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Abstract

In this paper we study connections between planar graphs, Schnyder woods, and or-
thogonal surfaces. Schnyder woods and the face counting approach have important ap-
plications in graph drawing and the dimension theory of orders. Orthogonal surfaces
explain connections between these seemingly unrelated notions. We use these connections
for an intuitive proof of the Brightwell-Trotter Theorem which says, that the face lattice
of a 3-polytope minus one face has order dimension three. Our proof yields a linear time
algorithm for the construction of the three linear orders that realize the face lattice.

Coplanar orthogonal surfaces are in correspondence with a large class of convex straight
line drawings of 3-connected planar graphs. We show that Schnyder’s face counting ap-
proach with weighted faces can be used to construct all coplanar orthogonal surfaces and
hence the corresponding drawings. Appropriate weights are computable in linear time.

1 Introduction

In two fundamental papers [17, 18] Schnyder developed a theory of Schnyder labelings and
Schnyder woods for planar triangulations. The second paper deals with grid drawings of
planar graphs and contains the first of numerous applications of Schnyder woods in the area
of graph drawing. For example, the results in [3, 15, 2] use Schnyder woods, and more
references can be found in [8].

In [17], Schnyder presented a characterization of planar graphs in terms of order dimension.
We briefly introduce the terminology needed for the statement of this result: With a graph
G = (V, E), associate an order PG of height two on the set V ∪E. The order relation is defined
by setting x < e in PG if x ∈ V , e ∈ E and x ∈ e. The order PG is called the incidence order
of G.

The dimension of an order P is the least k such that P admits an order preserving
embedding in R

k equipped with the dominance order. In the dominance order we have that
u ≤ v if and only if ui ≤ vi holds for each component i. For more on order dimension
see [19, 20, 4, 9].

Theorem 1 (Schnyder’s Theorem) A graph is planar if and only if the dimension of its
incidence order is at most three.

In the same paper Schnyder also shows that the incidence poset of vertices, edges and
faces of a planar triangulation has dimension four, but the dimension drops to three upon
removal of a face. Brightwell and Trotter [5] extended Schnyder’s Theorem to the general
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case of embedded planar multigraphs. The main building block for the proof is the case of
3-connected planar graphs.

Theorem 2 (Brightwell-Trotter Theorem) The incidence order of the vertices, edges
and faces of a 3-connected planar graph G has dimension four. Moreover, if F is a face
of G, then the incidence order of the vertices, edges and all faces of G except F has dimen-
sion three.

Note that, by Steinitz’s Theorem, the incidence poset of vertices, edges and faces of a 3-
connected planar graph is just the face lattice of the corresponding 3-polytope with 0 and 1
removed.

The original proof of Theorem 2 in [4] was long and technical. Felsner [9] gave a simpler
proof. In [10] Felsner showed that every Schnyder wood of a 3-connected planar graph is
supported by a rigid orthogonal surface (Theorem 7). An orthogonal surface is called rigid
if it supports a unique graph, see Figure 10 (b). By a result of Miller [16], Felsner’s result
implies Theorem 2. In Section 3 we present an intuitive proof of Theorem 7, that leads to a
simple linear time algorithm for the computation of the rigid surface. The idea is to start with
the orthogonal surface S obtained from a Schnyder wood S by face counting. If this surface
is non-rigid it is possible to make some local adjustments at a non-rigid edge by moving some
of the flats up or down in the direction of their normal vector, see Figure 12. The nontrivial
point is to show that these adjustments can be combined in such a way that the whole surface
becomes rigid.

The rest of the paper is organized as follows. In Section 2 we give definitions and a
brief introduction into the structural properties of Schnyder woods and orthogonal surfaces
which are required for the discussion in the later parts of this paper. For a more detailed
introduction to the topic we refer the reader to [11].

As mentioned above, Section 3 deals with rigid orthogonal surfaces. An orthogonal surface
is coplanar if all its generating minima, i.e. the points on the surface which are minimal with
respect to the dominance order in R

3, lie in the same plane. Section 4.1 is concerned with
these coplanar surfaces. The interest in this class originates from their close connection to
planar straight line drawings. Connecting the minima of a coplanar surface by straight line
segments yields a plane and convex straight line drawing of the graph. Similar approaches
for non-coplanar surfaces fail as the drawings need not be crossing-free. We show that all
coplanar surfaces supporting S can be obtained using Schnyder’s original construction with
appropriately weighted faces. An example of a Schnyder wood which has no supporting
orthogonal surface which is simultaneously rigid and coplanar is the topic of Section 4.2. In
Section 5 we discuss further representations of orthogonal surfaces and mention some open
problems.

