
Reognition Algorithms for Orders of SmallWidth and Graphs of Small Dilworth NumberStefan Felsner1, Vijay Raghavan2, and Jeremy Spinrad21 Freie Universit�at Berlin, Fahbereih Mathematik und Informatik,Takustr. 9, 14195 Berlin, Germanyfelsner�inf.fu-berlin.de2 Box 1679-B, CS Dept., Vanderbilt University,Nashville, TN 37235, USAfraghavan, sping�vuse.vanderbilt.eduAbstrat. Partially ordered sets of small width and graphs of small Dilworth number havemany interesting properties and have been well studied. Here we show that reognition of suhorders and graphs an be done more eÆiently than by using the well-known algorithms basedon bipartite mathing and matrix multipliation. In partiular, we show that deiding deidingif an order has width k an be done in O(kn2) time and whether a graph has Dilworth numberk an be done in O(k2n2) time.For very small k we have even better results. We show that orders of width at most 3 anbe reognized in O(n) time and of width at most 4 in O(n log n).Mathematis Subjet Classi�ations (1991). 05C75, 05C85, 06A07.Key Words. Partial order, width, Dilworth number, reognition algorithms.1 IntrodutionThe width of a partially ordered set is the size of its largest antihain. Orders ofsmall width are a partiularly attrative lass sine several optimization problems,known to be intratable for general orders as an be solved in polynomial time whenthe input is restrited to this lass [3, 27, 26, 10℄. It is therefore desirable to have fastreognition algorithms for orders of small width. Sine the width of an n elementorder an be obtained using a max{ow omputation on a bipartite network withunit apaities there is a O(n5=2) reognition algorithm. For speial lasses of ordersmuh faster algorithms exist. Given a realizer, the width of a 2-dimensional orderan be omputed in O(n logn) time [17℄, a fat whih has been disovered manytimes in di�erent ontexts sine it orresponds to the natural problem of �nding amaximum dereasing subsequene. Using ven Emde Boas' data struture [30℄, thetime omplexity an be redued to O(n log logn). The width of an interval orderan be determined in O(n) time given an interval representation. 2-dimensionalrealizers and interval representations an be onstruted in linear time [22, 23℄.In the next setion we show that orders of width at most k an be reognizedin O(kn2) time. The high level idea of the algorithm is to ompute the max{owmentioned above in two phases. In the �rst phase a greedy hain deomposition isused to obtain a feasible ow whih is at most k logn units less than the maximum.In the seond phase the true max{ow is omputed using augmenting paths.



2 Felsner, Raghavan and Spinrad Otober 23. 1998The Dilworth number of a graph is the size of the largest subset of its verties inwhih no vertex ontains the neighborhood of another. Dilworth number 1 graphsorrespond to the well-known lass of threshold graphs [15, 9, 21℄ and graphs withDilworth number at most 2 are the threshold-signed graphs [4℄. Both these lassesan be reognized in time linear in the number of edges and verties [8, 9, 5℄. Graphswith Dilworth number at most 3 are studied in [19℄, and shown to be a subset ofa lass alled \good graphs" [19℄ or \quasitriangulated graphs" [18℄ de�ned by aspeial elimination ordering sheme. Graphs with Dilworth number 4 are shown tobe a subset of perfetly orderable graphs in [24℄.The known algorithm [19℄ for omputing the Dilworth number of a graph worksby onstruting a partial order based on neighborhood ontainment relationshipsbetween pairs of verties and then omputing the width of the resultant order.The typial method of onstruting the order from the given graph uses matrixmultipliation.In Setion 3 we give a non-trivial appliation of the algorithm for deidingwhether an order has small width. We show that graphs with Dilworth number atmost k an be reognized in O(k2n2) time. The key idea here is an algorithm whiheither onstruts the partial order mentioned above or onludes that the inputgraph has Dilworth number larger than k. From the point of view of reognizingDilworth number k graphs, this step e�etively �nesses away the bottlenek stepof using matrix multipliation to ompute the partial order.In Setion 4 we ome bak to orders of bounded width. We show that ordersof width at most 3 an be reognized in O(n) time, and orders of width at most4 an be reognized in O(n logn) time. These results are ahieved by assumingthat a linear extension of the order is given and a query about the relation of twoelements is answered in O(1) time. More realistially, if the input is given as anadjaeny matrix, we show that an initial O(n logn) preproessing step an beused to obtain the required linear extension.2 Orders of Bounded WidthThroughout this paper, G = (V;E) denotes a simple undireted graph and Prepresents a partially ordered set (or poset or order). The letter n denotes eitherthe number of verties in a the graph under onsideration or the number of elementsin the poset.We onsider an order P = (X;�) to be a pair onsisting of a ground set V anda reexive, antisymmetri and transitive binary relation � on X. The notationsx � y in P and y � x in P will be used interhangeably. If neither x � y in P nory � x in P we say x and y are inomparable and write xjjy. If x � y and x 6= y, wewrite x < y or y > x. An antihain of P is a set of pairwise inomparable elementsand a hain of P is a set of pairwise omparable elements. The width of P is the



Small Width Orders and Small Dilworth Number Graphs 3size of a maximum antihain and the height of P is the size of a maximum hainin P .Chains and antihains are linked by two lassial duality theorems stated belowin Proposition 1. Interestingly, while the formulation of these theorems is om-pletely symmetri with respet to the exhange of \hain" and \antihain," the�rst is a folklore result admitting an obvious proof, while the seond is a remarkableresult known as Dilworth's Theorem [13℄.Proposition 1 For every �nite order P .(1) The maximum size of a hain in P equals the minimum number of an-tihains needed to over the elements of P .(2) The maximum size of an antihain in P equals the minimum number ofhains needed to over the elements of P .Fulkerson [16℄ gave a proof of Dilworth's Theorem by reduing it to the K�onig-Egerv�ary duality theorem for bipartite graphs. This theorem states that in a bi-partite graph the size of a minimum vertex over equals the size of a maximummathing.
