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Abstract

The higher Bruhat orders B(n, k) are combinatorially defined partial orders (and hence
graphs) that “look like” the graphs of (n — k)-dimensional zonotopes — and they are, for
small parameters. Here we explain that this is since they contain the graphs of zonotopes
of this dimension, but that in general they are not covered by these zonotopal graphs, and
they are not polytopal in general.

As a special case, this applies to the graph G, of all arrangements of n pseudolines
connected by flips, since this graph is the graph of the higher Bruhat order B(n,2).

1 Introduction.

Suppose you want to generate a pseudoline arrangement uniformly at random, for example with
the goal of estimating the average number of triangular regions. A natural way to approach this
is to set up a Markov chain on the arrangements. The transition graph for the Markov chain can
be chosen to be the graph whose vertices are all combinatorially different simple arrangements
of n pseudolines and edges corresponding to triangular flips.

If the arrangements “live” in the Euclidean plane we can orient the edges from V to A (see
Figure 1 where two arrangements of pseudolines are displayed by their wiring diagrams). This

—

Figure 1: Elementary flip at a triangular region.

directed graph G,, is the diagram of a partial order on arrangements. The graph G5 is shown
in Figure 2. In the picture arrangements of 5 lines are represented by their “dual” zonotopal
tilings of a 10-gon (see Theorem 2.1 for a discussion of this correspondence). In Corollary 2.2
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Figure 2: The graph Gf.

we will get that this partial order P, on the arrangements of n pseudolines (whose graph is G},)
coincides with the “higher Bruhat order” B(n,2) introduced by Manin & Schechtman [10] and
further studied in [17] [7] [8]. The graph of Figure 2 is the graph of a polytope; Figure 3 is
another picture of the same graph emphasizing this aspect.

To what extent is this a special case of a general pattern? Can the higher Bruhat orders always
be obtained as graphs of polytopes? We show that the graphs of the higher Bruhat orders are
not polytopal in general. However, there are “fiber zonotopes” closely related to the higher
Bruhat orders. In particular, the higher Bruhat orders contain large zonotopal subgraphs. Our
analysis of different parameter sets shows that for some parameter sets the zonotopal subgraphs
cover all vertices of the graph B(n, k), while in others they don’t.

2 The Setting.

We refer to [4] and to [18, Chapters 6 and 7] for background about oriented matroids, and about
zonotopes and their tilings. C™* denotes the “cyclic” oriented matroid [4, Sect. 9.4] of rank k
on n elements that can be represented e. g. by the columns of the (k x n)-matrix

11 e 1 1

1 2 eon—1 n
vl 1 4 o (n—=1)?%  n?

1 2]671 . (n _ 1)]671 nk*l



Figure 3: The graph G5 as graph of a zonotope.

The cyclic oriented matroid C"t1* provides us with a “canonical” extension of C™* by a single
element, and other single element extensions C™* + e of C"™* can be compared with respect to
their “distance” from C"+1*. To measure this distance we introduce the sets

Ci(M +e) := { the cocircuits of M + e that contain e positively }.

The higher Bruhat order B(n,k) of Manin & Schechtman is in [17] characterized as follows: it
consists of all the single element extensions C™* + e of C™*, ordered by single-step inclusion of
the difference sets

S(C™F +e) == CL(C™F )\ CL(C™TIR).

(Single-step inclusion requires a sequence of single element inclusions such that exactly one
element is added to the difference set when proceeding from one extension in the chain to the
next. It is shown in [17] that this is more restrictive in general than just considering inclusion
of difference sets.)

The higher Bruhat orders thus defined are graded partial orders of length (Z), with minimal
element C"*1* and maximal element n—HC"H’k. A cover relation for the partial order B(n, k),
and adjacency in its graph, corresponds to reversal of e in a single cocircuit of M +e. (Compare
Las Vergnas’ characterization of single element extensions in terms of cocircuit signatures [4,

Sect. 7.1].)

Every vector configuration V = (vy,...,v,) C R* determines a zonotope

ZV) = {Xn:&'vi P € [—1,+1]},
i=1

referred to as the zonotope of V. If the vectors in V' are nonzero, pairwise linearly independent,
and span R¥, then Z(V) is a zonotope of dimension k& with n distinct zones. A zonotopal tiling
of Z(V) is a tiling by translates of zonotopes Z(W;), where the configurations W; are subsets
of V. The tiling is tight if the zonotopes Z(W;) are parallelotopes, that is, if the sets W; are
bases of R¥.



