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tThe higher Bruhat orders B(n; k) are 
ombinatorially de�ned partial orders (and hen
egraphs) that \look like" the graphs of (n � k)-dimensional zonotopes | and they are, forsmall parameters. Here we explain that this is sin
e they 
ontain the graphs of zonotopesof this dimension, but that in general they are not 
overed by these zonotopal graphs, andthey are not polytopal in general.As a spe
ial 
ase, this applies to the graph Gn of all arrangements of n pseudolines
onne
ted by 
ips, sin
e this graph is the graph of the higher Bruhat order B(n; 2).1 Introdu
tion.Suppose you want to generate a pseudoline arrangement uniformly at random, for example withthe goal of estimating the average number of triangular regions. A natural way to approa
h thisis to set up a Markov 
hain on the arrangements. The transition graph for the Markov 
hain 
anbe 
hosen to be the graph whose verti
es are all 
ombinatorially di�erent simple arrangementsof n pseudolines and edges 
orresponding to triangular 
ips.If the arrangements \live" in the Eu
lidean plane we 
an orient the edges from r to � (seeFigure 1 where two arrangements of pseudolines are displayed by their wiring diagrams). This

Figure 1: Elementary 
ip at a triangular region.dire
ted graph Gn is the diagram of a partial order on arrangements. The graph G5 is shownin Figure 2. In the pi
ture arrangements of 5 lines are represented by their \dual" zonotopaltilings of a 10-gon (see Theorem 2.1 for a dis
ussion of this 
orresponden
e). In Corollary 2.2�Supported by a DFG Gerhard-Hess-Fors
hungsf�orderungspreis1



