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t. Partially ordered sets of small width and graphs of small Dilworth number havemany interesting properties and have been well studied. Here we show that re
ognition of su
horders and graphs 
an be done more eÆ
iently than by using the well-known algorithms basedon bipartite mat
hing and matrix multipli
ation. In parti
ular, we show that de
iding de
idingif an order has width k 
an be done in O(kn2) time and whether a graph has Dilworth numberk 
an be done in O(k2n2) time.For very small k we have even better results. We show that orders of width at most 3 
anbe re
ognized in O(n) time and of width at most 4 in O(n log n).Mathemati
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ognition algorithms.1 Introdu
tionThe width of a partially ordered set is the size of its largest anti
hain. Orders ofsmall width are a parti
ularly attra
tive 
lass sin
e several optimization problems,known to be intra
table for general orders as 
an be solved in polynomial time whenthe input is restri
ted to this 
lass [3, 27, 26, 10℄. It is therefore desirable to have fastre
ognition algorithms for orders of small width. Sin
e the width of an n elementorder 
an be obtained using a max{
ow 
omputation on a bipartite network withunit 
apa
ities there is a O(n5=2) re
ognition algorithm. For spe
ial 
lasses of ordersmu
h faster algorithms exist. Given a realizer, the width of a 2-dimensional order
an be 
omputed in O(n logn) time [17℄, a fa
t whi
h has been dis
overed manytimes in di�erent 
ontexts sin
e it 
orresponds to the natural problem of �nding amaximum de
reasing subsequen
e. Using ven Emde Boas' data stru
ture [30℄, thetime 
omplexity 
an be redu
ed to O(n log logn). The width of an interval order
an be determined in O(n) time given an interval representation. 2-dimensionalrealizers and interval representations 
an be 
onstru
ted in linear time [22, 23℄.In the next se
tion we show that orders of width at most k 
an be re
ognizedin O(kn2) time. The high level idea of the algorithm is to 
ompute the max{
owmentioned above in two phases. In the �rst phase a greedy 
hain de
omposition isused to obtain a feasible 
ow whi
h is at most k logn units less than the maximum.In the se
ond phase the true max{
ow is 
omputed using augmenting paths.



2 Felsner, Raghavan and Spinrad O
tober 23. 1998The Dilworth number of a graph is the size of the largest subset of its verti
es inwhi
h no vertex 
ontains the neighborhood of another. Dilworth number 1 graphs
orrespond to the well-known 
lass of threshold graphs [15, 9, 21℄ and graphs withDilworth number at most 2 are the threshold-signed graphs [4℄. Both these 
lasses
an be re
ognized in time linear in the number of edges and verti
es [8, 9, 5℄. Graphswith Dilworth number at most 3 are studied in [19℄, and shown to be a subset ofa 
lass 
alled \good graphs" [19℄ or \quasitriangulated graphs" [18℄ de�ned by aspe
ial elimination ordering s
heme. Graphs with Dilworth number 4 are shown tobe a subset of perfe
tly orderable graphs in [24℄.The known algorithm [19℄ for 
omputing the Dilworth number of a graph worksby 
onstru
ting a partial order based on neighborhood 
ontainment relationshipsbetween pairs of verti
es and then 
omputing the width of the resultant order.The typi
al method of 
onstru
ting the order from the given graph uses matrixmultipli
ation.In Se
tion 3 we give a non-trivial appli
ation of the algorithm for de
idingwhether an order has small width. We show that graphs with Dilworth number atmost k 
an be re
ognized in O(k2n2) time. The key idea here is an algorithm whi
heither 
onstru
ts the partial order mentioned above or 
on
ludes that the inputgraph has Dilworth number larger than k. From the point of view of re
ognizingDilworth number k graphs, this step e�e
tively �nesses away the bottlene
k stepof using matrix multipli
ation to 
ompute the partial order.In Se
tion 4 we 
ome ba
k to orders of bounded width. We show that ordersof width at most 3 
an be re
ognized in O(n) time, and orders of width at most4 
an be re
ognized in O(n logn) time. These results are a
hieved by assumingthat a linear extension of the order is given and a query about the relation of twoelements is answered in O(1) time. More realisti
ally, if the input is given as anadja
en
y matrix, we show that an initial O(n logn) prepro
essing step 
an beused to obtain the required linear extension.2 Orders of Bounded WidthThroughout this paper, G = (V;E) denotes a simple undire
ted graph and Prepresents a partially ordered set (or poset or order). The letter n denotes eitherthe number of verti
es in a the graph under 
onsideration or the number of elementsin the poset.We 
onsider an order P = (X;�) to be a pair 
onsisting of a ground set V anda re
exive, antisymmetri
 and transitive binary relation � on X. The notationsx � y in P and y � x in P will be used inter
hangeably. If neither x � y in P nory � x in P we say x and y are in
omparable and write xjjy. If x � y and x 6= y, wewrite x < y or y > x. An anti
hain of P is a set of pairwise in
omparable elementsand a 
hain of P is a set of pairwise 
omparable elements. The width of P is the



