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G�unter M. Ziegler�Fahbereih Mathematik, MA 7-1Tehnishe Universit�at BerlinStr. des 17. Juni 13610623 Berlin, Germanyziegler�math.tu-berlin.deOtober 5, 1999AbstratThe higher Bruhat orders B(n; k) are ombinatorially de�ned partial orders (and henegraphs) that \look like" the graphs of (n � k)-dimensional zonotopes | and they are, forsmall parameters. Here we explain that this is sine they ontain the graphs of zonotopesof this dimension, but that in general they are not overed by these zonotopal graphs, andthey are not polytopal in general.As a speial ase, this applies to the graph Gn of all arrangements of n pseudolinesonneted by ips, sine this graph is the graph of the higher Bruhat order B(n; 2).1 Introdution.Suppose you want to generate a pseudoline arrangement uniformly at random, for example withthe goal of estimating the average number of triangular regions. A natural way to approah thisis to set up a Markov hain on the arrangements. The transition graph for the Markov hain anbe hosen to be the graph whose verties are all ombinatorially di�erent simple arrangementsof n pseudolines and edges orresponding to triangular ips.If the arrangements \live" in the Eulidean plane we an orient the edges from r to � (seeFigure 1 where two arrangements of pseudolines are displayed by their wiring diagrams). This

Figure 1: Elementary ip at a triangular region.direted graph Gn is the diagram of a partial order on arrangements. The graph G5 is shownin Figure 2. In the piture arrangements of 5 lines are represented by their \dual" zonotopaltilings of a 10-gon (see Theorem 2.1 for a disussion of this orrespondene). In Corollary 2.2�Supported by a DFG Gerhard-Hess-Forshungsf�orderungspreis1



Figure 2: The graph G5.we will get that this partial order Pn on the arrangements of n pseudolines (whose graph is Gn)oinides with the \higher Bruhat order" B(n; 2) introdued by Manin & Shehtman [10℄ andfurther studied in [17℄ [7℄ [8℄. The graph of Figure 2 is the graph of a polytope; Figure 3 isanother piture of the same graph emphasizing this aspet.To what extent is this a speial ase of a general pattern? Can the higher Bruhat orders alwaysbe obtained as graphs of polytopes? We show that the graphs of the higher Bruhat orders arenot polytopal in general. However, there are \�ber zonotopes" losely related to the higherBruhat orders. In partiular, the higher Bruhat orders ontain large zonotopal subgraphs. Ouranalysis of di�erent parameter sets shows that for some parameter sets the zonotopal subgraphsover all verties of the graph B(n; k), while in others they don't.2 The Setting.We refer to [4℄ and to [18, Chapters 6 and 7℄ for bakground about oriented matroids, and aboutzonotopes and their tilings. Cn;k denotes the \yli" oriented matroid [4, Set. 9.4℄ of rank kon n elements that an be represented e. g. by the olumns of the (k � n)-matrixV : 0BBBBB� 1 1 � � � 1 11 2 � � � n� 1 n1 4 � � � (n� 1)2 n2... ... . . . ... ...1 2k�1 � � � (n� 1)k�1 nk�1
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Figure 3: The graph G5 as graph of a zonotope.The yli oriented matroid Cn+1;k provides us with a \anonial" extension of Cn;k by a singleelement, and other single element extensions Cn;k + e of Cn;k an be ompared with respet totheir \distane" from Cn+1;k. To measure this distane we introdue the setsC�+(M + e) := f the oiruits of M + e that ontain e positively g:The higher Bruhat order B(n; k) of Manin & Shehtman is in [17℄ haraterized as follows: itonsists of all the single element extensions Cn;k + e of Cn;k, ordered by single-step inlusion ofthe di�erene sets S(Cn;k + e) := C�+(Cn;k + e) n C�+(Cn+1;k):(Single-step inlusion requires a sequene of single element inlusions suh that exatly oneelement is added to the di�erene set when proeeding from one extension in the hain to thenext. It is shown in [17℄ that this is more restritive in general than just onsidering inlusionof di�erene sets.)The higher Bruhat orders thus de�ned are graded partial orders of length �nk�, with minimalelement Cn+1;k and maximal element n+1Cn+1;k. A over relation for the partial order B(n; k),and adjaeny in its graph, orresponds to reversal of e in a single oiruit of M +e. (CompareLas Vergnas' haraterization of single element extensions in terms of oiruit signatures [4,Set. 7.1℄.)Every vetor on�guration V = (v1; : : : ; vn) � Rk determines a zonotopeZ(V ) := n nXi=1 �ivi : �i 2 [�1;+1℄o;referred to as the zonotope of V . If the vetors in V are nonzero, pairwise linearly independent,and span Rk , then Z(V ) is a zonotope of dimension k with n distint zones. A zonotopal tilingof Z(V ) is a tiling by translates of zonotopes Z(Wj), where the on�gurations Wj are subsetsof V . The tiling is tight if the zonotopes Z(Wj) are parallelotopes, that is, if the sets Wj arebases of Rk .