Figure 2: The graph G5.we will get that this partial order Pn on the arrangements of n pseudolines (whose graph is Gn)
oin
ides with the \higher Bruhat order" B(n; 2) introdu
ed by Manin & S
he
htman [10℄ andfurther studied in [17℄ [7℄ [8℄. The graph of Figure 2 is the graph of a polytope; Figure 3 isanother pi
ture of the same graph emphasizing this aspe
t.To what extent is this a spe
ial 
ase of a general pattern? Can the higher Bruhat orders alwaysbe obtained as graphs of polytopes? We show that the graphs of the higher Bruhat orders arenot polytopal in general. However, there are \�ber zonotopes" 
losely related to the higherBruhat orders. In parti
ular, the higher Bruhat orders 
ontain large zonotopal subgraphs. Ouranalysis of di�erent parameter sets shows that for some parameter sets the zonotopal subgraphs
over all verti
es of the graph B(n; k), while in others they don't.2 The Setting.We refer to [4℄ and to [18, Chapters 6 and 7℄ for ba
kground about oriented matroids, and aboutzonotopes and their tilings. Cn;k denotes the \
y
li
" oriented matroid [4, Se
t. 9.4℄ of rank kon n elements that 
an be represented e. g. by the 
olumns of the (k � n)-matrixV : 0BBBBB� 1 1 � � � 1 11 2 � � � n� 1 n1 4 � � � (n� 1)2 n2... ... . . . ... ...1 2k�1 � � � (n� 1)k�1 nk�1
1CCCCCA :
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Figure 3: The graph G5 as graph of a zonotope.The 
y
li
 oriented matroid Cn+1;k provides us with a \
anoni
al" extension of Cn;k by a singleelement, and other single element extensions Cn;k + e of Cn;k 
an be 
ompared with respe
t totheir \distan
e" from Cn+1;k. To measure this distan
e we introdu
e the setsC�+(M + e) := f the 
o
ir
uits of M + e that 
ontain e positively g:The higher Bruhat order B(n; k) of Manin & S
he
htman is in [17℄ 
hara
terized as follows: it
onsists of all the single element extensions Cn;k + e of Cn;k, ordered by single-step in
lusion ofthe di�eren
e sets S(Cn;k + e) := C�+(Cn;k + e) n C�+(Cn+1;k):(Single-step in
lusion requires a sequen
e of single element in
lusions su
h that exa
tly oneelement is added to the di�eren
e set when pro
eeding from one extension in the 
hain to thenext. It is shown in [17℄ that this is more restri
tive in general than just 
onsidering in
lusionof di�eren
e sets.)The higher Bruhat orders thus de�ned are graded partial orders of length �nk�, with minimalelement Cn+1;k and maximal element n+1Cn+1;k. A 
over relation for the partial order B(n; k),and adja
en
y in its graph, 
orresponds to reversal of e in a single 
o
ir
uit of M +e. (CompareLas Vergnas' 
hara
terization of single element extensions in terms of 
o
ir
uit signatures [4,Se
t. 7.1℄.)Every ve
tor 
on�guration V = (v1; : : : ; vn) � Rk determines a zonotopeZ(V ) := n nXi=1 �ivi : �i 2 [�1;+1℄o;referred to as the zonotope of V . If the ve
tors in V are nonzero, pairwise linearly independent,and span Rk , then Z(V ) is a zonotope of dimension k with n distin
t zones. A zonotopal tilingof Z(V ) is a tiling by translates of zonotopes Z(Wj), where the 
on�gurations Wj are subsetsof V . The tiling is tight if the zonotopes Z(Wj) are parallelotopes, that is, if the sets Wj arebases of Rk .
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Theorem 2.1 There are 
anoni
al bije
tions between the following four setsB(n; k) def ! f the 1-element oriented matroid extensions of Cn;n�k�1 g� ! f the 1-element oriented matroid liftings of Cn;k gBD ! f the 
ombinatorial types of tight tilings of Z(Cn;k) g:These bije
tions preserve the partial orders and thus adja
en
y on these sets.Proof. The �rst equality is the geometri
 interpretation of the higher Bruhat orders a
hievedin [17℄. In the following, we take this as the de�nition of the higher Bruhat order B(n; k).The next bije
tion is oriented matroid duality | we refer to [4, Se
t. 3.4℄. In parti
ular, in the
urrent situation we use that the dual oriented matroid to Cn;k is a reorientation of Cn;n�k,where reorientation does not a�e
t the set of single element extensions or liftings of an orientedmatroid. Be
ause of (M=e)� =M�ne, extensions and liftings are dual 
on
epts. (The partialorder, and adja
en
y, on the set of single element liftings of Cn;n�k are de�ned in terms of the
ir
uits that positively 
ontain the lifting element e, in 
omplete analogy to the de�nition forsingle element extensions des
ribed above.)The last bije
tion is the Bohne-Dress theorem [5℄ [13℄ in its pure form, applied to a spe
ialoriented matroid and its zonotope.Corollary 2.2 The partial order Pn on the wiring diagrams of n pseudolines de�ned in theintrodu
tion 
oin
ides with the higher Bruhat orders B(n; 2).This is sin
e the wiring diagrams of pseudoline arrangements 
an be interpreted as single elementliftings of the oriented matroid Cn;2, whi
h is represented by the order 1; 2; : : : ; n in whi
h thepseudolines interse
t the line `e at in�nity. The minimal element of B(n; 2) 
orresponds to thepseudoline arrangement (wiring diagram) in whi
h any three pseudolines indu
e a r-triangle.12...n = 5 `eFigure 4: The minimal element of B(5; 2)3 The Main Theorem.Given any spanning ve
tor 
on�guration V = (v1; : : : ; vn) � Rk , a dual ve
tor 
on�gurationis a spanning 
on�guration V � = (v�1 ; : : : ; v�n) � Rn�k su
h that the row spa
e of the matrixV � is the orthogonal 
omplement to the row spa
e of V . (Thus the dual 
on�guration lives in
omplementary dimension, but it has the same number of ve
tors as the original 
on�guration.The oriented matroid M(V �) is the dual of M(V ).)4



The adjoint of a spanning ve
tor 
on�guration W = (w1; : : : ; wn) � Rk is another ve
tor 
on�g-uration W ad in Rk , whi
h 
onsists of exa
tly one non-zero ve
tor orthogonal to ea
h hyperplanein Rk that is spanned by a subset of W . (Thus the adjoint lives in the same dimension, buttypi
ally it has many more ve
tors than the original 
on�guration. A key observation is that ingeneral the oriented matroid ofW ad is not determined by the oriented matroid ofW : it dependson the parti
ular ve
tor 
on�guration representing W .)
Figure 5: The adjoint of C6;3 is not unique!Theorem 3.1 Let V be a 
on�guration of n ve
tors in Rk with 
y
li
 oriented matroid M =M(V ) �= Cn;k, and let Z = Z(V ) be its zonotope (of dimension k, with n zones). Let � : Cn �! Zbe a proje
tion of an n-dimensional 
ube with �(Cn) = Z.Then the �ber polytope asso
iated with this polytope proje
tion is a zonotope bZ of dimensionn� k, whi
h is generated by the adjoint of the dual ve
tor 
on�guration V � � Rn�k .In this situation we have a graph in
lusionG( bZ) ,! B(n; k);here G( bZ) is the graph of bZ and B(n; k) represents the diagram of the higher Bruhat order asundire
ted graph. The two graphs are equal if and only if the oriented adjoint of M(V �) is unique(that is, independent of the parti
ular representation V 
hosen for Cn;k in the �rst pla
e).Proof. A