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Fig. 1. (i) An order P , (ii) a hain over for P , and (iii) the orresponding mathing in S(P ). (The boldedges in S(P ) are the edges in the mathing.)Fulkerson's proof uses the split S(P ) of P = (X;�), i.e., the bipartite graphhaving as verties two opies X 0; X 00 of X and an edge (x0; y00) whenever x < y inP . A mathing M in S(P ) orresponds to a partition of P into jXj � jM j hains.To see this, begin with the partition of P into 1{element hains. For eah edge(x0; y00) 2 M hook the tail of the hain ending with x to the beginning of thehain starting with y thus reduing the number of hains by one. (Figure 1 hasan example of an order P , a hain over for P , and the orresponding mathing



4 Felsner, Raghavan and Spinrad Otober 23. 1998in S(P ).) With a vertex over U of S(P ) assoiate the antihain AU = fx 2 X :x0; x00 62 Ug. Using the fat that S(P ) omes from a transitive order relation it anbe shown that jAU j = jXj�jU j when U is a minimal vertex over. (In Figure 1 theantihain assoiated with the minimal vertex over U = fb0; d0; 00; f 00g is the setAU = fa; e; gg.) Dilworth's theorem now follows from the K�onig-Egerv�ary dualitytheorem, i.e., from max jM j = min jU j.By the above onsiderations the alternating path algorithm for bipartite math-ing allows one to ompute the width of P in O(n3) time: an augmenting alternat-ing path an be found with a depth-�rst searh in O(n2) time and at most naugmentations along alternating path are possible. With the Hoproft and Karpalgorithm [20℄ (see also Tarjan's monograph [29℄) this an be improved to O(n5=2).A small improvement to O(n5=2=plogn) has been obtained in [2℄. If one only wantsto ompute the width of the poset rather than �nd the orresponding antihainor hain over, there is a randomized algorithm whih has matrix multipliationrather than mathing as its bottlenek step [7℄.A greedy hain deomposition of an order P = (X;�) is a hain over obtainedby the reursive extration of hains of maximum length from P . More formally,we de�ne P0 = P and reursively de�ne hain Ci to be a maximum hain inPi�1 = (Xi�1;�) and Pi as the order indued on the set Xi = Xi�1 n Ci.Lemma 1. Let P = (X;�) be an n-element order of width at most k. The greedyhain deomposition of P an be omputed in O(kn2) time and onsists of at mostk log en hains.Proof. Clearly, any antihain of an indued suborder P 0 of P is an antihainof P , hene, width(P 0) � width(P ). By Dilworth's theorem this implies that Pian be overed by at most k hains and by the pigeon-hole priniple the longesthain in Pi has size at least jXij=k. Therefore, jXij � n(1 � 1k )i � ne� ik and fori > k loge n the set Xi has size less than one and is thus empty. Hene the greedyhain deomposition onsists of at most k loge n hains.A maximum hain of an order an be found by a modi�ed depth-�rst searh inO(n2) time; this is sometimes given in texts, for example [11℄, as �nding a longestpath in a direted ayli graph. The removal of the hain and all omparabilitiesinvolving elements of the hain an be done within the same time bound. Usingthe onsiderations of the previous paragraph we obtain the reurrene T (n) �T (n(1� 1k))+  �n2 for the time T (n) used by the greedy deomposition algorithmon n-element orders of width at most k. This works out to T (n) � kn2.Theorem 1. Deiding whether width(P ) � k for a given n-element order P andan integer k an be done in O(kn2) time.Proof. The �rst phase of the deision algorithm onsists of a all to the greedyhain deomposition for P . The deomposition algorithm is enhaned by a test for



Small Width Orders and Small Dilworth Number Graphs 5jCij � jXi�1j=k; if this ondition fails the output `width exeeds k' is returned. ByLemma 1 the �rst phase takes no more than O(kn2) time.After P has suessfully passed the �rst phase we have a hain over C1; ::; Crwith r � k logn. If r � k, we are done by Dilworth's theorem. Otherwise, re-all that Pi = (Xi;�) is the order indued by P on the elements overed byCi+1; ::; Cr. The order Pr�k has width at most k as proved by the hain over ofsize k. Corresponding to this hain over is a mathing Mr�k in the split S(Pr�k)with jMr�kj = jXr�kj � k.The work in the seond phase is now done by onsidering the splits S(Pi)bakwards, i.e., starting from the split S(Pr�k) down to the �rst one S(P0). Giventhat Pi is of width at most k we show how to hek whether Pi�1 is of width atmost k in O(jXi�1j2) time.To be preise we use a more omplex assumption. We assume that a mathingMi in the split S(Pi) of Pi with jMij = jXij � k has been onstruted. Considerthe split S(Pi�1) of Pi�1. Sine S(Pi) is an indued subgraph of S(Pi�1) we mayview Mi as a mathing of S(Pi�1). A seond mathing in S(Pi�1) is the mathingNi orresponding to the hain