Small Width Orders and Small Dilworth Number Graphs 3size of a maximum anti
hain and the height of P is the size of a maximum 
hainin P .Chains and anti
hains are linked by two 
lassi
al duality theorems stated belowin Proposition 1. Interestingly, while the formulation of these theorems is 
om-pletely symmetri
 with respe
t to the ex
hange of \
hain" and \anti
hain," the�rst is a folklore result admitting an obvious proof, while the se
ond is a remarkableresult known as Dilworth's Theorem [13℄.Proposition 1 For every �nite order P .(1) The maximum size of a 
hain in P equals the minimum number of an-ti
hains needed to 
over the elements of P .(2) The maximum size of an anti
hain in P equals the minimum number of
hains needed to 
over the elements of P .Fulkerson [16℄ gave a proof of Dilworth's Theorem by redu
ing it to the K�onig-Egerv�ary duality theorem for bipartite graphs. This theorem states that in a bi-partite graph the size of a minimum vertex 
over equals the size of a maximummat
hing.
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Fig. 1. (i) An order P , (ii) a 
hain 
over for P , and (iii) the 
orresponding mat
hing in S(P ). (The boldedges in S(P ) are the edges in the mat
hing.)Fulkerson's proof uses the split S(P ) of P = (X;�), i.e., the bipartite graphhaving as verti
es two 
opies X 0; X 00 of X and an edge (x0; y00) whenever x < y inP . A mat
hing M in S(P ) 
orresponds to a partition of P into jXj � jM j 
hains.To see this, begin with the partition of P into 1{element 
hains. For ea
h edge(x0; y00) 2 M hook the tail of the 
hain ending with x to the beginning of the
hain starting with y thus redu
ing the number of 
hains by one. (Figure 1 hasan example of an order P , a 
hain 
over for P , and the 
orresponding mat
hing



4 Felsner, Raghavan and Spinrad O
tober 23. 1998in S(P ).) With a vertex 
over U of S(P ) asso
iate the anti
hain AU = fx 2 X :x0; x00 62 Ug. Using the fa
t that S(P ) 
omes from a transitive order relation it 
anbe shown that jAU j = jXj�jU j when U is a minimal vertex 
over. (In Figure 1 theanti
hain asso
iated with the minimal vertex 
over U = fb0; d0; 
00; f 00g is the setAU = fa; e; gg.) Dilworth's theorem now follows from the K�onig-Egerv�ary dualitytheorem, i.e., from max jM j = min jU j.By the above 
onsiderations the alternating path algorithm for bipartite mat
h-ing allows one to 
ompute the width of P in O(n3) time: an augmenting alternat-ing path 
an be found with a depth-�rst sear
h in O(n2) time and at most naugmentations along alternating path are possible. With the Hop
roft and Karpalgorithm [20℄ (see also Tarjan's monograph [29℄) this 
an be improved to O(n5=2).A small improvement to O(n5=2=plogn) has been obtained in [2℄. If one only wantsto 
ompute the width of the poset rather than �nd the 
orresponding anti
hainor 
hain 
over, there is a randomized algorithm whi
h has matrix multipli
ationrather than mat
hing as its bottlene
k step [7℄.A greedy 
hain de
omposition of an order P = (X;�) is a 
hain 
over obtainedby the re
ursive extra
tion of 
hains of maximum length from P . More formally,we de�ne P0 = P and re
ursively de�ne 
hain Ci to be a maximum 
hain inPi�1 = (Xi�1;�) and Pi as the order indu
ed on the set Xi = Xi�1 n Ci.Lemma 1. Let P = (X;�) be an n-element order of width at most k. The greedy
hain de
omposition of P 
an be 
omputed in O(kn2) time and 
onsists of at mostk log en 
hains.Proof. Clearly, any anti
hain of an indu
ed suborder P 0 of P is an anti
hainof P , hen
e, width(P 0) � width(P ). By Dilworth's theorem this implies that Pi
an be 
overed by at most k 
hains and by the pigeon-hole prin
iple the longest
hain in Pi has size at least jXij=k. Therefore, jXij � n(1 � 1k )i � ne� ik and fori > k loge n the set Xi has size less than one and is thus empty. Hen
e the greedy
hain de
omposition 
onsists of at most k loge n 
hains.A maximum 
hain of an order 
an be found by a modi�ed depth-�rst sear
h inO(n2) time; this is sometimes given in texts, for example [11℄, as �nding a longestpath in a dire
ted a
y
li
 graph. The removal of the 
hain and all 
omparabilitiesinvolving elements of the 
hain 
an be done within the same time bound. Usingthe 
onsiderations of the previous paragraph we obtain the re
urren
e T (n) �T (n(1� 1k))+ 
 �n2 for the time T (n) used by the greedy de
omposition algorithmon n-element orders of width at most k. This works out to T (n) � 
kn2.Theorem 1. De
iding whether width(P ) � k for a given n-element order P andan integer k 
an be done in O(kn2) time.Proof. The �rst phase of the de
ision algorithm 
onsists of a 
all to the greedy
hain de
omposition for P . The de
omposition algorithm is enhan
ed by a test for