ording to Billera & Sturmfels [3, Theorem 4.1℄, the �ber polytope of the polytopeproje
tion � : Cn �! Z is a zonotope bZ generated by the 
ir
uits E� of V , whi
h by orientedmatroid duality 
oin
ide with the 
o
ir
uits of V �.Spe
i�
ally, the (non-zero) 
ir
uits E� as 
onstru
ted by Billera & Sturmfels are elementary(minimal non-zero) ve
tors in the rowspa
e of V �. That is, we may des
ribe them in the formE� = ytV � = (ytv�1 ; : : : ; ytv�n)where yt = (y1; : : : ; yn�d) is a ve
tor of minimal (non-zero) support in the rowspa
e of V �. The
orresponding 
o
ir
uit of M(V �) is de�ned by the hyperplaneH� = fx 2 Rn�k : ytx = 0g;whi
h is the hyperplane in Rn�k spanned by exa
tly those v�i 2 V � su
h that ytv�i = 0.Now the verti
es of bZ are in bije
tion with the regions of the hyperplane arrangementA(M(V �)) =fH� : � 2 C(Cn;k)g, and these are in turn in bije
tion with those single element extensions ofCn;n�k that 
an be realized by extending the given realization V � ofM(V �) �= Cn;n�k (
ompare[3, Cor. 4.2℄ [2, Thm. 2.3℄). These extensions naturally form a subset of the set of all singleelement extensions of Cn;n�k, whi
h in turn is in natural bije
tion with B(n; k), by Theorem 2.1.5



Thus we obtain an in
lusion verti
es( bZ) ,! B(n; k):Adja
ent verti
es of bZ 
orrespond to adja
ent regions of the hyperplane arrangement A(M(V �)),that is, to regions whose points are separated only by one hyperplane of the arrangement, andthus we are 
onsidering single element extensions of Cn;k that di�er in the signature of exa
tlyone 
o
ir
uit, that is, adja
ent elements of B(n; k).Thus we have an in
lusion G( bZ) ,! B(n; k)whi
h preserves adja
en
y (that is, an embedding as an indu
ed subgraph).The map that we have thus obtained is surje
tive if and only if all single-element extensions ofCn;n�k 
an be obtained by extending the parti
ular realization given by M(V �). Two e�e
ts
ould prevent this: the �rst one is if there is a single-element extension ofM(V �) that is realizablebut appears only in a di�erent realization of M(V �). Then we see that the adjoint of M(V �) isnot unique.The se
ond bad 
ase is ifM(V �) does have some non-realizable single-element extensions. How-ever, we will see in Proposition 4.2 that this does not happen in the 
ases where the adjoint ofM(V �) is unique.The 
ombinatorial stru
ture of the adjoint 
annot be derived from the (oriented) matroid M =M(V �), but (ex
ept for small k and n � k) it depends on the pre
ise 
oordinates of V . InProposition 4.1 we will determine the pre
ise range of \small" parameters for this.4 Unique Adjoints.In Theorem 3.1 we have shown that the graph of bZ is 
ontained in B(n; k), where bZ is generatedby the adjoint of the dual of a ve
tor 
on�guration V with M(V ) �= Cn;k. In this se
tion wedetermine in whi
h 
ases the oriented matroid adjoint is unique. We also verify that in all these
ases there are no non-realizable extensions, as needed to 
omplete the proof of Theorem 3.1.Re
all from Se
tion 2 that the dual of Cn;k is a reorientation of Cn;n�k. For notational 
onve-nien
e let r := n� k.Proposition 4.1 The (oriented) matroid of the adjoint of Cn;r is unique for r � 2, for n�r � 1and for (n; r) = (5; 3), but not for any other values.Proof. In the following V � denotes a ve
tor 
on�guration that represents Cn;r.We �rst deal with the 
ases where the adjoints are unique. The 
ase r � 2 is trivial: for r = 1there is only one hyperplane and for r = 2 the adjoint of V � is equivalent to V �. For n� r � 1we have proje
tive uniqueness of the 
on�guration V �: the oriented matroid in this 
ase 
onsistsof a single 
ir
uit, i. e. of a proje
tive basis.In the 
ase (n; r) = (5; 3) we may proje
tively transform V � so that it is given by the matrixV � : 0� 1 2 3 4 51 1 1 0 0�s �1 0 1 0t 1 0 0 11A6