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Theorem 2.1 There are anonial bijetions between the following four setsB(n; k) def ! f the 1-element oriented matroid extensions of Cn;n�k�1 g� ! f the 1-element oriented matroid liftings of Cn;k gBD ! f the ombinatorial types of tight tilings of Z(Cn;k) g:These bijetions preserve the partial orders and thus adjaeny on these sets.Proof. The �rst equality is the geometri interpretation of the higher Bruhat orders ahievedin [17℄. In the following, we take this as the de�nition of the higher Bruhat order B(n; k).The next bijetion is oriented matroid duality | we refer to [4, Set. 3.4℄. In partiular, in theurrent situation we use that the dual oriented matroid to Cn;k is a reorientation of Cn;n�k,where reorientation does not a�et the set of single element extensions or liftings of an orientedmatroid. Beause of (M=e)� =M�ne, extensions and liftings are dual onepts. (The partialorder, and adjaeny, on the set of single element liftings of Cn;n�k are de�ned in terms of theiruits that positively ontain the lifting element e, in omplete analogy to the de�nition forsingle element extensions desribed above.)The last bijetion is the Bohne-Dress theorem [5℄ [13℄ in its pure form, applied to a speialoriented matroid and its zonotope.Corollary 2.2 The partial order Pn on the wiring diagrams of n pseudolines de�ned in theintrodution oinides with the higher Bruhat orders B(n; 2).This is sine the wiring diagrams of pseudoline arrangements an be interpreted as single elementliftings of the oriented matroid Cn;2, whih is represented by the order 1; 2; : : : ; n in whih thepseudolines interset the line `e at in�nity. The minimal element of B(n; 2) orresponds to thepseudoline arrangement (wiring diagram) in whih any three pseudolines indue a r-triangle.12...n = 5 `eFigure 4: The minimal element of B(5; 2)3 The Main Theorem.Given any spanning vetor on�guration V = (v1; : : : ; vn) � Rk , a dual vetor on�gurationis a spanning on�guration V � = (v�1 ; : : : ; v�n) � Rn�k suh that the row spae of the matrixV � is the orthogonal omplement to the row spae of V . (Thus the dual on�guration lives inomplementary dimension, but it has the same number of vetors as the original on�guration.The oriented matroid M(V �) is the dual of M(V ).)4



The adjoint of a spanning vetor on�guration W = (w1; : : : ; wn) � Rk is another vetor on�g-uration W ad in Rk , whih onsists of exatly one non-zero vetor orthogonal to eah hyperplanein Rk that is spanned by a subset of W . (Thus the adjoint lives in the same dimension, buttypially it has many more vetors than the original on�guration. A key observation is that ingeneral the oriented matroid ofW ad is not determined by the oriented matroid ofW : it dependson the partiular vetor on�guration representing W .)
Figure 5: The adjoint of C6;3 is not unique!Theorem 3.1 Let V be a on�guration of n vetors in Rk with yli oriented matroid M =M(V ) �= Cn;k, and let Z = Z(V ) be its zonotope (of dimension k, with n zones). Let � : Cn �! Zbe a projetion of an n-dimensional ube with �(Cn) = Z.Then the �ber polytope assoiated with this polytope projetion is a zonotope bZ of dimensionn� k, whih is generated by the adjoint of the dual vetor on�guration V � � Rn�k .In this situation we have a graph inlusionG( bZ) ,! B(n; k);here G( bZ) is the graph of bZ and B(n; k) represents the diagram of the higher Bruhat order asundireted graph. The two graphs are equal if and only if the oriented adjoint of M(V �) is unique(that is, independent of the partiular representation V hosen for Cn;k in the �rst plae).Proof. Aording to Billera & Sturmfels [3, Theorem 4.1℄, the �ber polytope of the polytopeprojetion � : Cn �! Z is a zonotope bZ generated by the iruits E� of V , whih by orientedmatroid duality oinide with the oiruits of V �.Spei�ally, the (non-zero) iruits E� as onstruted by Billera & Sturmfels are elementary(minimal non-zero) vetors in the rowspae of V �. That is, we may desribe them in the formE� = ytV � = (ytv�1 ; : : : ; ytv�n)where yt = (y1; : : : ; yn�d) is a vetor of minimal (non-zero) support in the