Ci = x1; ::; xj whih mathes eah x0i with x00i+1 fori = 1; ::; j�1. Sine Ci and Xi�1 are disjoint the unionMi[Ni�1 also is a mathingin S(Pi�1); the size of the union is jMi[Ni�1j = jXij�k+jCi�1j�1 = jXi�1j�(k+1).Searh for an augmenting path in S(Pi�1) with respet to the mathing Mi [Ni�1. If this searh is not suessful we onlude from Fulkerson's proof of Dil-worth's theorem that the width of Pi�1 is k + 1 and return an appropriate state-ment. Otherwise, there is an alternating augmenting path whih is added to the oldmathing to obtain the mathing Mi�1 of size jXi�1j � k in S(Pi�1). As mentionedbefore the searh for the augmenting path an be aomplished in 0 � jXi�1j2 time.Using the bound jXij � n(1� 1k)i and summing up the time used in eah stageof the seond phase leads to the reurrene T 0(n) = T 0(jX0j) � T 0(jX1j) + 0 � n2for the time T 0(jXij) used until S(Pi�1) is onsidered. As in Lemma 1, this worksout to T 0(n) � 0kn2. Sine both phases are in O(kn2) the whole algorithm has thesame omplexity.Although the above algorithm is a deision algorithm, it an be modi�ed to�nd a maximum antihain of P = (X;�) or a minimum hain over of P in thelaimed O(kn2) time, if the size of the antihain is at most k. To see this, let M bethe maximum mathing obtained in the algorithm; using the K�onig ConstrutionTehnique [6℄, �nd a minimum vertex over U of S(P ) in time linear in thenumber of edges and verties. Then, as disussed earlier in Fulkerson's proof ofDilworth's Theorem, AU = fx 2 X : x0; x00 62 Ug is a maximum antihain of P . To�nd a minimum hain over, view P as a direted graph and onsider the subgraphobtained by restriting to the edges f(x; y) : (x0; y00) 2Mg. Again, as in Fulkerson'sproof, it is easy to see that this subgraph yields the desired minimum hain over.



6 Felsner, Raghavan and Spinrad Otober 23. 1998Until this point, we have assumed that the input is an order, and that weonly have to determine the width of the order to solve the reognition problem;that is, we have assumed that the input is transitive. The best known algorithmfor verifying that a direted graph is transitive takes time proportional to matrixmultipliation. However, given a set of k hains, it is easy to verify transitivity inO(kn2) time. For eah vertex v, �nd the �rst vertex i on eah hain (inluding thehain ontaining v) suh that v has an edge to i; the input is transitive if and onlyif for every vertex v, N(v) ontains N(i) for eah i. Thus, heking transitivityredues to performing kn neighborhood ontainment operations eah of whih anbe done in O(n) time, giving a total running time of O(kn2).A graph G is a omparability graph if G is the underlying undireted graph ofa poset. The algorithm of this setion an be ombined with results from [22℄ toreognize omparability graphs with no independent set of size k in O(kn2) time.[22℄ ontains an algorithm whih �nds a transitive orientation of a omparabilitygraph in linear time. However, that algorithm will also assign orientations to inputgraphs whih are not omparability graphs. Thus, if we want to test whether G is aomparability graph without any independent set of size > k, we run the transitiveorientation algorithm to get a direted graph G0 and test whether G0 is a widthk poset. Here we annot asume that the input is transitive, so we must make theadditional test of the previous paragraph.3 Graphs of Bounded Dilworth NumberThe open neighborhood of a vertex v in a graph, written N(v), is the set of neigh-bors of v in the graph, and the losed neighborhood of v, written N [v℄, is the setN(v) [ fvg. Vertex v dominates vertex w in G if N(w) � N [v℄. Two verties aretwins if they have the same open neighborhoods. The Dilworth number of G is theardinality of the largest set S of verties in G suh that no vertex in S dominatesanother vertex in S.There is a simple relationship between Dilworth number of a graph and posetwidth. For any graph G, we reate a orresponding neighborhood ontainment (di-reted) graph G0 in whih x has an edge to y if and only if x dominates y. Byde�nition, the Dilworth number of G is the size of the maximum independent setin G0. Note that twins in G annot be in an independent set of G0. Therefore,one may as well onsider the redued (undireted) graph H of G whih has theset of equivalene lasses of twins of G as verties and there is an edge betweenequivalene lasses [x℄ and [y℄ if and only if there is an edge between x and y in G.Observe that H 0, the neighborhood ontainment graph of H, is a partially orderedset using the relation x � y whenever there is an edge from x to y and that theDilworth number of G is preisely the width of H 0. The fat that the neighborhoodontainment graph H 0 is a poset seems to have �rst been notied in the ontext ofDilworth number in [19℄.