2 Basics on Schnyder Woods and Orthogonal Surfaces

All the proofs omitted in this section can be found in [11, 10, 9]. A planar map M is a simple
planar graph G together with a fixed planar embedding of G in the plane. Let a1, a2, a3

be three vertices occurring in clockwise order on the outer face of M . A suspension Mσ is
obtained by attaching a half-edge that reaches into the outer face to each of these special
vertices.
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Let Mσ be a suspended 3-connected planar map. A Schnyder labeling with respect
to a1, a2, a3 is a labeling of the angles of Mσ with the labels 1, 2, 3 (alternatively: red, green,
blue) satisfying three rules1:

(A1) The two angles at the half-edge of the special vertex ai have labels i + 1 and i − 1 in
clockwise order.

(A2) Rule of vertices: The labels of the angles at each vertex form, in clockwise order,
nonempty intervals of 1’s, 2’s, and 3’s.

(A3) Rule of faces: The labels of the angles at each face form, in clockwise order, a nonempty
interval of 1’s, a nonempty interval of 2’s and a nonempty interval of 3’s. At the outer
face the same is true in counterclockwise order.

1
1

1

1 1
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2
3

3

3

3
3

Figure 1: Rule of vertices and rule of faces

Let Mσ be a suspended 3-connected planar map. A Schnyder wood rooted at a1, a2, a3 is
an orientation and coloring of the edges of Mσ with the colors 1, 2, 3 satisfying the following
rules.

(W1) Every edge e is oriented in one direction or in two opposite directions. The directions
of edges are colored such that if e is bidirected the two directions have distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.

(W3) Every vertex v has out-degree one in each color. The edges e1, e2, e3 leaving v in colors
1, 2, 3 occur in clockwise order. Each edge entering v in color i enters v in the clockwise
sector from ei+1 to ei−1.

2
3

32
2

2

1

3
1

Figure 2: Edge orientations and edge colors at a vertex.

(W4) There is no interior face the boundary of which is a directed monochromatic cycle.

The next theorem shows that Schnyder labelings and Schnyder woods are, essentially, the
same.

1We assume a cyclic structure on the labels so that i + 1 and i − 1 are always defined.
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Theorem 3 Let Mσ be a suspended 3-connected planar map. The correspondence indicated
in Figure 3 is a bijection between the Schnyder labelings (axioms A1, A2, A3) and Schnyder
woods (axioms W1, W2, W3, W4) of Mσ.

ii

i

i − 1

i + 1

i

i + 1 i − 1

i i − 1 i + 1

Figure 3: The correspondence between angle labels at an edge and the coloring and orientation
of the edge.

Henceforth, when working with a Schnyder wood or a Schnyder labeling we may be sloppy
and refer to properties of the corresponding other structure. We will also refer to the Schnyder
wood of a planar map without choosing a suspension explicitly.

Let M be a planar map with a Schnyder wood. Let Ti denote the digraph induced by the
directed edges of color i. Every inner vertex has out-degree one in Ti. Therefore, every v is
the starting vertex of a unique i-path Pi(v) in Ti. The next lemma implies that each of the
digraphs Ti is acyclic, and hence the Pi(v) are simple paths.

Lemma 1 Let M be a planar map with a Schnyder wood (T1, T2, T3). Let T−1
i be obtained

by reversing all edges from Ti. The digraph Di = Ti ∪ T−1
i−1 ∪ T−1

i+1 is acyclic for i = 1, 2, 3.

A proof can be found in [9] or [11].

By the rule of vertices (W3) every vertex has out-degree one in Ti. Disregarding the
half-edge at ai, this makes ai the unique sink of Ti. Since Ti is acyclic and has n − 1 edges
we obtain:

Corollary 1 Ti is a directed tree rooted at ai, for i = 1, 2, 3.