rowspae of V �. Theorresponding oiruit of M(V �) is de�ned by the hyperplaneH� = fx 2 Rn�k : ytx = 0g;whih is the hyperplane in Rn�k spanned by exatly those v�i 2 V � suh that ytv�i = 0.Now the verties of bZ are in bijetion with the regions of the hyperplane arrangementA(M(V �)) =fH� : � 2 C(Cn;k)g, and these are in turn in bijetion with those single element extensions ofCn;n�k that an be realized by extending the given realization V � ofM(V �) �= Cn;n�k (ompare[3, Cor. 4.2℄ [2, Thm. 2.3℄). These extensions naturally form a subset of the set of all singleelement extensions of Cn;n�k, whih in turn is in natural bijetion with B(n; k), by Theorem 2.1.5



Thus we obtain an inlusion verties( bZ) ,! B(n; k):Adjaent verties of bZ orrespond to adjaent regions of the hyperplane arrangement A(M(V �)),that is, to regions whose points are separated only by one hyperplane of the arrangement, andthus we are onsidering single element extensions of Cn;k that di�er in the signature of exatlyone oiruit, that is, adjaent elements of B(n; k).Thus we have an inlusion G( bZ) ,! B(n; k)whih preserves adjaeny (that is, an embedding as an indued subgraph).The map that we have thus obtained is surjetive if and only if all single-element extensions ofCn;n�k an be obtained by extending the partiular realization given by M(V �). Two e�etsould prevent this: the �rst one is if there is a single-element extension ofM(V �) that is realizablebut appears only in a di�erent realization of M(V �). Then we see that the adjoint of M(V �) isnot unique.The seond bad ase is ifM(V �) does have some non-realizable single-element extensions. How-ever, we will see in Proposition 4.2 that this does not happen in the ases where the adjoint ofM(V �) is unique.The ombinatorial struture of the adjoint annot be derived from the (oriented) matroid M =M(V �), but (exept for small k and n � k) it depends on the preise oordinates of V . InProposition 4.1 we will determine the preise range of \small" parameters for this.4 Unique Adjoints.In Theorem 3.1 we have shown that the graph of bZ is ontained in B(n; k), where bZ is generatedby the adjoint of the dual of a vetor on�guration V with M(V ) �= Cn;k. In this setion wedetermine in whih ases the oriented matroid adjoint is unique. We also verify that in all theseases there are no non-realizable extensions, as needed to omplete the proof of Theorem 3.1.Reall from Setion 2 that the dual of Cn;k is a reorientation of Cn;n�k. For notational onve-niene let r := n� k.Proposition 4.1 The (oriented) matroid of the adjoint of Cn;r is unique for r � 2, for n�r � 1and for (n; r) = (5; 3), but not for any other values.Proof. In the following V � denotes a vetor on�guration that represents Cn;r.We �rst deal with the ases where the adjoints are unique. The ase r � 2 is trivial: for r = 1there is only one hyperplane and for r = 2 the adjoint of V � is equivalent to V �. For n� r � 1we have projetive uniqueness of the on�guration V �: the oriented matroid in this ase onsistsof a single iruit, i. e. of a projetive basis.In the ase (n; r) = (5; 3) we may projetively transform V � so that it is given by the matrixV � : 0� 1 2 3 4 51 1 1 0 0�s �1 0 1 0t 1 0 0 11A6



all of whose maximal minors are positive for 1 < s < t. The adjoint of V � is given byA : 0� 12 13 14 15 23 24 25 34 35 45t� s 0 �t �s 0 �1 �1 0 0 1t� 1 t 0 �1 1 0 �1 0 �1 0s� 1 s 1 0 1 1 0 1 0 01A:One an now verify that the signs of 3�3 minors of A are ompletely determined by the ondition1 < s < t.In the ase (n; r) = (6; 3) we have a lassial on�guration of six points in onvex position whoseadjoint is not unique (see Figure 5, and below). The three main diagonals may or may notinterset in one point. Thus the adjoint arrangement is not ombinatorially determined by (theoriented matroid of) the six point on�guration.For the ase (n; r) = (6; 4) onsider the vetor on�guration given by the matrixV � : 0BB� 1 2 3 4 5 61 1 1 0 0 0�2 �1 0 1 0 03 1 0 0 1 0�t �1 0 0 0 11CCA;all of whose (4� 4)-minors are positive if t > 3. The adjoint of V � ontains the olumns of thematrix 0BB� 234 135 146 256�3 �1t �1�1 1�1 �2 1CCA;whose