Small Width Orders and Small Dilworth Number Graphs 7Using this observation, the Dilworth number of a graph an be omputed inpolynomial time. First, the redued graph an be obtained in linear time given anadjaeny list as input. This seems to be a folklore result; one algorithm is givenin [25℄. Next, the neighborhood ontainment of the redued graph an learly beonstruted in O(n3) time. This an be improved to O(MM) time, where MM isthe time to multiply two n by n matries. The square of the adjaeny matrix hasthe quantity jN(x)\N(y)j in the (x; y) entry of the produt for all distint x andy. Hene, x dominates y in G preisely when the degree of y in G is equal to the(x; y) entry in the square of the adjaeny matrix of G if x and y are nonadjaent,and when x and y are adjaent x dominates y if the (x; y) entry of the square of theadjaeny matrix is equal to the degree of y - 1. The urrent best time bound formatrix multipliation, due to Coppersmith and Winograd [12℄, is O(n2:376:::). Forpratial purposes, the matrix multipliation bounds of O( n3log n) [1℄ and O(n2:81:::)[28℄ given by earlier algorithms may be more appropriate. Finally, the Dilworthnumber an be omputed by �nding the width of the neighborhood ontainmentof the redued graph using network ow tehniques or the algorithm given in theprevious setion.The main result of this setion is a proof that we an do better for graphs ofsmall Dilworth number.Theorem 2. Deiding whether the Dilworth number of an n-vertex graph G is atmost k an be done in O(k2n2) time.Proof. We start by obtaining the redued graph G0 from the input graph G. Asmentioned earlier, this an be done in O(n2). From the disussion above and usingthe O(kn2) algorithm of the previous setion, it suÆes to show how to onstrutthe neighborhood ontainment poset of G0 in O(k2n2) time. Stritly speaking, itsuÆes to desribe a proedure whih will either orretly onlude that G0 hasDilworth number larger than k or onstrut the neighborhood ontainment graphin the required time. Indeed, this is what we now desribe.Our algorithm uses a reursive approah for the alulation of the Dilworthnumber. Partition the verties of G into two sets X and Y of nearly equal size, i.e.,jXj and jY j may di�er by at most 1. Reursively, deide that the subgraphs in-dued by either X or Y has Dilworth number greater than k and stop, or onludethat both subgraphs have Dilworth number at most k and obtain both their neigh-borhood ontainment posets. In the latter ase, use the algorithm of the previoussetion to ompute minimum hain overs CX and CY respetively of eah poset.We now show how to use these two hain overs and the orresponding two posetsto ompute eÆiently the neighborhood ontainment poset of the entire graph G.First, we �nd for eah vertex v of G and eah hain C in CX [ CY , the vertexpv;C on C suh that v is a neighbor of every vertex at or above pv;C on C, andis a nonneighbor of everything below. Taking advantage of the total order in eah



8 Felsner, Raghavan and Spinrad Otober 23. 1998hain, for a given hain C and a given vertex v the vertex pv;C an be found inO(log jCj) time by binary searh.Next, we ompute the relations between elements in two hains C 2 CX andC 0 2 CY . This is done in two rounds. First, we determine relations of the formx < y for x 2 C and y 2 C 0; in the seond round the role ofX and Y are exhangedto determine the relations y < x. Initially, de�ne for eah vertex x on C a vertexhighest(x; C; C 0) of C 0 as the highest vertex y suh that there exists some vertexv for whih y = pv;C0 and pv;C is at or below x on C. Now if x0 is the desendantof x in C, then highest(x; C; C 0) is the higher of highest(x0; C; C 0) and the highestpoint pv;C0 among verties v suh that x = pv;C . Sine eah vertex v marks exatlyone vertex as pv;C , we an alulate highest(x; C; C 0) for all verties x on C in O(n)time. In other words, the total time to alulate highest(x; C; C 0) for all vertiesx on C over all pairs of hains C 2 CX and C 0 2 CY is O(k2n).Finally, note that for eah vertex x on C 2 CX , N(x) is ontained in theneighborhood of every vertex at or above highest(x; C; C 0) on C 0 2 CY , and is notontained in the neighborhood of any vertex below. Therefore, one the highestfuntions have been omputed, one an derive all the neighborhood ontainmentrelationships between pairs of verties x 2 X and y 2 Y .To analyze the time omplexity of this reursive proedure, we