The i-path Pi(v) of a vertex v is the unique path in Ti from v to the root ai. Lemma 1
implies that for i 6= j the paths Pi(v) and Pj(v) have v as the only common vertex. Therefore,
P1(v), P2(v), P3(v) divide M into three regions R1(v), R2(v), and R3(v), where Ri(v) denotes
the region bounded by and including the two paths Pi−1(v) and Pi+1(v), see Figure 4.

Lemma 2 If u and v are vertices with u ∈ Ri(v), then Ri(u) ⊆ Ri(v). The inclusion is
proper if u ∈ Ri(v) \ (Pi−1(v) ∪ Pi+1(v)).

Lemma 3 If the directed edge e = (u, v) is colored i, then Ri(u) ⊂ Ri(v), Ri−1(u) ⊇ Ri−1(v)
and Ri+1(u) ⊇ Ri+1(v). At least one of the latter two inclusions is proper.

These lemmas are crucial for the applications of the face-count vector (v1, v2, v3) of a
vertex v with respect to a Schnyder wood which is defined by

vi = the number of faces of M contained in region Ri(v).
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Figure 4: A Schnyder wood and the regions of the vertex v. The small numbers correspond
to edge colors.

Later we will use this vector to construct orthogonal surfaces supporting a given Schnyder
wood. The classic application is in graph drawing. Let three non-collinear points α1, α2,
and α3 in the plane be given. These points and the region vectors can be used to define an
embedding of M in the plane. A vertex v is mapped to the point

µ : v → v1α1 + v2α2 + v3α3,

and an edge {u, v} is mapped by µ to the line segment connecting µ(u) and µ(v).

Theorem 4 The drawing µ(M) of a 3-connected plane map is convex and plane, i.e., the
boundary of every face is a convex polygon.

We will need another tool from the theory of Schnyder woods, the edge split. We start
with a lemma from [3] about the generic appearance of a face in a Schnyder wood.

Lemma 4 Given a Schnyder wood S let F be an interior face. The edges on the boundary
of F can be partitioned into six sets occurring in clockwise order around F . As illustrated
in Figure 5, the sets are defined as follows (in case of bidirected edges the clockwise color is
noted first):

• One edge from the set {red-cw, blue-ccw, red-blue}

• Any number (possibly 0) of edges green-blue

• One edge from the set {green-cw, red-ccw, green-red}

• Any number of edges blue-red

• One edge from the set {blue-cw, green-ccw, blue-green}

• Any number of edges red-green

The three edges from the first, third, and fifth set are the special edges of the face.
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Figure 5: The generic appearance of a face as described by Lemma 4 and two concrete
instances. The small numbers correspond to edge colors.

Sketch of the proof. Recall the rule of faces (A3) for the Schnyder labeling. Apply the rule
(Figure 3) for converting a Schnyder labeling into a Schnyder wood. 2

Given a Schnyder wood S let e be a bidirected edge such that one of its directions is
colored j and F be the incident face to which e is not special. Choose a vertex w of F such
that the angle of w in F is labeled j. To split e towards w is to divide the bidirected edge
e into two uni-directed copies and to move the head of the j colored copy to connect to w.
Figure 6 illustrates the operation.
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Figure 6: The two possible types of splits of a non-special bidirected red-green edge in F . The
small numbers correspond to angle labels.

Lemma 5 Let S be a Schnyder wood and e a bidirected edge of S. Then, splitting e yields a
Schnyder wood on the resulting graph.

Proof. Figure 6 shows the angle labelings. It is obvious that the labels at the angles of u, v,
w, F1 and F2 obey the rule of vertices (A2) and of faces (A3), respectively. Note that (w, v)
and (w′, u) may also be special edges of F . 2

2.1 Orthogonal surfaces

Consider R
3 equipped with the dominance order. We write u∨v and u∧v to denote the join

(component-wise maximum) and meet (component-wise minimum) of u, v ∈ R
3. Let V ⊂ R

3

be an antichain, i.e., a set of pairwise incomparable elements. The filter generated by V in
R

3 is the set
〈V〉 = {α ∈ R

3 | α ≥ v for some v ∈ V}.
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Figure 7: Part (a): orthogonal surface SV generated by v1 = (7, 0, 0), v2 = (0, 6, 0), v3 =
(0, 0, 6), v4 = (5, 3, 0), v5 = (5,−1, 5), v6 = (4, 1, 2), v7 = (4, 2, 1), v8 = (2, 4, 2) and v9 =
(1, 2, 4). Part (b): surface generated by u1 = (5, 0, 0), u2 = (0, 5, 0), u3 = (0, 0, 5), u4 =
(4, 3, 2), u5 = (4, 4, 1).