Small Width Orders and Small Dilworth Number Graphs 5jCij � jXi�1j=k; if this 
ondition fails the output `width ex
eeds k' is returned. ByLemma 1 the �rst phase takes no more than O(kn2) time.After P has su

essfully passed the �rst phase we have a 
hain 
over C1; ::; Crwith r � k logn. If r � k, we are done by Dilworth's theorem. Otherwise, re-
all that Pi = (Xi;�) is the order indu
ed by P on the elements 
overed byCi+1; ::; Cr. The order Pr�k has width at most k as proved by the 
hain 
over ofsize k. Corresponding to this 
hain 
over is a mat
hing Mr�k in the split S(Pr�k)with jMr�kj = jXr�kj � k.The work in the se
ond phase is now done by 
onsidering the splits S(Pi)ba
kwards, i.e., starting from the split S(Pr�k) down to the �rst one S(P0). Giventhat Pi is of width at most k we show how to 
he
k whether Pi�1 is of width atmost k in O(jXi�1j2) time.To be pre
ise we use a more 
omplex assumption. We assume that a mat
hingMi in the split S(Pi) of Pi with jMij = jXij � k has been 
onstru
ted. Considerthe split S(Pi�1) of Pi�1. Sin
e S(Pi) is an indu
ed subgraph of S(Pi�1) we mayview Mi as a mat
hing of S(Pi�1). A se
ond mat
hing in S(Pi�1) is the mat
hingNi 
orresponding to the 
hain Ci = x1; ::; xj whi
h mat
hes ea
h x0i with x00i+1 fori = 1; ::; j�1. Sin
e Ci and Xi�1 are disjoint the unionMi[Ni�1 also is a mat
hingin S(Pi�1); the size of the union is jMi[Ni�1j = jXij�k+jCi�1j�1 = jXi�1j�(k+1).Sear
h for an augmenting path in S(Pi�1) with respe
t to the mat
hing Mi [Ni�1. If this sear
h is not su

essful we 
on
lude from Fulkerson's proof of Dil-worth's theorem that the width of Pi�1 is k + 1 and return an appropriate state-ment. Otherwise, there is an alternating augmenting path whi
h is added to the oldmat
hing to obtain the mat
hing Mi�1 of size jXi�1j � k in S(Pi�1). As mentionedbefore the sear
h for the augmenting path 
an be a

omplished in 
0 � jXi�1j2 time.Using the bound jXij � n(1� 1k)i and summing up the time used in ea
h stageof the se
ond phase leads to the re
urren
e T 0(n) = T 0(jX0j) � T 0(jX1j) + 
0 � n2for the time T 0(jXij) used until S(Pi�1) is 
onsidered. As in Lemma 1, this worksout to T 0(n) � 
0kn2. Sin
e both phases are in O(kn2) the whole algorithm has thesame 
omplexity.Although the above algorithm is a de
ision algorithm, it 
an be modi�ed to�nd a maximum anti
hain of P = (X;�) or a minimum 
hain 
over of P in the
laimed O(kn2) time, if the size of the anti
hain is at most k. To see this, let M bethe maximum mat
hing obtained in the algorithm; using the K�onig Constru
tionTe
hnique [6℄, �nd a minimum vertex 
over U of S(P ) in time linear in thenumber of edges and verti
es. Then, as dis
ussed earlier in Fulkerson's proof ofDilworth's Theorem, AU = fx 2 X : x0; x00 62 Ug is a maximum anti
hain of P . To�nd a minimum 
hain 
over, view P as a dire
ted graph and 
onsider the subgraphobtained by restri
ting to the edges f(x; y) : (x0; y00) 2Mg. Again, as in Fulkerson'sproof, it is easy to see that this subgraph yields the desired minimum 
hain 
over.



6 Felsner, Raghavan and Spinrad O
tober 23. 1998Until this point, we have assumed that the input is an order, and that weonly have to determine the width of the order to solve the re
ognition problem;that is, we have assumed that the input is transitive. The best known algorithmfor verifying that a dire
ted graph is transitive takes time proportional to matrixmultipli
ation. However, given a set of k 
hains, it is easy to verify transitivity inO(kn2) time. For ea
h vertex v, �nd the �rst vertex 
i on ea
h 
hain (in
luding the
hain 
ontaining v) su
h that v has an edge to 
i; the input is transitive if and onlyif for every vertex v, N(v) 
ontains N(
i) for ea
h 
i. Thus, 
he
king transitivityredu
es to performing kn neighborhood 
ontainment operations ea
h of whi
h 
anbe done in O(n) time, giving a total running time of O(kn2).A graph G is a 
omparability graph if G is the underlying undire
ted graph ofa poset. The algorithm of this se
tion 
an be 
ombined with results from [22℄ tore
ognize 
omparability graphs with no independent set of size k in O(kn2) time.[22℄ 
ontains an algorithm whi
h �nds a transitive orientation of a 
omparabilitygraph in linear time. However, that algorithm will also assign orientations to inputgraphs whi
h are not 
omparability graphs. Thus, if we want to test whether G is a
omparability graph without any independent set of size > k, we run the transitiveorientation algorithm to get a dire
ted graph G0 and test whether G0 is a widthk poset. Here we 
annot asume that the input is transitive, so we must make theadditional test of the previous paragraph.3 Graphs of Bounded Dilworth NumberThe open neighborhood of a vertex v in a graph, written N(v), is the set of neigh-bors of v in the graph, and the 
losed neighborhood of v, written N [v℄, is the setN(v) [ fvg. Vertex v dominates vertex w in G if N(w) � N [v℄. Two verti
es aretwins if they have the same open neighborhoods. The Dilworth number of G is the
ardinality of the largest set S of verti
es in G su
h that no vertex in S dominatesanother vertex in S.There is a simple relationship between Dilworth number of a graph and posetwidth. For any graph G, we 
reate a 
orresponding neighborhood 
ontainment (di-re
ted) graph G0 in whi
h x has an edge to y if and only if x dominates y. Byde�nition, the Dilworth number of G is the size of the maximum independent setin G0. Note that twins in G 
annot be in an independent set of G0. Therefore,one may as well 
onsider the redu
ed (undire
ted) graph H of G whi
h has theset of equivalen
e 
lasses of twins of G as verti
es and there is an edge betweenequivalen
e 
lasses [x℄ and [y℄ if and only if there is an edge between x and y in G.Observe that H 0, the neighborhood 
ontainment graph of H, is a partially orderedset using the relation x � y whenever there is an edge from x to y and that theDilworth number of G is pre
isely the width of H 0. The fa
t that the neighborhood
ontainment graph H 0 is a poset seems to have �rst been noti
ed in the 
ontext ofDilworth number in [19℄.