all of whose maximal minors are positive for 1 < s < t. The adjoint of V � is given byA : 0� 12 13 14 15 23 24 25 34 35 45t� s 0 �t �s 0 �1 �1 0 0 1t� 1 t 0 �1 1 0 �1 0 �1 0s� 1 s 1 0 1 1 0 1 0 01A:One 
an now verify that the signs of 3�3 minors of A are 
ompletely determined by the 
ondition1 < s < t.In the 
ase (n; r) = (6; 3) we have a 
lassi
al 
on�guration of six points in 
onvex position whoseadjoint is not unique (see Figure 5, and below). The three main diagonals may or may notinterse
t in one point. Thus the adjoint arrangement is not 
ombinatorially determined by (theoriented matroid of) the six point 
on�guration.For the 
ase (n; r) = (6; 4) 
onsider the ve
tor 
on�guration given by the matrixV � : 0BB� 1 2 3 4 5 61 1 1 0 0 0�2 �1 0 1 0 03 1 0 0 1 0�t �1 0 0 0 11CCA;all of whose (4� 4)-minors are positive if t > 3. The adjoint of V � 
ontains the 
olumns of thematrix 0BB� 234 135 146 256�3 �1t �1�1 1�1 �2 1CCA;whose determinant 6� t is positive, negative or zero, for di�erent 
hoi
es of t > 3.The examples above may be used to 
onstru
t two representations of Cn;r with di�erent adjoints,for ea
h of the remaining 
ases. For this we note that if the adjoint of an oriented matroid Mis not unique, then the adjoint 
annot be unique either for any oriented matroid N that has Mas a minor.Proposition 4.2 The oriented matroid Cn;r has no non-realizable extensions for the pairs (n; r)su
h that the adjoint of Cn;r is unique (as given by Proposition 4.1).Proof. See [4, Cor. 8.3.3℄.Problem 4.3 Chara
terize those pairs (n; r) su
h that the oriented matroid Cn;r has a non-realizable single element extension.This problem is non-trivial: Sin
e C8;2 has non-realizable uniform single element liftings (givenby Ringel's non-stret
hable pseudoline arrangement), duality yields non-realizable single elementextensions for C8;6. (However, single element extensions of a 
y
li
 oriented matroid 
annot betoo badly non-realizable, as indi
ated by [14, Thm. 4.12℄.) On the other hand, for (n; r) = (8; 3)we �nd that all uniform extensions of C8;3 are realizable | this is sin
e the non-realizableoriented matroid of rank 3 on 9 points is unique [4, Thm. 8.3.4(1)℄, and its single elementdeletions are not 
y
li
. More generally, Ri
hter-Gebert [11, Thm. 8.3℄ has shown that alluniform single element extensions of Cn;3 are realizable, for all n � 3.7



5 The Higher Bruhat Graphs.In this se
tion we look at the graphs of the higher Bruhat orders in some more detail, and tryto identify zonotopal subgraphs G( bZ). Three di�erent 
ases are 
onsidered separately.Case k = 2.This is the 
ase of pseudoline arrangements. For n � 5 we have G( bZ) = B(n; 2), whi
h is asingle edge for n = 3, an 8-gon for n = 4, and the graph of Figures 2 and 3 for n = 5.For n � 6 there are pseudoline arrangements so that the arrangement is not representable with
ertain �xed slopes [12℄ [4, p. 42℄. Pres
ribing the slopes of the arrangement 
orresponds to�xing a realization V for the oriented matroid Cn�1;2. Thus there are 
hoi
es of V su
h thatnot all elements of B(6; 2) appear as verti
es of G( bZ). With the following proposition we showthat for every 
hoi
e of V the verti
es of G( bZ) form a proper subset of B(6; 2).Proposition 5.1 For any set of pres
ribed slopes s1 > s2 > s3 > s4 > s5 > s6 at most one ofthe two arrangements A1, A2 of Figure 6 is realizable.A1 6 A2
32

64 5
1

54 32 1Figure 6: Arrangements A1 and A2.Proof. Suppose that there is a set of six di�erent slopes su
h that both arrangements arerealizable with these slopes. Let `j(Ai) denote line `j in su
h a representation of arrangementAi. Using appropriate similarity transformations we may assume that� s3 = 0 and s6 =1,� `i(A1) = `i(A2) for i = 1; 2; 4.Let pi be the 
rossing point of lines `3 and `6 in arrangement Ai for i = 1; 2. By 
onsidering the\orientation" of the triangles formed by `1; `4; `6 and `2; `3; `4 the areas 
ontaining point pi inarrangement Ai are restri
ted to the triangles shown in Figure 7.Taking into a

ount the orientation of the triangle `1; `3; `5 we �nd the following order of 
rossingsfrom left to right on line `1:`2; `5(A1); `3(A1); `3(A2); `5(A2); `6(A2); `4; `6(A1):8
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4 p1p2