The boundary SV of 〈V〉 is the orthogonal surface generated by V, Figures 7 (a) and (b) show
examples.

If u, v ∈ V ⊂ SV and u∨v ∈ SV , then SV contains the union of the two line segments
joining u and v to u∨v; we refer to such arcs as elbow geodesics in SV . The orthogonal arc
of v ∈ V in direction of the standard basis vector ei is the piece of the ray v + λei, λ ≥ 0,
which follows a crease of SV . Clearly every vector v ∈ V has exactly three orthogonal arcs,
one parallel to each coordinate axis. Some orthogonal arcs are unbounded while others are
bounded. Observe that u∨v shares two coordinates with at least one (and perhaps both) of
u and v, so every elbow geodesic contains at least one bounded orthogonal arc.

Let M be a planar map. A drawing M →֒ SV is a geodesic embedding of M into SV , if
the following axioms are satisfied:

(G1) Vertex axiom. There is a bijection between the vertices of M and V.

(G2) Elbow geodesic axiom. Every edge of M is an elbow geodesic in SV , and every bounded
orthogonal arc in SV is part of an edge of M .

(G3) There are no crossing edges in the embedding of M on SV .

An orthogonal surface SV ⊂ R
3 is called axial if contains exactly three unbounded orthogonal

arcs. The example from Figure 7 (a) is not axial, however, removing the point v5 from the set
V leads to an axial surface, see Figure 8. These definitions have been proposed by Miller [16]
who, essentially, also observed the following theorem.

Theorem 5 Let V be axial and M →֒ SV be a geodesic embedding, then the embedding
induces a Schnyder wood of Mσ, which is suspended at the unbounded orthogonal rays. Con-
versely, every Schnyder wood of a suspended map Mσ induces an axial geodesic embedding of
Mσ.

Sketch of the proof. Let M →֒ SV be an axial geodesic embedding. The edges of M are
colored with the direction of the orthogonal arc contained in the edge: Arcs parallel to the
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xi-axis are colored i. The orientation of an edge is chosen in accordance with the axis used
to color the edge, Figure 8 shows an example. It can be verified that this rule for coloring
and orienting edges yields a Schnyder wood on Mσ.

Conversely, given a Schnyder wood of Mσ embed every vertex v at its face count vector
(v1, v2, v3) ∈ N

3 ⊂ R
3, i.e., V = {(v1, v2, v3) : v is a vertex of M}. It can be verified that the

canonical map M →֒ SV is a geodesic embedding. The orthogonal surface in the left part of
Figure 8 can be constructed by this rule from the Schnyder wood on the right. The complete
proof of the theorem can be found in [11]. 2
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Figure 8: A geodesic embedding and the induced Schnyder labeling and Schnyder wood.

With an axial geodesic embedding Mσ →֒ SV we can also associate a Schnyder labeling:
Since every orthogonal arc leaving a vertex is occupied by an edge, every angle is completely
contained in a flat. Flats are the connected regions of constant gray-value in our drawings
of orthogonal surfaces. Formally, let H be the plane xi = h and F̃1, . . . , F̃ℓ, the connected
components of the interior of H∩SV . The topological closures F1, . . . , Fℓ of these components
are i-flats of height h, see Figure 9. The i-flat of v ∈ V is denoted by Fi(v). A more technical
definition of flats is given in [12], the definition there is used for investigations of orthogonal
surfaces in dimension 4 and higher.

In the Schnyder labeling the angle ϕ is labeled i, if the xi-axis is orthogonal to the flat
containing it (see the labels in Figure 8). It is easy to verify properties (A1), (A2) and (A3)
for this angle labeling.

wv

Figure 9: Two i-flats with the same i-coordinate.