Small Width Orders and Small Dilworth Number Graphs 7Using this observation, the Dilworth number of a graph 
an be 
omputed inpolynomial time. First, the redu
ed graph 
an be obtained in linear time given anadja
en
y list as input. This seems to be a folklore result; one algorithm is givenin [25℄. Next, the neighborhood 
ontainment of the redu
ed graph 
an 
learly be
onstru
ted in O(n3) time. This 
an be improved to O(MM) time, where MM isthe time to multiply two n by n matri
es. The square of the adja
en
y matrix hasthe quantity jN(x)\N(y)j in the (x; y) entry of the produ
t for all distin
t x andy. Hen
e, x dominates y in G pre
isely when the degree of y in G is equal to the(x; y) entry in the square of the adja
en
y matrix of G if x and y are nonadja
ent,and when x and y are adja
ent x dominates y if the (x; y) entry of the square of theadja
en
y matrix is equal to the degree of y - 1. The 
urrent best time bound formatrix multipli
ation, due to Coppersmith and Winograd [12℄, is O(n2:376:::). Forpra
ti
al purposes, the matrix multipli
ation bounds of O( n3log n) [1℄ and O(n2:81:::)[28℄ given by earlier algorithms may be more appropriate. Finally, the Dilworthnumber 
an be 
omputed by �nding the width of the neighborhood 
ontainmentof the redu
ed graph using network 
ow te
hniques or the algorithm given in theprevious se
tion.The main result of this se
tion is a proof that we 
an do better for graphs ofsmall Dilworth number.Theorem 2. De
iding whether the Dilworth number of an n-vertex graph G is atmost k 
an be done in O(k2n2) time.Proof. We start by obtaining the redu
ed graph G0 from the input graph G. Asmentioned earlier, this 
an be done in O(n2). From the dis
ussion above and usingthe O(kn2) algorithm of the previous se
tion, it suÆ
es to show how to 
onstru
tthe neighborhood 
ontainment poset of G0 in O(k2n2) time. Stri
tly speaking, itsuÆ
es to des
ribe a pro
edure whi
h will either 
orre
tly 
on
lude that G0 hasDilworth number larger than k or 
onstru
t the neighborhood 
ontainment graphin the required time. Indeed, this is what we now des
ribe.Our algorithm uses a re
ursive approa
h for the 
al
ulation of the Dilworthnumber. Partition the verti
es of G into two sets X and Y of nearly equal size, i.e.,jXj and jY j may di�er by at most 1. Re
ursively, de
ide that the subgraphs in-du
ed by either X or Y has Dilworth number greater than k and stop, or 
on
ludethat both subgraphs have Dilworth number at most k and obtain both their neigh-borhood 
ontainment posets. In the latter 
ase, use the algorithm of the previousse
tion to 
ompute minimum 
hain 
overs CX and CY respe
tively of ea
h poset.We now show how to use these two 
hain 
overs and the 
orresponding two posetsto 
ompute eÆ
iently the neighborhood 
ontainment poset of the entire graph G.First, we �nd for ea
h vertex v of G and ea
h 
hain C in CX [ CY , the vertexpv;C on C su
h that v is a neighbor of every vertex at or above pv;C on C, andis a nonneighbor of everything below. Taking advantage of the total order in ea
h
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tober 23. 1998
hain, for a given 
hain C and a given vertex v the vertex pv;C 
an be found inO(log jCj) time by binary sear
h.Next, we 
ompute the relations between elements in two 
hains C 2 CX andC 0 2 CY . This is done in two rounds. First, we determine relations of the formx < y for x 2 C and y 2 C 0; in the se
ond round the role ofX and Y are ex
hangedto determine the relations y < x. Initially, de�ne for ea
h vertex x on C a vertexhighest(x; C; C 0) of C 0 as the highest vertex y su
h that there exists some vertexv for whi
h y = pv;C0 and pv;C is at or below x on C. Now if x0 is the des
endantof x in C, then highest(x; C; C 0) is the higher of highest(x0; C; C 0) and the highestpoint pv;C0 among verti
es v su
h that x = pv;C . Sin
e ea
h vertex v marks exa
tlyone vertex as pv;C , we 
an 
al
ulate highest(x; C; C 0) for all verti
es x on C in O(n)time. In other words, the total time to 
al
ulate highest(x; C; C 0) for all verti
esx on C over all pairs of 
hains C 2 CX and C 0 2 CY is O(k2n).Finally, note that for ea
h vertex x on C 2 CX , N(x) is 
ontained in theneighborhood of every vertex at or above highest(x; C; C 0) on C 0 2 CY , and is not
ontained in the neighborhood of any vertex below. Therefore, on
e the highestfun
tions have been 
omputed, one 
an derive all the neighborhood 
ontainmentrelationships between pairs of verti
es x 2 X and y 2 Y .To analyze the time 
omplexity of this re
ursive pro
edure, we need to distin-guish between two di�erent variables|n, the number of verti
es in the entire inputgraph, and r, the number of verti
es in the subgraph of the 
urrent re
ursive 
all.Then the time 
omplexity T (r) of any re
ursive 
all to the de
ision pro
edure fora graph on r verti
es is given by the re
urren
e relation:T (r) = 2T (r=2) + O(kr2) + O(nk log r) + O(k2n) + O(r2)Here the term O(kr2) 
orresponds to the time for using the algorithm of theprevious se
tion to 
ompute the 
hain 
overs given the posets, the term O(nk log r)
orresponds to the time for �nding pv;C for ea
h vertex v and ea
h 
hain C, theterm O(k2n) 
orresponds to the 
al
ulation of the highest(x; C; C 0) fun
tion asexplained above, and the term O(r2) 
orresponds to the �nal 
al
ulation of all theneighborhood 
ontainment relationships given this fun
tion.A routine analysis of this re
urren
e relation leads to the solution T (r) =O(kr2) +O(nkr) +O(k2nr), when
e for an initial value of r = n we get an overalltime of O(k2n2) for de
iding if an n-vertex graph has Dilworth number k.4 Very Fast Re
ognition of Orders of Width � 4In this se
tion of the paper, we develop sublinear algorithms to re
ognize posetsof width k for k � 4. Note that we must assume that we are given a true poset asinput; if we must verify that every edge implied by transitivity is in the input, ittakes 
(n2) time to re
ognize even posets of width 1.