Theorem 2.1 There are canonical bijections between the following four sets

B(n, k) LR { the 1-element oriented matroid extensions of C™"~ k=11

— { the 1-element oriented matroid liftings of cmk }
(ﬂ { the combinatorial types of tight tilings of Z(C"’k) 1.

These bijections preserve the partial orders and thus adjacency on these sets.

Proof. The first equality is the geometric interpretation of the higher Bruhat orders achieved
in [17]. In the following, we take this as the definition of the higher Bruhat order B(n, k).

The next bijection is oriented matroid duality — we refer to [4, Sect. 3.4]. In particular, in the
current situation we use that the dual oriented matroid to C™* is a reorientation of C™"~*,
where reorientation does not affect the set of single element extensions or liftings of an oriented
matroid. Because of (M/e)* = M*\e, extensions and liftings are dual concepts. (The partial
order, and adjacency, on the set of single element liftings of C™"~* are defined in terms of the
circuits that positively contain the lifting element e, in complete analogy to the definition for
single element extensions described above.)

The last bijection is the Bohne-Dress theorem [5] [13] in its pure form, applied to a special
oriented matroid and its zonotope. [l

Corollary 2.2 The partial order P, on the wiring diagrams of n pseudolines defined in the
introduction coincides with the higher Bruhat orders B(n,2).

This is since the wiring diagrams of pseudoline arrangements can be interpreted as single element
liftings of the oriented matroid C™?, which is represented by the order 1,2,...,n in which the
pseudolines intersect the line £, at infinity. The minimal element of B(n,2) corresponds to the
pseudoline arrangement (wiring diagram) in which any three pseudolines induce a V-triangle.

1
le
n=>5
Figure 4: The minimal element of B(5,2)
3 The Main Theorem.
Given any spanning vector configuration V = (v1,...,v,) C R¥, a dual vector configuration
is a spanning configuration V* = (v},...,v%) C R*™* such that the row space of the matrix

V* is the orthogonal complement to the row space of V. (Thus the dual configuration lives in
complementary dimension, but it has the same number of vectors as the original configuration.
The oriented matroid M (V*) is the dual of M (V).)



The adjoint of a spanning vector configuration W = (wy,...,w,) C R* is another vector config-
uration W4 in R*, which consists of exactly one non-zero vector orthogonal to each hyperplane
in R¥ that is spanned by a subset of W. (Thus the adjoint lives in the same dimension, but
typically it has many more vectors than the original configuration. A key observation is that in
general the oriented matroid of W is not determined by the oriented matroid of W: it depends
on the particular vector configuration representing W.)

N\
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Figure 5: The adjoint of C%? is not unique!

Theorem 3.1 Let V be a configuration of n vectors in RE with cyclic oriented matroid M =
M(V) = C™ andlet Z = Z(V) be its zonotope (of dimension k, withn zones). Letw : C,, — Z
be a projection of an n-dimensional cube with ©(Cy) = Z.

Then the fiber polytope associated with this polytope projection is a zonotope A of dimension
n — k, which is generated by the adjoint of the dual vector configuration V* C R*F,

In this situation we have a graph inclusion
G(Z) = B(n,k).

here G(Z\) is the graph of Z and B(n, k) represents the diagram of the higher Bruhat order as
undirected graph. The two graphs are equal if and only if the oriented adjoint of M (V*) is unique
(that is, independent of the particular representation V chosen for C™* in the first place).

Proof. According to Billera & Sturmfels [3, Theorem 4.1], the fiber polytope of the polytope
projection 7 : C;, — Z is a zonotope Z generated by the circuits E, of V, which by oriented
matroid duality coincide with the cocircuits of V*.

Specifically, the (non-zero) circuits F, as constructed by Billera & Sturmfels are elementary
(minimal non-zero) vectors in the rowspace of V*. That is, we may describe them in the form

B, = y'V* = (y'vi....,y"})

where y' = (y1,...,Yn_q) is a vector of minimal (non-zero) support in the rowspace of V*. The
corresponding cocircuit of M (V™) is defined by the hyperplane

H, = {z e R"F . ylz =0},

which is the hyperplane in R* % spanned by exactly those v} € V* such that y'v} = 0.

Now the vertices of Z are in bijection with the regions of the hyperplane arrangement A(M (V*)) =
{H, : v € C(C™")}, and these are in turn in bijection with those single element extensions of
C™"F that can be realized by extending the given realization V* of M(V*) = C™"~* (compare
[3, Cor. 4.2] [2, Thm. 2.3]). These extensions naturally form a subset of the set of all single
element extensions of C™"~* which in turn is in natural bijection with B(n, k), by Theorem 2.1.