determinant 6� t is positive, negative or zero, for di�erent hoies of t > 3.The examples above may be used to onstrut two representations of Cn;r with di�erent adjoints,for eah of the remaining ases. For this we note that if the adjoint of an oriented matroid Mis not unique, then the adjoint annot be unique either for any oriented matroid N that has Mas a minor.Proposition 4.2 The oriented matroid Cn;r has no non-realizable extensions for the pairs (n; r)suh that the adjoint of Cn;r is unique (as given by Proposition 4.1).Proof. See [4, Cor. 8.3.3℄.Problem 4.3 Charaterize those pairs (n; r) suh that the oriented matroid Cn;r has a non-realizable single element extension.This problem is non-trivial: Sine C8;2 has non-realizable uniform single element liftings (givenby Ringel's non-strethable pseudoline arrangement), duality yields non-realizable single elementextensions for C8;6. (However, single element extensions of a yli oriented matroid annot betoo badly non-realizable, as indiated by [14, Thm. 4.12℄.) On the other hand, for (n; r) = (8; 3)we �nd that all uniform extensions of C8;3 are realizable | this is sine the non-realizableoriented matroid of rank 3 on 9 points is unique [4, Thm. 8.3.4(1)℄, and its single elementdeletions are not yli. More generally, Rihter-Gebert [11, Thm. 8.3℄ has shown that alluniform single element extensions of Cn;3 are realizable, for all n � 3.7



5 The Higher Bruhat Graphs.In this setion we look at the graphs of the higher Bruhat orders in some more detail, and tryto identify zonotopal subgraphs G( bZ). Three di�erent ases are onsidered separately.Case k = 2.This is the ase of pseudoline arrangements. For n � 5 we have G( bZ) = B(n; 2), whih is asingle edge for n = 3, an 8-gon for n = 4, and the graph of Figures 2 and 3 for n = 5.For n � 6 there are pseudoline arrangements so that the arrangement is not representable withertain �xed slopes [12℄ [4, p. 42℄. Presribing the slopes of the arrangement orresponds to�xing a realization V for the oriented matroid Cn�1;2. Thus there are hoies of V suh thatnot all elements of B(6; 2) appear as verties of G( bZ). With the following proposition we showthat for every hoie of V the verties of G( bZ) form a proper subset of B(6; 2).Proposition 5.1 For any set of presribed slopes s1 > s2 > s3 > s4 > s5 > s6 at most one ofthe two arrangements A1, A2 of Figure 6 is realizable.A1 6 A2
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54 32 1Figure 6: Arrangements A1 and A2.Proof. Suppose that there is a set of six di�erent slopes suh that both arrangements arerealizable with these slopes. Let `j(Ai) denote line `j in suh a representation of arrangementAi. Using appropriate similarity transformations we may assume that� s3 = 0 and s6 =1,� `i(A1) = `i(A2) for i = 1; 2; 4.Let pi be the rossing point of lines `3 and `6 in arrangement Ai for i = 1; 2. By onsidering the\orientation" of the triangles formed by `1; `4; `6 and `2; `3; `4 the areas ontaining point pi inarrangement Ai are restrited to the triangles shown in Figure 7.Taking into aount the orientation of the triangle `1; `3; `5 we �nd the following order of rossingsfrom left to right on line `1:`2; `5(A1); `3(A1); `3(A2); `5(A2); `6(A2); `4; `6(A1):8
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Figure 7: The triangle of lines 1,2 and 4.Similarly, the triangle `2; `5; `6 fores the following order of rossings on `2:`1; `5(A2); `6(A2); `6(A1); `5(A1); `3(A1); `4; `3(A2):This shows that `5(A1) and `5(A2) have a rossing between `1 and `2, ontraditing the assump-tion that they have the same slope.Corollary 5.2 The zonotope graphs G( bZ) taken together over all the verties of B(6; 2), butnone of them overs B(6; 2) by itself.For n � 9, some elements of B(n; 2) do not appear as verties of G( bZ) for any hoie of V . Theyorrespond to non-strethable pseudoline arrangements.Nevertheless, we did not deide for any n � 6 whether the graph of B(n; 2) is polytopal. Alreadyfor n = 6 this seems to be a non-trivial problem, sine it is known [9℄ [17℄ that B(6; 2) has 908elements. (In this ase the polytope in question would neessarily