Figure 7: The triangle of lines 1,2 and 4.Similarly, the triangle `2; `5; `6 for
es the following order of 
rossings on `2:`1; `5(A2); `6(A2); `6(A1); `5(A1); `3(A1); `4; `3(A2):This shows that `5(A1) and `5(A2) have a 
rossing between `1 and `2, 
ontradi
ting the assump-tion that they have the same slope.Corollary 5.2 The zonotope graphs G( bZ) taken together 
over all the verti
es of B(6; 2), butnone of them 
overs B(6; 2) by itself.For n � 9, some elements of B(n; 2) do not appear as verti
es of G( bZ) for any 
hoi
e of V . They
orrespond to non-stret
hable pseudoline arrangements.Nevertheless, we did not de
ide for any n � 6 whether the graph of B(n; 2) is polytopal. Alreadyfor n = 6 this seems to be a non-trivial problem, sin
e it is known [9℄ [17℄ that B(6; 2) has 908elements. (In this 
ase the polytope in question would ne
essarily be 4-dimensional.)Case n� k = 2.The 2n elements of B(n; k), for n � k = 2, 
orrespond to the one element extensions of Cn;1.They are realizable and, hen
e, are verti
es of G( bZ) for some V . However, the adjoint is uniquein this 
ase and, therefore, G( bZ) is independent of the 
hoi
e of V . This proves G( bZ) = B(n; k).Case n� k = 3.Re
all from Se
tion 2 that the elements of B(n; k), n� k = 3 
orrespond to the uniform singleelement extensions of 
y
li
 pseudoline arrangements. As mentioned above, all these extensionsare realizable [11, Thm. 8.3℄.The �rst non-trivial 
ase is n = 6; this is the 
lassi
al 
ase of a non-unique adjoint! See Figure 5above, but also e. g. [1, p. 301℄ [4, p. 340℄ [16, Example 8.7℄ [15, Example 2.2℄ [6℄. Consequentlythere is a V su
h that G( bZ) 6= B(6; 3). The stronger 
on
lusion that G( bZ) 6= B(6; 3) for all V
an be obtained from 
onsiderations on the graph of B(6; 3), given in Figure 8, as follows.Observation 5.3 The graph of B(6; 3) is not polytopal.9



Figure 8: The graph of B(6; 3), with a highlighted subdivision of K3;3Proof. The graph has verti
es of degree 3; thus it is not the graph of a polytope of dimensiond � 4. Moreover, the graph is not planar: using the \small 
ubes" that appear due to non-unique adjoint it is easy to �nd a K3;3 minor; see Figure 8. Thus the 
over graph of B(6; 3) isnot the graph of a polytope of dimension d � 3.In Figure 9 a part of the 
over graph of B(6; 3) is given again with the 
orresponding one elementextensions of a 
y
li
 line arrangement with six lines. The remaining parts of B(6; 3) 
an beobtained from this quarter by re
e
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es[1℄ A. Ba
hem & W. Kern: Adjoints of oriented matroids, Combinatori
a 6 (1986), 299{308.[2℄ M. Bayer & K.A. Brandt: Dis
riminantal arrangements, �ber polytopes and formality, J.Algebr. Comb. 6 (1997), 229{246.[3℄ L. J. Billera & B. Sturmfels: Fiber polytopes, Annals of Math. 135 (1992), 527{549.[4℄ A. Bj�orner, M. Las Vergnas, B. Sturmfels, N. White & G. M. Ziegler: OrientedMatroids, En
y
lopedia of Mathemati
s, Vol. 46, Cambridge University Press 1993.[5℄ J. Bohne: Eine kombinatoris
he Analyse zonotopaler Raumaufteilungen, Dissertation, Bielefeld1992; Preprint 92-041, SFB 343, Universit�at Bielefeld, 100 pages.[6℄ M. J. Falk: A note on dis
riminantal arrangements, Pro
. Amer. Math. So
. 122 (1994), 1221{1227.[7℄ S. Felsner & H. Weil: Sweeps, arrangements and signotopes, Dis
r. Appl. Math, to appear.[8℄ S. Felsner & H. Weil: A theorem on higher Bruhat orders, Dis
rete Comput. Geometry, toappear.[9℄ D. E. Knuth: Axioms and Hulls, Le
ture Notes in Computer S
ien
e 606, Springer 1992.10
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