Thus we obtain an inclusion

vertices(Z) < B(n,k).
Adjacent vertices of Z correspond to adjacent regions of the hyperplane arrangement A(M(V*)),
that is, to regions whose points are separated only by one hyperplane of the arrangement, and
thus we are considering single element extensions of C™* that differ in the signature of exactly
one cocircuit, that is, adjacent elements of B(n, k).

Thus we have an inclusion

G(Z) < B(n,k)
which preserves adjacency (that is, an embedding as an induced subgraph).

The map that we have thus obtained is surjective if and only if all single-element extensions of
C™"~ % can be obtained by extending the particular realization given by M (V*). Two effects
could prevent this: the first one is if there is a single-element extension of M (V*) that is realizable
but appears only in a different realization of M (V*). Then we see that the adjoint of M (V*) is
not unique.

The second bad case is if M (V*) does have some non-realizable single-element extensions. How-
ever, we will see in Proposition 4.2 that this does not happen in the cases where the adjoint of
M (V*) is unique. 0

The combinatorial structure of the adjoint cannot be derived from the (oriented) matroid M =
M(V*), but (except for small k and n — k) it depends on the precise coordinates of V. In
Proposition 4.1 we will determine the precise range of “small” parameters for this.

4 Unique Adjoints.

In Theorem 3.1 we have shown that the graph of 7 is contained in B(n, k), where 7 is generated
by the adjoint of the dual of a vector configuration V' with M (V) = C™F. In this section we
determine in which cases the oriented matroid adjoint is unique. We also verify that in all these
cases there are no non-realizable extensions, as needed to complete the proof of Theorem 3.1.

Recall from Section 2 that the dual of C™F is a reorientation of C™" *. For notational conve-
nience let r:=n — k.

Proposition 4.1 The (oriented) matroid of the adjoint of C™" is unique for r < 2, forn—r <1
and for (n,r) = (5,3), but not for any other values.

Proof. In the following V* denotes a vector configuration that represents C™".

We first deal with the cases where the adjoints are unique. The case r < 2 is trivial: for r = 1
there is only one hyperplane and for » = 2 the adjoint of V* is equivalent to V*. For n —r <1
we have projective uniqueness of the configuration V*: the oriented matroid in this case consists
of a single circuit, i. e. of a projective basis.

In the case (n,r) = (5,3) we may projectively transform V* so that it is given by the matrix

1 2 3 4 5
1 1 1 00
v -s =1 0 1 0
t 1 0 01



all of whose maximal minors are positive for 1 < s < ¢t. The adjoint of V* is given by

12 13 14 15 23 24 25 34 35 45
t—s 0 —t —-s 0 —-1 -1 0 O 1
A: t—-1 ¢ 0 -1 1 0 -1 0 -1 0

s—1 s 1 0 1 1 0 1 0 0

One can now verify that the signs of 3 x 3 minors of A are completely determined by the condition
1<s<t.

In the case (n,r) = (6,3) we have a classical configuration of six points in convex position whose
adjoint is not unique (see Figure 5, and below). The three main diagonals may or may not
intersect in one point. Thus the adjoint arrangement is not combinatorially determined by (the
oriented matroid of) the six point configuration.

For the case (n,r) = (6,4) consider the vector configuration given by the matrix

1 2 3 4 5 6

1 1 100 0

. |-2 -1 010 0
v 3 1 001 0]

—t -1 00 0 1

all of whose (4 x 4)-minors are positive if ¢ > 3. The adjoint of V* contains the columns of the

matrix
234 135 146 256

-3 -1
t -1
-1 1 ’
-1 -2
whose determinant 6 — ¢ is positive, negative or zero, for different choices of ¢ > 3.

The examples above may be used to construct two representations of C™" with different adjoints,
for each of the remaining cases. For this we note that if the adjoint of an oriented matroid M
is not unique, then the adjoint cannot be unique either for any oriented matroid N that has M
as a minor. [l

Proposition 4.2 The oriented matroid C™" has no non-realizable extensions for the pairs (n,r)
such that the adjoint of C™" is unique (as given by Proposition 4.1).

Proof. See [4, Cor. 8.3.3]. g

Problem 4.3 Characterize those pairs (n,r) such that the oriented matroid C™" has a non-
realizable single element extension.