Small Width Orders and Small Dilworth Number Graphs 9The approa
h for re
ognizing orders of width at most k (k � 4), i.e., orderswith no anti
hain of size k + 1, presented here makes impli
it use of a furtherimportant Theorem of R.P. Dilworth.Proposition 2 (Dilworth 1958) The anti
hains of maximum size of P form adistributive sublatti
e of the latti
e of anti
hains of P .The order relation of the latti
e of maximum anti
hains is given by A � B formaximum anti
hains A;B of P i� for all a 2 A there is a b 2 B with a � b in P .We will use the notation Hma(P ) to denote the highest maximum anti
hain of P .In other words, Hma(P ) is the unique maximal element of the latti
e of maximumanti
hains of P .The idea for the algorithms for re
ognizing orders of width 2,3 and 4 is to usea linear extension L of P and insert the elements in the order given by L into adata stru
ture that maintains a tower of anti
hains of de
reasing sizes. Let Q bethe order indu
ed by the �rst t elements of L. The invariant stru
ture asso
iatedto Q = Q0 is re
ursively de�ned by the following rule:Given Qi let Ai = Hma(Qi) and Qi+1 = fx 2 Qi : x > a for some a 2 Aig.Sin
e width(Qi+1) < width(Qi) the order Qk is empty, when k is the width ofQ. While inserting the t + 1st element we have to update the invariant stru
ture.This is done by examining a list of 
andidate sets for the new highest anti
hains.For width two this is quite easy. For width 3 and 4 it gets in
reasingly involvedand we will have to introdu
e some additional bookkeeping. It is quite possiblethat the approa
h 
an be generalized to higher values of k = width(P ). However,the 
ase k = 5 already seems to require an unpleasantly involved 
ase analysis.Theorem 3. Given an order P with n elements and a linear extension L of P ,there is a algorithm that de
ides width(P ) � k for k = 2; 3 in O(n) time. Fork = 4 there is an algorithm for the de
ision problem running in O(n logn) time.In the next three subse
tions we des
ribe the algorithms proving the theorem.Notationally it will be 
onvenient to work with a ve
tor (B1; B2; ::; Bk) of anti
hainswith Bj = ; or jBjj = j su
h that the non-empty anti
hains in this ve
tor areexa
tly the anti
hains Ai = Hma(Qi) de�ned above.The assumption that a linear extension L of P is given as part of the input
an be removed if we are willing to spend O(n logn) time to either �nd su
h anextension or show that P has width > k, as des
ribed below.Constru
t a 
omplete binary tree T with root r, whi
h has elements of Pas leaves. Maintain at ea
h internal node i the set S(i) of minimal elements ofthe subposet indu
ed by the elements assigned to the leaves below i; note thatjS(i)j � k or P has width > k. We 
ompute the initial values of S(i) during apostorder traversal of T ; this 
an be done using k2 
omparisons at ea
h internalnode, and thus takes O(k2n) time. We then 
hoose any element x from S(r) to
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tober 23. 1998output next in the linear extension L. Delete x from our tree; this involves repeating
omparisons only along the path from x to r in T . Sin
e ea
h element 
an be deletedin O(k2 logn) time, L is found in O(k2n logn) time for a width k poset.Note that if we are not given a linear extension as part of the input, insteadbeing given a

