.

Schnyder Woods and 3-Orientations

Theorem. Schnyder wood and 3-orientation are in bijection. **Proof.**

• All edges incident to a_i are oriented $\rightarrow a_i$.

G has 3n - 9 interior edges and n - 3 interior vertices.

• Define the path of an edge:

- The path is simple (Euler), hence, ends at some a_i.
- Two path starting at a vertex do not meet again (Euler).

Schnyder Woods as Abstract Triangle Contact Representations

Triangle Contacts and Equations

The abstract triangle contact representation implies equations for the sidelength:

 $x_i + x_j + x_k + x_\ell = 1$ and $x_a + x_b + x_c = x_v$ and $x_d = x_v$ and $x_e = x_v$ and $x_d + x_e = x_w$ and ...

The System of Equations

- The matrix A_S is square.
- A_S corresponds to a bipartite graph

Every face has length 6 and two negative signs.

• The bipartite graph has a perfect matching.

Theorem. det $A_S \neq 0$.

• The system of equations has a unique solution.

In the solution some variables may be negative.

• The boundary of the negative variables induces a directed cycle in the Schnyder wood.

Flipping Cycles

From the bijection

Schnyder woods \iff 3-orientations

it follows that cycles can be reverted (flipped).

The Status of Algorithm \mathcal{X} in this Case

- Homothetic triangle contact representations are an instance for Algorithm \mathcal{X} .
- We have not been able to prove that the algorithm stops. In practice, however, it does!

The Status of Algorithm \mathcal{X} in this Case

- Homothetic triangle contact representations are an instance for Algorithm \mathcal{X} .
- We have not been able to prove that the algorithm stops. In practice, however, it does!

Program written by Julia Rucker.

The Status of Algorithm \mathcal{X} in this Case

Theoretical support:

Theorem. A negative triangle becomes positive by flipping.

Squarings of Inner Triangulations.

Squarings for Inner Triangulations

Theorem [O. Schramm 1993]. The squaring of a 5-connected inner triangulation exists and it is is unique.

O. Schramm *Square Tilings with prescribed Combinatorics*. 1993 Schramm uses extremal lengths,

Lovász gave a proof using convex corners.

Proposition. 4-connected inner triangulations of a quadrangle admit transversal structures (a.k.a. regular edge labeling).

A Systems of Equations

transversal structure \implies rectangular dissection (abstract squaring).

- red rectangles and red circles = variables
- white circles = equations

Properties of the System

- The matrix A_T is a square matrix.
- The bipartite graph has facial cycles of length 10 with four negative signs ⇒ perfect matchings have the same sign.
- The graph has a perfect matching

Flips on Transversal Structures

- It is possible to associate a digraph *D* to a inner triangulation with a transversal structure such that negative variables induce a directed boundary cycle which can be reverted.
- We describe the elementary flips directly:

A Program

Written by Thomas Picchetti

Existence Reproved (Hendrik Schrezenmaier)

Theorem.

Every inner triangulation G of a 4-gon admits a squaring.

Proof (Sketch)

- Let *R* be a rectangulation of *G* with aspect ratio vector α_0 and transversal structure T_0 .
- Let $\alpha_1 = 1$ be the aspect ratio vector of a squaring and let $\ell = \{\alpha_t : t \in [0, 1]\}$ be the line from α_0 to α_1 .
- The set A₀ of all aspect ratio vectors β representable by T₀ is a subset of Rⁿ containing α₀. The set is defined by polynomial inequalities (positivity) with polynomials of bounded degree (determinant, Cramer's rule).
- When ℓ leaves A_0 some variables change their sign in T_0 this set corresponds to a flippable set, this defines T_1 and A_1 .
- Continue until α_1 is reached.

Pentagon contact representations

Pentagon Contact Representations

G an inner triangulation of the 5-gon a_1,\ldots,a_5

- Existence
- Uniqueness

- Combinatorial structure
- Computation

Homothetic Pentagon Contact Representations

Theorem.

Every triangulation of a 5-gon has a contact representation with homothetic pentagons.

Proof: Use Schramm's "Monster Packing Theorem".

With pentagons there are no degeneracies.

The combinatorial structure: five color forests

Definition (Five color forest)

Orientation and coloring of inner edges of inner triangulation of 5-gon a_1, \ldots, a_5 , s.t.

► no incoming edge of color i ⇒ outgoing edge of color i - 2 or i + 2 exists

Theorem

Regular pentagon contact representation induces five color forest on its contact graph.

Five color forests \leftrightarrow (5, 2)-orientations

outdeg(●) = 5
 outdeg(○) = 2

Five color forests \leftrightarrow (5, 2)-orientations

Theorem

There is a bijection between the five color forests and (5,2)-orientations of a graph G.

Abstract contact representations

- Compute a five color forest.
- This yields an abstract contact representation.

A system of linear equations

Variables:

- one side length for each vertex: x_v
- four side lengths for each face: $x_f^{(1)}, \ldots, x_f^{(4)}$

Equations:

- five for each vertex: $x_v = \text{sum of touching face side lengths}$
- two for each face: $x_f^{(3)} = x_f^{(1)} + \phi x_f^{(2)}$, $x_f^{(4)} = \phi x_f^{(1)} + x_f^{(2)}$
- one inhomogeneous: length of upper segment = 1

System of linear equations

Computing a regular pentagon contact representation induced by a fixed five color forest

Lemma The system $A_F x = \mathbf{e_1}$ is uniquely solvable.

Lemma $x \ge 0 \iff$ there is a regular pentagon contact repr. inducing F

Algorithm \mathcal{X} for Pentagons

- Guess a five color forest F
- **Case 1**: solution of $A_{FX} = e_1$ is nonnegative
 - construct contact repr. from solution
- ► Case 2: solution contains negative and nonnegative variables
 - ► Lemma: neg. and nonneg. variables are separated by oriented cycles in the (5, 2)-orientation

- change orientation of these cycles
- ▶ restart with new (5,2)-orientation, resp. five color forest

The Status

It works!

But, we have no proof that the process always ends.

5-gons

13-gons

Before you ask: Yes circle contact representations are accumulation points.

The Efficiency of Algorithm \mathcal{X}

• For each pair (n, K) the dot is the average over 100 random graphs.

The End

Visit and enjoy:

www3.math.tu-berlin.de/diskremath/research/kgon-representations/index.html

History and acknowledgments:

- First ideas go back to discussions with Jan Kratochvil, Ileana Streinu and Alexander Wolff (Bertinoro 2007).
- Important contributions came from Torsten Ueckerdt, Hendrik Schrezenmaier and Raphael Steiner.
- Programming was done by Thomas Picchetti, Nadine Raasch, Julia Rucker and Manfred Scheucher.