need to distin-guish between two di�erent variables|n, the number of verties in the entire inputgraph, and r, the number of verties in the subgraph of the urrent reursive all.Then the time omplexity T (r) of any reursive all to the deision proedure fora graph on r verties is given by the reurrene relation:T (r) = 2T (r=2) + O(kr2) + O(nk log r) + O(k2n) + O(r2)Here the term O(kr2) orresponds to the time for using the algorithm of theprevious setion to ompute the hain overs given the posets, the term O(nk log r)orresponds to the time for �nding pv;C for eah vertex v and eah hain C, theterm O(k2n) orresponds to the alulation of the highest(x; C; C 0) funtion asexplained above, and the term O(r2) orresponds to the �nal alulation of all theneighborhood ontainment relationships given this funtion.A routine analysis of this reurrene relation leads to the solution T (r) =O(kr2) +O(nkr) +O(k2nr), whene for an initial value of r = n we get an overalltime of O(k2n2) for deiding if an n-vertex graph has Dilworth number k.4 Very Fast Reognition of Orders of Width � 4In this setion of the paper, we develop sublinear algorithms to reognize posetsof width k for k � 4. Note that we must assume that we are given a true poset asinput; if we must verify that every edge implied by transitivity is in the input, ittakes 
(n2) time to reognize even posets of width 1.



Small Width Orders and Small Dilworth Number Graphs 9The approah for reognizing orders of width at most k (k � 4), i.e., orderswith no antihain of size k + 1, presented here makes impliit use of a furtherimportant Theorem of R.P. Dilworth.Proposition 2 (Dilworth 1958) The antihains of maximum size of P form adistributive sublattie of the lattie of antihains of P .The order relation of the lattie of maximum antihains is given by A � B formaximum antihains A;B of P i� for all a 2 A there is a b 2 B with a � b in P .We will use the notation Hma(P ) to denote the highest maximum antihain of P .In other words, Hma(P ) is the unique maximal element of the lattie of maximumantihains of P .The idea for the algorithms for reognizing orders of width 2,3 and 4 is to usea linear extension L of P and insert the elements in the order given by L into adata struture that maintains a tower of antihains of dereasing sizes. Let Q bethe order indued by the �rst t elements of L. The invariant struture assoiatedto Q = Q0 is reursively de�ned by the following rule:Given Qi let Ai = Hma(Qi) and Qi+1 = fx 2 Qi : x > a for some a 2 Aig.Sine width(Qi+1) < width(Qi) the order Qk is empty, when k is the width ofQ. While inserting the t + 1st element we have to update the invariant struture.This is done by examining a list of andidate sets for the new highest antihains.For width two this is quite easy. For width 3 and 4 it gets inreasingly involvedand we will have to introdue some additional bookkeeping. It is quite possiblethat the approah an be generalized to higher values of k = width(P ). However,the ase k = 5 already seems to require an unpleasantly involved ase analysis.Theorem 3. Given an order P with n elements and a linear extension L of P ,there is a algorithm that deides width(P ) � k for k = 2; 3 in O(n) time. Fork = 4 there is an algorithm for the deision problem running in O(n logn) time.In the next three subsetions we desribe the algorithms proving the theorem.Notationally it will be onvenient to work with a vetor (B1; B2; ::; Bk) of antihainswith Bj = ; or jBjj = j suh that the non-empty antihains in this vetor areexatly the antihains Ai = Hma(Qi) de�ned above.The assumption that a linear extension L of P is given as part of the inputan be removed if we are willing to spend O(n logn) time to either �nd suh anextension or show that P has width > k, as desribed below.Construt a omplete binary tree T with root r, whih has elements of Pas leaves. Maintain at eah internal node i the set S(i) of minimal elements ofthe subposet indued by the elements assigned to the leaves below i; note thatjS(i)j � k or P has width > k. We ompute the initial values of S(i) during apostorder traversal of T ; this an be done using k2 omparisons at eah internalnode, and thus takes O(k2n) time. We then hoose any element x from S(r) to