ess to an adja
en
y matrix, �nding a 
hain de
omposition requires
(n logn) time, sin
e if the input is a totally ordered set we must produ
e a sortedsequen
e using only 
omparisons between elements.4.1 Width TwoLet L = x1; x2; : : : ; xn be the linear extension of P whi
h is assumed to be givenas part of the input. Let xjjjxj+1 be the �rst in
omparable adja
ent pair in L. Thealgorithm is initialized with B2  fxj; xj+1g, B1  ;.When inserting a new element x = xt we �rst 
ompare x to the elements of B2.If x is in
omparable to both we have dete
ted a three element anti
hain and stop.The remainder of the algorithm is broken up into two 
ases.In the �rst 
ase we assume B1 = fag 6= ;. If x > a then B1  fxg and we aredone, otherwise, if xjja we set B2  fa; xg and B1  ;.The more 
omplex 
ase is when B1 = ;. Let B2 = fb; 
g here we have three
ases.(1) If x > b and x > 
 then B1  fxg.(2) If x > b and xjj
 then B2  fx; 
g.(3) If xjjb and x > 
 then B2  fb; xg.Sin
e, it is easy to extend the algorithm su
h that a 
hain 
overing by two 
hainsis maintained the 
orre
tness of the algorithm is obtained by Dilworth's theorem(Proposition 1(2)). We need at most three 
omparisons to insert a new element,hen
e, the 
omplexity of the algorithm is O(n).4.2 Width ThreeThe initialization of the algorithm for width three is as in the width two 
asewith the addition that B3  ; has to be initialized. When the new element x is
omparable to some element of B1 or B2 we reuse the width two algorithm andonly have to modify B1 and/or B2.For the remaining dis
ussion assume that x is in
omparable to all elements ofB1 [B2. We des
ribe the algorithm as a list of 
ases with the assumption that thealgorithm pi
ks the �rst appli
able 
ase.Case 0. B3 6= ; and x is in
omparable to all elements of B3: We have dete
ted a4-anti
hain and stop.



Small Width Orders and Small Dilworth Number Graphs 11Case 1. B2 6= ;: The update is done by the two assignments B3  B2 + x andB2  ;.For the remainder of the width 3 re
ognition algorithm, B3 = fy1; y2; y3g andB2 = ;.Case 2. B1 = ;: Compare x to the elements of B3. If x is 
omparable to exa
tlyone element y 2 B3 then B3  B3 � y + x, otherwise, leave B3 as it is and letB1  fxg.Now suppose that B1 = fag. The set of elements above B3 is a 
hain C =(z1 < z2 < :: < zl) with zl = a. Sin
e B3 is the highest 3-anti
hain in the orderindu
ed by the elements inserted before x the element z1 is greater then at leasttwo elements of B3. We assume that y1 < z1 and y2 < z1.Case 3. In this 
ase we 
onsider 3-anti
hains fx; zi; y3g. The 
andidate for zi isthe highest element in C whi
h is in
omparable to y3. If z1 > y3 we pro
eed with
ase 4. Otherwise the 
andidate zi 
an be found by 
omparing the elements of
hain C one by one to y3. This may 
ause a non-
onstant 
ost for the insertionof x, however, all but the last of the elements will be removed from 
hain C. Wewill 
harge the 
ost of these 
omparisons to the elements of the 
hain. When zi isfound we have two sub
ases.Sub
ase 3a. xjjzi: Let B3  fx; zi; y3g and if i = l also B1  ;.Sub
ase 3b. x > zi: Sin
e this implies that x is greater than two elements of B3we know that x is not 
ontained in any 3-anti
hain and we let B2  fx; ag andB1  ;.Case 4. Element x is greater then exa
tly one element of B3: In this 
ase y3 < xor z1 is greater than all elements of B3 and we may rename them so that x > y3.Assign B3  fy1; y2; xg.Case 5. In this last 
ase x is not 
ontained in any 3-anti
hain and we safely letB2  fx; ag and B1  ;.Taking into a