Given Theorem 5 it is natural to ask questions about existence and uniqueness of geodesic
embeddings.
Question 1 Does every axial orthogonal surface SV support a Schnyder wood?
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Answer: No, a surface with three orthogonal arcs meeting in a single point does not, see
Figure 10.a. Call a surface degenerate if such a pattern occurs. It can be shown that every
non-degenerate axial orthogonal surface SV supports a Schnyder wood.
Convention: From now on this paper only deals with non-degenerate and axial orthogonal
surfaces. For brevity we will usually omit these predicates.

b.a.

wv

u

Figure 10: a. A degenerate pattern. b. A non-rigid edge (u, v), the bend-point u ∧ v
dominates w.

Question 2 Is the Schnyder wood supported by the surface SV unique?

Answer: In general not, e.g. in the situation shown in Figure 10.b. the edge (u, v) can
be replaced by the edge (u, w). Hence the surface supports two different graphs and also
two different Schnyder woods. The existence of such a choice for an edge is caused by a
non-rigidity in the sense of the following definition:

An elbow geodesic connecting vertices u and v is rigid, if u and v are the only vertices in
V dominated by u ∨ v. An orthogonal surface SV is a rigid surface if all its elbow geodesics
are rigid.

The next section is devoted to the proof of a stronger version of Theorem 5, in the sense
that for every Schnyder wood there is a rigid surface supporting it.

3 Rigid Orthogonal Surfaces via Flat Shifting

We set Theorem 7 into context before we give a new proof. Miller [16] observed that a rigid
orthogonal surface supports exactly one Schnyder wood and proved:

Theorem 6 Every suspended 3-connected planar map Mσ has a geodesic embedding Mσ →֒
S on some rigid orthogonal surface S.

Together with the following proposition from [16] (see also [10]) this implies the Brightwell-
Trotter Theorem (Theorem 2).

Proposition 1 Let SV be a rigid orthogonal surface. Let Mσ →֒ SV be a geodesic embedding
and F a bounded region of M . If αF is the join of the vertices of F , then w ∈ F ⇔ w ≤ αF .

Note that αF as defined above lies on SV and is a maximum of the surface with respect to
the dominance order. In fact, for any set W ⊆ V of vertices the join lies on SV if and only
if they all lie on a common face of Mσ. It is crucial here, that SV is a rigid surface. If W
contains a vertex from each of the three sides of the face F , as shown in Figure 5, then the
join is a maximum of SV .

We give a new proof of the following result by Felsner [10], who answered a question by
Miller with this extension of Theorem 6.
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Theorem 7 If S is a Schnyder wood of a map Mσ, then there is a rigid axial orthogonal
surface S and a geodesic embedding Mσ →֒ S. In particular S is the unique Schnyder wood
supported by S.

We now present a new proof of this theorem, Lemma 6 and Lemma 7 are part of this
proof. Let S be a Schnyder wood on a 3-connected planar map M = (V, E) and let S be the
orthogonal surface obtained from S by face counting. Let Fi be the set of i-flats of S. On
the set Fi we define a relation Γi by three rules, Figure 11 shows an example.

(a) If (u, v) is an edge of color i, then Fi(u) < Fi(v) in Γi.

(p) If (v, u) is unidirected in color i − 1 or i + 1, then Fi(u) < Fi(v) in Γi.

(r) If (v, u) is unidirected in color j 6= i and w ∈ V is such that Fj(w) = Fj(u) and wi > ui,
then Fi(v) < Fi(w) in Γi.

The pairs in Γi are classified as a-relations (arc), p-relations (preserve) and r-relations (repel).
Lemma 6 is the heart of the proof of Theorem 7 as it justifies why the flat shifts (i.e. r-
relations) can be combined to obtain a rigid surface.

a
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a

a
r

p

p

p

p

3

3

3

3

1

1

1

2

1

1 1

3
2

2

32
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2
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pw

u

v

Figure 11: On the left a non-rigid surface with Schnyder wood S. On the right the corre-
sponding relation Γ1. Here, a-relations are represented by red arrows, p-relations by cyan
arrows, and the only r-relation by a golden arrow.

Lemma 6 The relation Γi defined on Fi is acyclic, for i = 1, 2, 3.