10 Felsner, Raghavan and Spinrad Otober 23. 1998output next in the linear extension L. Delete x from our tree; this involves repeatingomparisons only along the path from x to r in T . Sine eah element an be deletedin O(k2 logn) time, L is found in O(k2n logn) time for a width k poset.Note that if we are not given a linear extension as part of the input, insteadbeing given aess to an adjaeny matrix, �nding a hain deomposition requires
(n logn) time, sine if the input is a totally ordered set we must produe a sortedsequene using only omparisons between elements.4.1 Width TwoLet L = x1; x2; : : : ; xn be the linear extension of P whih is assumed to be givenas part of the input. Let xjjjxj+1 be the �rst inomparable adjaent pair in L. Thealgorithm is initialized with B2  fxj; xj+1g, B1  ;.When inserting a new element x = xt we �rst ompare x to the elements of B2.If x is inomparable to both we have deteted a three element antihain and stop.The remainder of the algorithm is broken up into two ases.In the �rst ase we assume B1 = fag 6= ;. If x > a then B1  fxg and we aredone, otherwise, if xjja we set B2  fa; xg and B1  ;.The more omplex ase is when B1 = ;. Let B2 = fb; g here we have threeases.(1) If x > b and x >  then B1  fxg.(2) If x > b and xjj then B2  fx; g.(3) If xjjb and x >  then B2  fb; xg.Sine, it is easy to extend the algorithm suh that a hain overing by two hainsis maintained the orretness of the algorithm is obtained by Dilworth's theorem(Proposition 1(2)). We need at most three omparisons to insert a new element,hene, the omplexity of the algorithm is O(n).4.2 Width ThreeThe initialization of the algorithm for width three is as in the width two asewith the addition that B3  ; has to be initialized. When the new element x isomparable to some element of B1 or B2 we reuse the width two algorithm andonly have to modify B1 and/or B2.For the remaining disussion assume that x is inomparable to all elements ofB1 [B2. We desribe the algorithm as a list of ases with the assumption that thealgorithm piks the �rst appliable ase.Case 0. B3 6= ; and x is inomparable to all elements of B3: We have deteted a4-antihain and stop.



Small Width Orders and Small Dilworth Number Graphs 11Case 1. B2 6= ;: The update is done by the two assignments B3  B2 + x andB2  ;.For the remainder of the width 3 reognition algorithm, B3 = fy1; y2; y3g andB2 = ;.Case 2. B1 = ;: Compare x to the elements of B3. If x is omparable to exatlyone element y 2 B3 then B3  B3 � y + x, otherwise, leave B3 as it is and letB1  fxg.Now suppose that B1 = fag. The set of elements above B3 is a hain C =(z1 < z2 < :: < zl) with zl = a. Sine B3 is the highest 3-antihain in the orderindued by the elements inserted before x the element z1 is greater then at leasttwo elements of B3. We assume that y1 < z1 and y2 < z1.Case 3. In this ase we onsider 3-antihains fx; zi; y3g. The andidate for zi isthe highest element in C whih is inomparable to y3. If z1 > y3 we proeed withase 4. Otherwise the andidate zi an be found by omparing the elements ofhain C one by one to y3. This may ause a non-onstant ost for the insertionof x, however, all but the last of the elements will be removed from hain C. Wewill harge the ost of these omparisons to the elements of the hain. When zi isfound we have two subases.Subase 3a. xjjzi: Let B3  fx; zi; y3g and if i = l also B1  ;.Subase 3b. x > zi: Sine this implies that x is greater than two elements of B3we know that x is not ontained in any 3-antihain and we let B2  fx; ag andB1  ;.Case 4. Element x is greater then exatly one element of B3: In this ase y3 < xor z1 is greater than all elements of B3 and we may rename them so that x > y3.Assign B3  fy1; y2; xg.Case 5. In this last ase x is not ontained in any 3-antihain and we safely letB2  fx; ag and B1  ;.Taking into aount the amortization of ost in Case 3, the running time of thealgorithm is obviously in O(n). As onsequene of the algorithms for reognitionof orders of width 2 and 3 we obtain alternative algorithms for reognizing graphsof Dilworth number 2 and 3 whih are as fast as the algorithm given in Setion 3.Sine our O(n) algorithms only make a linear number of omparisons betweenelements and an domination-omparison takes O(n) we obtain a time omplexityof O(n2). It only remains to make sure that we an generate a linear extension ofthe domination order of a graph in O(n2) time. Here we an avoid an n2 bottlenekby simply using the ordering of the verties by degree.Theorem 4. Graphs of Dilworth number at most 3 an be reognized in O(n2)time.