This problem is non-trivial: Since C®?2 has non-realizable uniform single element liftings (given
by Ringel’s non-stretchable pseudoline arrangement), duality yields non-realizable single element
extensions for C8°, (However, single element extensions of a cyclic oriented matroid cannot be
too badly non-realizable, as indicated by [14, Thm. 4.12].) On the other hand, for (n,r) = (8,3)
we find that all uniform extensions of C®?3 are realizable — this is since the non-realizable
oriented matroid of rank 3 on 9 points is unique [4, Thm. 8.3.4(1)], and its single element
deletions are not cyclic. More generally, Richter-Gebert [11, Thm. 8.3] has shown that all
uniform single element extensions of C™? are realizable, for all n > 3.



5 The Higher Bruhat Graphs.

In this section we look at the graphs of the higher Bruhat orders in some more detail, and try
to identify zonotopal subgraphs G(Z). Three different cases are considered separately.

Case k = 2.

This is the case of pseudoline arrangements. For n < 5 we have G(Z) = B(n,2), which is a
single edge for n = 3, an 8-gon for n = 4, and the graph of Figures 2 and 3 for n = 5.

For n > 6 there are pseudoline arrangements so that the arrangement is not representable with
certain fixed slopes [12] [4, p. 42]. Prescribing the slopes of the arrangement corresponds to
fixing a realization V for the oriented matroid C"j’Q. Thus there are choices of V such that
not all elements of B(6,2) appear as vertices of G(Z). With the following proposition we show
that for every choice of V' the vertices of G(Z) form a proper subset of B(6,2).

Proposition 5.1 For any set of prescribed slopes s1 > so > 83 > 84 > s5 > Sg at most one of
the two arrangements Ay, As of Figure 6 is realizable.

o
A 5 Ay 6 4 A,
6
3
3
9 2
1 1

Figure 6: Arrangements A; and As.

Proof. Suppose that there is a set of six different slopes such that both arrangements are
realizable with these slopes. Let £;(A;) denote line ¢; in such a representation of arrangement
A;. Using appropriate similarity transformations we may assume that

e s3 =0 and sg = o0,

L] fl(Al) = KZ(AQ) for i = 1,2,4.
Let p; be the crossing point of lines /3 and /5 in arrangement A; for i = 1,2. By considering the

“orientation” of the triangles formed by #1,£4, g and fo, /3, ¢, the areas containing point p; in
arrangement A; are restricted to the triangles shown in Figure 7.

Taking into account the orientation of the triangle ¢1, £3, £5 we find the following order of crossings
from left to right on line /¢;:

62,65(A1),€3(A1),€3(A2),65(142),66(142),64,66(141).
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Figure 7: The triangle of lines 1,2 and 4.

Similarly, the triangle £s, £5, £g forces the following order of crossings on /s:
1, 85(A2), L6 (As), le (A1), €5( A1), £3( A1), £a, £3(As).

This shows that £5(A;1) and /5(A2) have a crossing between ¢; and /5, contradicting the assump-
tion that they have the same slope. [l

Corollary 5.2 The zonotope graphs G(Z) taken together cover all the vertices of B(6,2), but
none of them covers B(6,2) by itself.

For n > 9, some elements of B(n,2) do not appear as vertices of G(Z) for any choice of V. They
correspond to non-stretchable pseudoline arrangements.

Nevertheless, we did not decide for any n > 6 whether the graph of B(n, 2) is polytopal. Already
for n = 6 this seems to be a non-trivial problem, since it is known [9] [17] that B(6,2) has 908
elements. (In this case the polytope in question would necessarily be 4-dimensional.)

Case n — k = 2.

The 2n elements of B(n,k), for n — k = 2, correspond to the one element extensions of cml.
They are realizable and, hence, are vertices of G (Z) for some V. However, the adjoint is unique
in this case and, therefore, G(Z) is independent of the choice of V. This proves G(Z) = B(n, k).

Case n — k = 3.

Recall from Section 2 that the elements of B(n, k), n — k = 3 correspond to the uniform single
element extensions of cyclic pseudoline arrangements. As mentioned above, all these extensions
are realizable [11, Thm. 8.3].

The first non-trivial case is n = 6; this is the classical case of a non-unique adjoint! See Figure 5
above, but also e. g. [1, p. 301] [4, p. 340] [16, Example 8.7] [15, Example 2.2] [6]. Consequently
there is a V' such that G(Z) # B(6,3). The stronger conclusion that G(Z) # B(6,3) for all V
can be obtained from considerations on the graph of B(6,3), given in Figure 8, as follows.