Proof. By symmetry it is enough to prove the case i = 1.
We identify the a- and p-relations with edges of the Schnyder wood S. The set of vertices

lying on a common 1-flat is strongly connected in S via bidirected green-blue edges. We define
a surjective map from the set of red edges in S to the set of a-relations by mapping an edge
(u, v) to the relation F (u) < F (v). Similarly, there is a surjective map from the blue and
green unidirected edges in S to the p-relations (if (v, u) is such an edge, then F (u) < F (v) is
in Γ1).

In order to deal with the r-relations we construct a Schnyder wood S′ from S using edge
splits (see page 6). Let e = (v, u) ∈ S be a unidirected blue edge and F (u) < F (v) the
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corresponding p-relation. Let F (uk) > . . . > F (u1) be the set of flats that have an r-relation
F (v) < F (uj) related to e, the order on this set coming from the a-relations. The edges
{u, u1} and {uj−1, uj} are bidirected in red and green in S. Construct S′ by splitting the
edges {u, u1}, {u1, u2}, . . ., {uk−1, uk} towards v. This is legal since the angle of v in the face
in question has label 2 (green), see Lemma 5.

Repeat this operation for other r-relations in Γ1 which come from unidirected blue edges.
A symmetric operation is used to introduce edges for all r-relations in Γ1 which come from
unidirected green edges in the Schnyder wood S.

In the Schnyder wood S′ we associate an edge with every relation in Γ1: With an a-relation
F (u) < F (v) associate the red edge (u, v), and with a p-relation F (u) < F (v) associate the
blue or green edge (v, u). With an r-relation F (u) < F (v) associate the blue or green edge
(v, u) which was introduced into S′ by a split.

Now assume that C is a cycle in the relation Γ1 on F1. The idea is to show that C induces
a cycle C ′ in T1 ∪ T−1

2 ∪ T−1
3 , where the Ti, i ∈ {1, 2, 3}, are the respective trees of S′. This

yields a contradiction to Lemma 1.
The relations in C are associated with some edges in T1∪T−1

2 ∪T−1
3 . However, consecutive

relations F (u) < F (v) and F (u′) < F (v′) in C, i.e., F (v) = F (u′), may correspond to different
vertices v 6= u′ from the flat F (v). This yields gaps in the intended cycle C ′. In this case S′

contains a path of bidirected green-blue edges connecting v and u′, hence, the directed path
required to close the gap in C ′ can be found in T1 ∪ T−1

2 ∪ T−1
3 .

The contradiction shows that Γi is acyclic. 2

Figure 12: An orthogonal surface and an associated rigid surface

Let S be the orthogonal surface supporting S which is generated by the face counting
vectors (c.f. Theorem 5). Let Γ∗

i be the transitive closure of Γi which is an order on Fi by
Lemma 6. Let Li be a linear extension of Γ∗

i . An i-flat Fi of S is mapped to its position in
Li, more formally to

αFi
= |{F ′

i ∈ Fi : F ′
i < Fi in Li}|.

With a vertex v ∈ V we associate the point v′ = (αF1(v), αF2(v), αF3(v)) in R
3. In the remaining

part of this section we verify that the orthogonal surface SVα
generated by Vα = {v′ : v ∈ V}

is rigid and supports the Schnyder wood S. The key to the rest of the proof of Theorem 7 is
the following lemma.
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Lemma 7 If Ri(u) = Ri(v), then u′
i = v′i and if Ri(u) ⊂ Ri(v), then u′

i < v′i.

Proof. The first statement is immediate: From Ri(u) = Ri(v) it follows that Fi(u) = Fi(v)
and hence u′

i = v′i.
For the proof of the second statement note, that there exists an index j 6= i such that

Rj(u) ⊃ Rj(v). Therefore, the j-path of v and the i-path of u have to cross in a vertex w.
The edges of Pi(u) imply that Fi(w) > Fi(u) in Γ∗

i and hence in Li. Let (x, y) be an edge of
color j on Pj(v). The complete information for e = {x, y} is one of the following:

(1) e is bidirected and the color of (y, x) is i.

(2) e is bidirected and the color of (y, x) is not i.

(3) e is unidirected.
In case (1) we find the relation Fi(y) < Fi(x) in Γi. In case (2) vertices x and y are on

the same i-flat, i.e., Fi(y) = Fi(x). In case (3) the relation Fi(y) < Fi(x) is a p-relation in Γi.
Transitivity yields Fi(u) < Fi(w) < Fi(v) in Γ∗

i and hence in Li. This implies u′
i < v′i. 2

Claim 1. Vα is an antichain in R
3.