12 Felsner, Raghavan and Spinrad Otober 23. 19984.3 Width FourThe initialization of the algorithm for width four di�ers from the width three aseonly in that B4  ; has to be initialized. When the new element x is omparableto some element of B1, B2 or B3 we reuse the width three algorithm and onlyhave to modify a subset of B1; B2; B3. However, as an additional feature we haveto maintain a hain over of the width two order on the top. We assume that thisover C1; C2 has the property that every element in C2 is inomparable to someelement in C1; note that suh a over an be produed by the reognition algorithmfor width two.For the remaining disussion assume that x is inomparable to all elements ofB1 [ B2 [ B3. Again, we desribe the algorithm as a list of ases suh that thealgorithm piks the �rst appliable ase.Case 0. B4 6= ; and x is inomparable to all elements of B4: We have deteted a5-antihain and stop.Case 1. B3 6= ;: Set B4  B3 + x and B3  ;.Heneforth B4 = fy1; y2; y3; y4g and B3 = ;.Case 2. B2 = ; and B1 = ;: Compare x to the elements of B4. If x is omparableto exatly one element y 2 B4 then B4  B4 � y + x, otherwise, leave B4 as it isand let B1  fxg.Case 3. B2 = ; and B1 = fag: The set of elements above B4 is a hain C =(z1 < z2 < :: < zl) with zl = a. Sine B4 is the highest 4-antihain in the orderindued by the elements inserted before x the element z1 is greater then at leasttwo elements of B4. We assume that y1 < z1 and y2 < z1.Subase 3a. In this ase we onsider 4-antihains fx; zi; y3; y4g. The andidate forzi is the highest element in C whih is inomparable to y3 and y4. If z1 is greaterthan one of y3 and y4 we an skip to the next ase. Otherwise, let h(yj) denote thehighest element of C inomparable to yj for j = 3; 4. Let z be the smaller of h(y3)and h(y4). If zjjx then B4  fx; z; y3; y4g and if i = l also B1  ;.Subase 3b. Element x is greater then exatly one element y of B4: Assign B4  B4 + x� y.Subase 3. In this last ase x is not ontained in any 4-antihain and we safelylet B2  fx; ag and B1  ;.Case 4. B2 = fa; bg:Let C1, C2 be a hain partition of the set of elements above B4. Reall thatwe assume that every element in C2 is inomparable to some element in C1. Fory 2 B4 let hi(y) for i = 1; 2 be the highest elements of Ci inomparable to y. If yis below all elements of Ci we de�ne hi(y) = y. Sine B4 is the highest maximumantihain the least element of eah of C1; C2 is already omparable to at least two



Small Width Orders and Small Dilworth Number Graphs 13of the elements of B4. We may assume that every element of C1 is greater than y1and y2 and every element of C2 is greater than y3.Subase 4a. There is a 4-antihain onsisting of x, elements i 2 Ci for i = 1; 2and y4. Suh a 4-antihain an only exist if y4 is inomparable to x and h1(y4) 6= y4and h2(y4) 6= y4. If x is bigger then either of h1(y4) and h2(y4) then there is noantihain of this type. Assume that x is inomparable to both.If h1(y4)jjh2(y4) then B4  fx; h1(y4); h2(y4); y4g.If h2(y4) < h1(y4) let z be the highest element of C1 inomparable to h2(y4). Ifz < x then there is no antihain of this type. If zjjx let B4  fx; z; h2(y4); y4g.If h1(y4) < h2(y4) the situation is more omplex. If there are elements in C2inomparable to h1(y4) let z be the highest suh element. If z < x then there is noantihain of this type. If zjjx let B4  fx; h1(y4); z; y4g.If h1(y4) < h2(y4) and every element of C2 is omparable to h1(y4) let z2be the highest element of C2 below h1(y4) and let z1 be the highest element of C1inomparable to z2. If z1 and z2 are both inomparable to x let B4  fx; z1; z2; y4g.Subase 4b. There is a 4-antihain onsisting of x, an element  2 C1 [ C2 andtwo elements from B4. This requires that x is inomparable to both of y3 and y4. If 2 C1 then h1(y3) 6= y3 and h1(y4) 6= y4. Let  minfh1(y3); h1(y4)g, if xjj thenB4  fx; ; y3; y4g. The ase where  2 C2 is idential up to hanges in indies.In the last two subases we have ignored the update of B2 and B1. This updateis easily done by onsidering the possible relations of the elements in the new B4and a; b.Subase 4. Element x is greater then exatly one element of B4: Assign B4  B4 � y + x.Subase 4d. In this last ase x is not ontained in any 4-antihain and we safelylet B3  fx; a; bg and B2  ;.The algorithm requires a proedure that given a hain C and an element yreturns the highest element of C inomparable to y. With binary searh this anbe aomplished in O(log jCj) time. During insertion of an element this proedureis only alled a onstant (<10) number of times. Beside these alls the insertion isin O(1) per element. This gives an overall omplexity of O(n logn).5 Conluding RemarksWe have shown that it is possible to avoid the bottleneks of mathing and matrixmultipliation in reognizing small width partial orders and graphs with smallDilworth number. We have two di�erent tehniques (and time omplexities) forreognizing small width partial orders|one tehnique an be used only for partialorders of width at most 4 and the other an be used for larger values of width. Itwould be interesting to see if these two tehniques an somehow be ombined toyield a faster algorithm.