ount the amortization of 
ost in Case 3, the running time of thealgorithm is obviously in O(n). As 
onsequen
e of the algorithms for re
ognitionof orders of width 2 and 3 we obtain alternative algorithms for re
ognizing graphsof Dilworth number 2 and 3 whi
h are as fast as the algorithm given in Se
tion 3.Sin
e our O(n) algorithms only make a linear number of 
omparisons betweenelements and an domination-
omparison takes O(n) we obtain a time 
omplexityof O(n2). It only remains to make sure that we 
an generate a linear extension ofthe domination order of a graph in O(n2) time. Here we 
an avoid an n2 bottlene
kby simply using the ordering of the verti
es by degree.Theorem 4. Graphs of Dilworth number at most 3 
an be re
ognized in O(n2)time.
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tober 23. 19984.3 Width FourThe initialization of the algorithm for width four di�ers from the width three 
aseonly in that B4  ; has to be initialized. When the new element x is 
omparableto some element of B1, B2 or B3 we reuse the width three algorithm and onlyhave to modify a subset of B1; B2; B3. However, as an additional feature we haveto maintain a 
hain 
over of the width two order on the top. We assume that this
over C1; C2 has the property that every element in C2 is in
omparable to someelement in C1; note that su
h a 
over 
an be produ
ed by the re
ognition algorithmfor width two.For the remaining dis
ussion assume that x is in
omparable to all elements ofB1 [ B2 [ B3. Again, we des
ribe the algorithm as a list of 
ases su
h that thealgorithm pi
ks the �rst appli
able 
ase.Case 0. B4 6= ; and x is in
omparable to all elements of B4: We have dete
ted a5-anti
hain and stop.Case 1. B3 6= ;: Set B4  B3 + x and B3  ;.Hen
eforth B4 = fy1; y2; y3; y4g and B3 = ;.Case 2. B2 = ; and B1 = ;: Compare x to the elements of B4. If x is 
omparableto exa
tly one element y 2 B4 then B4  B4 � y + x, otherwise, leave B4 as it isand let B1  fxg.Case 3. B2 = ; and B1 = fag: The set of elements above B4 is a 
hain C =(z1 < z2 < :: < zl) with zl = a. Sin
e B4 is the highest 4-anti
hain in the orderindu
ed by the elements inserted before x the element z1 is greater then at leasttwo elements of B4. We assume that y1 < z1 and y2 < z1.Sub
ase 3a. In this 
ase we 
onsider 4-anti
hains fx; zi; y3; y4g. The 
andidate forzi is the highest element in C whi
h is in
omparable to y3 and y4. If z1 is greaterthan one of y3 and y4 we 
an skip to the next 
ase. Otherwise, let h(yj) denote thehighest element of C in
omparable to yj for j = 3; 4. Let z be the smaller of h(y3)and h(y4). If zjjx then B4  fx; z; y3; y4g and if i = l also B1  ;.Sub
ase 3b. Element x is greater then exa
tly one element y of B4: Assign B4  B4 + x� y.Sub
ase 3
. In this last 
ase x is not 
ontained in any 4-anti
hain and we safelylet B2  fx; ag and B1  ;.Case 4. B2 = fa; bg:Let C1, C2 be a 
hain partition of the set of elements above B4. Re
all thatwe assume that every element in C2 is in
omparable to some element in C1. Fory 2 B4 let hi(y) for i = 1; 2 be the highest elements of Ci in
omparable to y. If yis below all elements of Ci we de�ne hi(y) = y. Sin
e B4 is the highest maximumanti
hain the least element of ea
h of C1; C2 is already 
omparable to at least two



Small Width Orders and Small Dilworth Number Graphs 13of the elements of B4. We may assume that every element of C1 is greater than y1and y2 and every element of C2 is greater than y3.Sub
ase 4a. There is a 4-anti
hain 
onsisting of x, elements 
i 2 Ci for i = 1; 2and y4. Su
h a 4-anti
hain 
an only exist if y4 is in
omparable to x and h1(y4) 6= y4and h2(y4) 6= y4. If x is bigger then either of h1(y4) and h2(y4) then there is noanti
hain of this type. Assume that x is in
omparable to both.If h1(y4)jjh2(y4) then B4  fx; h1(y4); h2(y4); y4g.If h2(y4) < h1(y4) let z be the highest element of C1 in
omparable to h2(y4). Ifz < x then there is no anti
hain of this type. If zjjx let B4  fx; z; h2(y4); y4g.If h1(y4) < h2(y4) the situation is more 
omplex. If there are elements in C2in
omparable to h1(y4) let z be the highest su
h element. If z < x then there is noanti
hain of this type. If zjjx let B4  fx; h1(y4); z; y4g.If h1(y4) < h2(y4) and every element of C2 is 
omparable to h1(y4) let z2be the highest element of C2 below h1(y4) and let z1 be the highest element of C1in
omparable to z2. If z1 and z2 are both in
omparable to x let B4  fx; z1; z2; y4g.Sub
ase 4b. There is a 4-anti
hain 
onsisting of x, an element 
 2 C1 [ C2 andtwo elements from B4. This requires that x is in
omparable to both of y3 and y4. If
 2 C1 then h1(y3) 6= y3 and h1(y4) 6= y4. Let 
 minfh1(y3); h1(y4)g, if xjj
 thenB4  fx; 
; y3; y4g. The 
ase where 
 2 C2 is identi
al up to 
hanges in indi
es.In the last two sub
ases we have ignored the update of B2 and B1. This updateis easily done by 
onsidering the possible relations of the elements in the new B4and a; b.Sub
ase 4
. Element x is greater then exa
tly one element of B4: Assign B4  B4 � y + x.Sub
ase 4d. In this last 
ase x is not 
ontained in any 4-anti
hain and we safelylet B3  fx; a; bg and B2  ;.The algorithm requires a pro
edure that given a 
hain C and an element yreturns the highest element of C in
omparable to y. With binary sear
h this 
anbe a

omplished in O(log jCj) time. During insertion of an element this pro
edureis only 
alled a 
onstant (<10) number of times. Beside these 
alls the insertion isin O(1) per element. This gives an overall 
omplexity of O(n logn).5 Con
luding RemarksWe have shown that it is possible to avoid the bottlene
ks of mat
hing and matrixmultipli
ation in re
ognizing small width partial orders and graphs with smallDilworth number. We have two di�erent te
hniques (and time 
omplexities) forre
ognizing small width partial orders|one te
hnique 
an be used only for partialorders of width at most 4 and the other 
an be used for larger values of width. Itwould be interesting to see if these two te
hniques 
an somehow be 
ombined toyield a faster algorithm.