Proof. This follows from Lemma 7 and the observation that for any two vertices u, v ∈ S
there are colors i and j with Ri(u) ⊂ Ri(v) and Rj(v) ⊂ Rj(u). △

Claim 2. SVα
is non-degenerate.

Proof. The linear extension Li assigns different positions to different flats, therefore the situ-
ation from Figure 10.a cannot occur. △

Claim 3. SVα
supports the Schnyder wood S.

Proof. Let e = {u, v} be an edge of S and x 6∈ e a vertex. For some i the edge e is contained
in region Ri(x). This implies Ri(u) ⊆ Ri(x) and Ri(v) ⊆ Ri(x).

From Lemma 7 it follows that in the above setting u′
i ≤ x′

i and v′i ≤ x′
i. This shows that

with e = {u, v} the join u′∨v′ and hence the elbow geodesic [u, v] is on the surface SVα
.

If edge e = (u, v) is directed in color i from u to v then by Lemma 3 together with Lemma 7
we have u′

i < v′i, u′
i+1 ≥ v′i+1 and u′

i−1 ≥ v′i−1 . Therefore, the orthogonal arc of v in direction
ei is used by this edge. Since the orthogonal arcs of all vertices are already occupied by edges
of S there are no additional edges on S. △

Claim 4. SVα
is rigid.

Proof. Suppose not, then there is a unidirected edge (v, u) of color i and a vertex w such that,
w′ ≤ u′∨v′, and Fi(u) = Fi(w). There is a bidirected path in colors j and k joining u and
w. We may assume that w ∈ Pj(u) and u ∈ Pk(w). It follows that Rj(w) ⊃ Rj(u), hence,
wj > uj and the relation Fj(v) < Fj(w) is an r-relation in Γj. The unidirected edge (v, u) in
color i induces the p-relation Fj(u) < Fj(v) in Γj. Therefore, u′

j < v′j < w′
j in contradiction

to w′ ≤ u′∨v′. △

This completes the proof of Theorem 7. 2

Next, we present a simple algorithm which, given a Schnyder wood S, computes a rigid
orthogonal surface S inducing S.

Corollary 2 There is an O(n) algorithm computing a rigid orthogonal surface for a given
Schnyder wood S.
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Proof. We assume that S is given in the form of adjacency lists ordered clockwise around each
vertex. With each edge in the adjacency list of a vertex v, the information about the coloring
and orientation of that edge is given by its type relative to v. There are twelve such types,
three outgoing types in each color (two of them for bidirected edges) and the unidirected
incoming edges. By symmetry it is sufficient to show how to obtain the first coordinate for all
vertices of S in linear time. Produce a copy of the vertex set. On this copy build a digraph
Dr: For every red edge there is an edge pointing in the same direction in Dr and for all blue
and green unidirected edges there is an edge pointing in the opposite direction. Check at
each original vertex if its red outgoing edge is green in the reverse direction and if it has a
unidirected blue incoming edge. If so, there is an edge from the start of the blue edge to
the end of the red outgoing edge. This single repel edge is sufficient as other repel relations
associated to the same unidirected blue edge will be implied by transitivity. Analogously,
check at each original vertex if its red outgoing edge is blue in the reverse direction and if it
has a unidirected green incoming edge. If so, there is a repel edge from the start of the green
edge to the end of the red outgoing edge in Dr. Finally, contract all blue-green edges from S
in Dr, maintaining a pointer from the original vertices to their representatives in Dr. Then,
compute a topological sorting of Dr and assign each vertex the topsort-number of its flat as
first coordinate. All this can be done in O(n) time. Three runs of this procedure, one for
each coordinate are required. The correctness of the algorithm follows from Theorem 7. 2

Theorem 8 Let P be a 3-polytope with n vertices. Then, a Brightwell-Trotter realizer for P
can be computed in O(n) time.