Observation 5.3 The graph of B(6,3) is not polytopal.



Figure 8: The graph of B(6,3), with a highlighted subdivision of K33

Proof. The graph has vertices of degree 3; thus it is not the graph of a polytope of dimension
d > 4. Moreover, the graph is not planar: using the “small cubes” that appear due to non-
unique adjoint it is easy to find a K33 minor; see Figure 8. Thus the cover graph of B(6,3) is
not the graph of a polytope of dimension d < 3. [l

In Figure 9 a part of the cover graph of B(6, 3) is given again with the corresponding one element
extensions of a cyclic line arrangement with six lines. The remaining parts of B(6,3) can be
obtained from this quarter by reflection and complementation.

References

[1] A. BAcHEM & W. KERN: Adjoints of oriented matroids, Combinatorica 6 (1986), 299-308.

[2] M. BAYER & K.A. BRANDT: Discriminantal arrangements, fiber polytopes and formality, .J.
Algebr. Comb. 6 (1997), 229-246.

[3] L. J. BILLERA & B. STURMFELS: Fiber polytopes, Annals of Math. 135 (1992), 527-549.

[4] A. BIORNER, M. LAs VERGNAS, B. STURMFELS, N. WHITE & G. M. ZIEGLER: Oriented
Matroids, Encyclopedia of Mathematics, Vol. 46, Cambridge University Press 1993.

[5] J. BOHNE: Fine kombinatorische Analyse zonotopaler Raumaufteilungen, Dissertation, Bielefeld
1992; Preprint 92-041, SFB 343, Universitéit Bielefeld, 100 pages.

[6] M. J. FALK: A note on discriminantal arrangements, Proc. Amer. Math. Soc. 122 (1994), 1221-
1227.

[7] S. FELSNER & H. WEIL: Sweeps, arrangements and signotopes, Discr. Appl. Math, to appear.

[8] S. FELSNER & H. WEIL: A theorem on higher Bruhat orders, Discrete Comput. Geometry, to
appear.

[9] D. E. KNUTH: Azioms and Hulls, Lecture Notes in Computer Science 606, Springer 1992.

10



¥ M ¥ ¥ ¥ ¥
¥ % 3 k' % Y
%@% ¥ ¥ X KXY
WO ﬁ% %%zf %z% P % ¥
3 % 'd %% %% Ed
%’ %% %&f %&f 3
¥ % '
W W
=

Figure 9: A quarter of B(6,3) with the corresponding one element extensions of a cyclic line
arrangement.

[10]

Yu. I. MANIN & V. V. SCHECHTMAN: Arrangements of hyperplanes, higher braid groups and
higher Bruhat orders, in: “Algebraic Number Theory” (J. Coates et al., eds.) Advanced Studies in
Pure Mathematics 17 (1989), Academic Press, pp. 289-308.

J. RICHTER-GEBERT: On the Realizability Problem for Combinatorial Geometries — Decision
Methods, Dissertation, Darmstadt 1992.

J. RICHTER & B. STURMFELS: On the topology and geometric construction of oriented matroids
and convez polytopes, Transactions Amer. Math. Soc. 325 (1991), 389-412.

J. RICHTER-GEBERT & G. M. ZIEGLER: Zonotopal tilings and the Bohne-Dress theorem, in: Proc.
Jerusalem Combinatorics '93 (H. Barcelo, G. Kalai, eds.), Contemporary Math. 178, Amer. Math.
Soc. 1994, 211-232.

B. STURMFELS & G. M. ZIEGLER: Fatension spaces of oriented matroids, Discrete Comput.
Geometry 10 (1993), 23-45.

S. YUZVINSKY: The first two obstructions to the freeness of arrangements, Transactions Amer.
Math. Soc. 335 (1993), 231-244.

G. M. Z1EGLER: Combinatorial construction of logarithmic differential forms, Advances in Math-
ematics 76 (1989), 116-154.

G. M. ZIEGLER: Higher Bruhat orders and cyclic hyperplane arrangements, Topology 32 (1993),
259-279.

G. M. ZIEGLER: Lectures on Polytopes, Graduate Texts in Mathematics 152, Springer-Verlag,
New York 1995; Updates, corrections, and more, electronic preprint available per WWW from URL
http://www.math.tu-berlin.de/~ziegler

11