be 4-dimensional.)Case n� k = 2.The 2n elements of B(n; k), for n � k = 2, orrespond to the one element extensions of Cn;1.They are realizable and, hene, are verties of G( bZ) for some V . However, the adjoint is uniquein this ase and, therefore, G( bZ) is independent of the hoie of V . This proves G( bZ) = B(n; k).Case n� k = 3.Reall from Setion 2 that the elements of B(n; k), n� k = 3 orrespond to the uniform singleelement extensions of yli pseudoline arrangements. As mentioned above, all these extensionsare realizable [11, Thm. 8.3℄.The �rst non-trivial ase is n = 6; this is the lassial ase of a non-unique adjoint! See Figure 5above, but also e. g. [1, p. 301℄ [4, p. 340℄ [16, Example 8.7℄ [15, Example 2.2℄ [6℄. Consequentlythere is a V suh that G( bZ) 6= B(6; 3). The stronger onlusion that G( bZ) 6= B(6; 3) for all Van be obtained from onsiderations on the graph of B(6; 3), given in Figure 8, as follows.Observation 5.3 The graph of B(6; 3) is not polytopal.9



Figure 8: The graph of B(6; 3), with a highlighted subdivision of K3;3Proof. The graph has verties of degree 3; thus it is not the graph of a polytope of dimensiond � 4. Moreover, the graph is not planar: using the \small ubes" that appear due to non-unique adjoint it is easy to �nd a K3;3 minor; see Figure 8. Thus the over graph of B(6; 3) isnot the graph of a polytope of dimension d � 3.In Figure 9 a part of the over graph of B(6; 3) is given again with the orresponding one elementextensions of a yli line arrangement with six lines. The remaining parts of B(6; 3) an beobtained from this quarter by reetion and omplementation.Referenes[1℄ A. Bahem & W. Kern: Adjoints of oriented matroids, Combinatoria 6 (1986), 299{308.[2℄ M. Bayer & K.A. Brandt: Disriminantal arrangements, �ber polytopes and formality, J.Algebr. Comb. 6 (1997), 229{246.[3℄ L. J. Billera & B. Sturmfels: Fiber polytopes, Annals of Math. 135 (1992), 527{549.[4℄ A. Bj�orner, M. Las Vergnas, B. Sturmfels, N. White & G. M. Ziegler: OrientedMatroids, Enylopedia of Mathematis, Vol. 46, Cambridge University Press 1993.[5℄ J. Bohne: Eine kombinatorishe Analyse zonotopaler Raumaufteilungen, Dissertation, Bielefeld1992; Preprint 92-041, SFB 343, Universit�at Bielefeld, 100 pages.[6℄ M. J. Falk: A note on disriminantal arrangements, Pro. Amer. Math. So. 122 (1994), 1221{1227.[7℄ S. Felsner & H. Weil: Sweeps, arrangements and signotopes, Disr. Appl. Math, to appear.[8℄ S. Felsner & H. Weil: A theorem on higher Bruhat orders, Disrete Comput. Geometry, toappear.[9℄ D. E. Knuth: Axioms and Hulls, Leture Notes in Computer Siene 606, Springer 1992.10



Figure 9: A quarter of B(6; 3) with the orresponding one element extensions of a yli linearrangement.[10℄ Yu. I. Manin & V. V. Shehtman: Arrangements of hyperplanes, higher braid groups andhigher Bruhat orders, in: \Algebrai Number Theory" (J. Coates et al., eds.) Advaned Studies inPure Mathematis 17 (1989), Aademi Press, pp. 289{308.[11℄ J. Rihter-Gebert: On the Realizability Problem for Combinatorial Geometries | DeisionMethods, Dissertation, Darmstadt 1992.[12℄ J. Rihter & B. Sturmfels: On the topology and geometri onstrution of oriented matroidsand onvex polytopes, Transations Amer. Math. So. 325 (1991), 389{412.[13℄ J. Rihter-Gebert & G. M. Ziegler: Zonotopal tilings and the Bohne-Dress theorem, in: Pro.Jerusalem Combinatoris '93 (H. Barelo, G. Kalai, eds.), Contemporary Math. 178, Amer. Math.So. 1994, 211{232.[14℄ B. Sturmfels & G. M. Ziegler: Extension spaes of oriented matroids, Disrete Comput.Geometry 10 (1993), 23{45.[15℄ S. Yuzvinsky: The �rst two obstrutions to the freeness of arrangements, Transations Amer.Math. So. 335 (1993), 231{244.[16℄ G. M. Ziegler: Combinatorial onstrution of logarithmi di�erential forms, Advanes in Math-ematis 76 (1989), 116{154.[17℄ G. M. Ziegler: Higher Bruhat orders and yli hyperplane arrangements, Topology 32 (1993),259{279.[18℄ G. M. Ziegler: Letures on Polytopes, Graduate Texts in Mathematis 152, Springer-Verlag,New York 1995; Updates, orretions, and more, eletroni preprint available per WWW from URLhttp://www.math.tu-berlin.de/�ziegler11