14 Felsner, Raghavan and Spinrad O
tober 23. 1998Referen
es1. V.L. Arlazarov, E.A. Dini
, M.A. Kronrod and I.A. Faradzev. On e
onomi
al 
onstru
tion of thetransitive 
losure of a dire
ted graph. Soviet Math Doklady, 11, 1209{1210, 1970.2. H. Alt, N. Blum, K. Mehlhorn and M. Paul. Computing a maximum 
ardinality mat
hing in abipartite graph in time O(n1:5(m= log n)0:5). Inf. Pro
. Letters, 37, 237{240, 1991.3. M.D. Atkinson, H.W. Chang. Linear extensions of posets of bounded width. Congressus Numeran-tium, 52, 21{35, 1986.4. C. Benzaken, P.L. Hammer, and D. de Werra. Threshold 
hara
terization of graphs with Dilworthnumber 2. Journal of Graph Theory, 9), 245{267, 1985.5. C. Benzaken, P.L. Hammer, and D. de Werra. Split graphs of Dilworth number two. Dis
rete Math55), 123{128, 1985.6. J.A. Bondy, U.S.R. Murty. Graph theory with appli
ations. Elsevier, New York/Ma
millan, London,1976.7. J. Cheriyan. Randomized O(M(jV j)) algorithms for problems in mat
hing theory. SIAM Journal onComputing 26, 1635{1655, 1997.8. V. Chv�atal and P.L. Hammer. Set-pa
king and threshold graphs. University of Waterloo Resear
hReport CORR73-21, 1973.9. V. Chv�atal and P.L. Hammer. Aggregation of inequalities in integer programming. Annals of Dis
reteMath 1, 145{162, 1977.10. C.J. Colbourn, W.R. Pulleyblank. Minimizing setups in ordered sets of �xed width. Order 1, 225{228,1985.11. T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introdu
tion to algorithms. MIT Press, 1990.12. D. Coppersmith and S. Winograd. Matrix multipli
ation via arithmeti
 progressions. J. of Symb.Comput, 9, 251{280, 1990.13. R.P. Dilworth. A de
omposition theorem for partially ordered sets. Ann. Math., 51, 161{166, 1950.14. R.P. Dilworth. Some 
ombinatorial problems on partially ordered sets. In Combinatorial Analysis,Pro
. Sympos. appl. Math. 10, Bellman and Hall eds., 85{90, 1960.15. S. F�oldes and P.L. Hammer. The Dilworth number of a graph. Annals of Dis
rete Math 2, 211{219,1978.16. D.R. Fulkerson. Note on Dilworth's embedding theorem for partially ordered sets. Pro
. Amer. Math.So
., 7, 701{702, 1956.17. M.C. Golumbi
. Algorithmi
 graph theory and perfe
t graphs. A
ademi
 Press, New York, 1980.18. I.M. Gorgos. Chara
terization of quasitriangulated graphs. Te
hni
al Report University of Kishinev,1982.19. C.T. Ho�ang and N.V.R. Mahadev. A note on perfe
t orders. Dis
rete Math, 74, 77{84, 1989.20. J.E. Hop
roft and R.M. Karp. A n5=2 algorithm for maximum mat
hings in bipartite graphs. SIAMJ. Comput., 2, 225{231, 1973.21. N.V.R. Mahadev and U.N. Peled. Threshold graphs and related topi
s. Annals of Dis
rete Math,56, 1995.22. R. M
Connell and J. Spinrad. Linear time transitive orientation. ACM-SIAM Symposium on Dis
reteAlgorithms, 19{25, 1997.23. C.H. Pappadimitriou and M. Yannakakis. S
heduling interval ordered tasks. SIAM Journal on Com-puting, 8, 405{409, 1979.24. C. Payan. Perfe
tness and Dilworth number. Dis
rete Mathemati
s, 44, 229{230, 1983.25. V. Raghavan and A. Tripathi. Improved diagnosability algorithms. IEEE Trans. on Comput., 2,143{153, 1991.26. J.B. Sidney and G. Steiner. Optimal sequen
ing by modular de
omposition: polynomial algorithms.Operations Resear
h, 34, 606{612, 1986.27. G. Steiner. Polynomial algorithms to 
ount linear extensions in 
ertain posets. Congressus Numer-antium, 75, 71{90, 1990.28. V. Strassen. Gaussian elimination is not optimal. Numeris
he Mathematik, 13, 354{356, 1969.29. R.E. Tarjan. Data stru
tures and network algorithms. CBMS Series 44, SIAM, Philadelphia, 1983.30. P. van Emde Boas. Preserving order in a forest in less than logarithmi
 time and linear spa
e.Information Pro
essing Letters, 6, 80{82, 1977.