14 Felsner, Raghavan and Spinrad Otober 23. 1998Referenes1. V.L. Arlazarov, E.A. Dini, M.A. Kronrod and I.A. Faradzev. On eonomial onstrution of thetransitive losure of a direted graph. Soviet Math Doklady, 11, 1209{1210, 1970.2. H. Alt, N. Blum, K. Mehlhorn and M. Paul. Computing a maximum ardinality mathing in abipartite graph in time O(n1:5(m= log n)0:5). Inf. Pro. Letters, 37, 237{240, 1991.3. M.D. Atkinson, H.W. Chang. Linear extensions of posets of bounded width. Congressus Numeran-tium, 52, 21{35, 1986.4. C. Benzaken, P.L. Hammer, and D. de Werra. Threshold haraterization of graphs with Dilworthnumber 2. Journal of Graph Theory, 9), 245{267, 1985.5. C. Benzaken, P.L. Hammer, and D. de Werra. Split graphs of Dilworth number two. Disrete Math55), 123{128, 1985.6. J.A. Bondy, U.S.R. Murty. Graph theory with appliations. Elsevier, New York/Mamillan, London,1976.7. J. Cheriyan. Randomized O(M(jV j)) algorithms for problems in mathing theory. SIAM Journal onComputing 26, 1635{1655, 1997.8. V. Chv�atal and P.L. Hammer. Set-paking and threshold graphs. University of Waterloo ResearhReport CORR73-21, 1973.9. V. Chv�atal and P.L. Hammer. Aggregation of inequalities in integer programming. Annals of DisreteMath 1, 145{162, 1977.10. C.J. Colbourn, W.R. Pulleyblank. Minimizing setups in ordered sets of �xed width. Order 1, 225{228,1985.11. T.H. Cormen, C.E. Leiserson and R.L. Rivest. Introdution to algorithms. MIT Press, 1990.12. D. Coppersmith and S. Winograd. Matrix multipliation via arithmeti progressions. J. of Symb.Comput, 9, 251{280, 1990.13. R.P. Dilworth. A deomposition theorem for partially ordered sets. Ann. Math., 51, 161{166, 1950.14. R.P. Dilworth. Some ombinatorial problems on partially ordered sets. In Combinatorial Analysis,Pro. Sympos. appl. Math. 10, Bellman and Hall eds., 85{90, 1960.15. S. F�oldes and P.L. Hammer. The Dilworth number of a graph. Annals of Disrete Math 2, 211{219,1978.16. D.R. Fulkerson. Note on Dilworth's embedding theorem for partially ordered sets. Pro. Amer. Math.So., 7, 701{702, 1956.17. M.C. Golumbi. Algorithmi graph theory and perfet graphs. Aademi Press, New York, 1980.18. I.M. Gorgos. Charaterization of quasitriangulated graphs. Tehnial Report University of Kishinev,1982.19. C.T. Ho�ang and N.V.R. Mahadev. A note on perfet orders. Disrete Math, 74, 77{84, 1989.20. J.E. Hoproft and R.M. Karp. A n5=2 algorithm for maximum mathings in bipartite graphs. SIAMJ. Comput., 2, 225{231, 1973.21. N.V.R. Mahadev and U.N. Peled. Threshold graphs and related topis. Annals of Disrete Math,56, 1995.22. R. MConnell and J. Spinrad. Linear time transitive orientation. ACM-SIAM Symposium on DisreteAlgorithms, 19{25, 1997.23. C.H. Pappadimitriou and M. Yannakakis. Sheduling interval ordered tasks. SIAM Journal on Com-puting, 8, 405{409, 1979.24. C. Payan. Perfetness and Dilworth number. Disrete Mathematis, 44, 229{230, 1983.25. V. Raghavan and A. Tripathi. Improved diagnosability algorithms. IEEE Trans. on Comput., 2,143{153, 1991.26. J.B. Sidney and G. Steiner. Optimal sequening by modular deomposition: polynomial algorithms.Operations Researh, 34, 606{612, 1986.27. G. Steiner. Polynomial algorithms to ount linear extensions in ertain posets. Congressus Numer-antium, 75, 71{90, 1990.28. V. Strassen. Gaussian elimination is not optimal. Numerishe Mathematik, 13, 354{356, 1969.29. R.E. Tarjan. Data strutures and network algorithms. CBMS Series 44, SIAM, Philadelphia, 1983.30. P. van Emde Boas. Preserving order in a forest in less than logarithmi time and linear spae.Information Proessing Letters, 6, 80{82, 1977.