Proof. Let G be the edge graph of P . As shown by Fusy et al. [13] a Schnyder wood S for G can
be computed in O(n) time. With little translational effort this also follows from algorithms
for computing orderly spanning trees [6] or canonical orderings [7] which are based on Kant’s
algorithm [14]. By Corollary 2 a rigid orthogonal surface that induces S can be computed in
time O(n). By Proposition 1 such an orthogonal surface yields a Brightwell-Trotter realizer
of P . 2

4 Coplanar Surfaces

An orthogonal surface is called coplanar, if there exists a constant c ∈ R such that every
minimum v on the surface fulfills v1 + v2 + v3 = c. Schnyder’s classic approach of drawing
graphs using the face-count vectors {(v1, v2, v3) | v ∈ V } yields a subclass of all coplanar
surfaces, as described in the proof sketch of Theorem 5. Geodesic embeddings on coplanar
surfaces have the pleasant property that the positions of the vertices in the plane yield a
crossing-free and convex straight-line drawing of the underlying graph.

Similar approaches for non-coplanar surfaces, where the points are projected orthogonally
to the plane x + y + z = 1, fail. This is because crossings between edges may be produced,
see Figure 7 (b) for an example. The coordinates of the orthogonally projected points are

u′
1 = (11,−4,−4)/3, u′

2 = (−4, 11,−4)/3, u′
4 = (4, 1,−2)/3, u′

5 = (4, 4,−5)/3.

This implies that 8u′
1/15 + 7u′

2/15 = u′
4/3 + 2u′

5/3, that is the straight line segments repre-
senting the edges u1u2 and u4u5 cross.

13



A representation of all coplanar surfaces in terms of Schnyder woods is given in Section 4.1.
In Section 4.2 we present an example of a Schnyder wood for that no surface inducing it can
be rigid and simultaneously coplanar.

4.1 Coplanar Surfaces and Face Weights

We now generalize the classic approach of counting every bounded face with weight one by
allowing more general face weights. We then use coordinate vectors recording the sum of
weights in the regions of a vertex. We show that this construction, essentially, yields all
coplanar surfaces supporting a given Schnyder wood, and thus all non-degenerate coplanar
surfaces can be obtained from some Schnyder wood this way.

Theorem 9 Let S be a coplanar orthogonal surface generated by V supporting a Schnyder
wood S on vertex set V (S) ≡ V. Then there is a unique weight function w : F (S) → R on
the set of bounded faces of S and a unique translation t ∈ R

3 such that for all v ∈ V (S) and
i ∈ {1, 2, 3} the coordinates are given by

vi = ti +
∑

F∈Ri(v)

w(F ).

Remark. A Schnyder wood S and a weight function w define an orthogonal surface SS,w.
This surface, however, need not support the initial Schnyder wood. From the proof of The-
orem 5 it follows that a necessary and sufficient condition for an embedding S →֒ SS,w is
that

Ri(u) ⊆ Ri(v) =⇒
∑

F∈Ri(u)

w(F ) ≤
∑

F∈Ri(v)

w(F )

with strict inequality whenever Ri(u) ⊂ Ri(v).

Proof of Theorem 9. Let S be a coplanar orthogonal surface and S a Schnyder wood induced
by S. Note that Fi(aj) = Fi(ak) for the suspension vertices a1, a2, a3 of S, where {i, j, k} =
{1, 2, 3}. Let ti be the ith coordinate of aj for j 6= i. Subtracting t = (t1, t2, t3) from all
generating vectors v = (v1, v2, v3) of the surface S, will normalize the figure such that the
suspension vertices now have coordinates (c, 0, 0), (0, c, 0), (0, 0, c) and v1 + v2 + v3 = c for all
v. In the following we assume that S is normalized in this sense.

Let f be the number of faces of S. With the region Ri(v) of a vertex v we associate a row
vector ri(v) of length f − 1 with a component for each bounded face of F . The vector ri(v)
is defined by

ri(v)F =

{

1 if F ∈ Ri(v)
0 otherwise

The existence of a weight assignment to the faces realizing the normalized surface S is equiv-
alent to finding a vector w ∈ R

f−1 such that

∀v ∈ V, ∀i ∈ {1, 2, 3} : ri(v) · w = vi (∗)

Claim 1. The rank of the linear system (∗) is at most f − 1.

Proof. First suppose that S is the Schnyder wood of a triangulation. For the three special
vertices, we only need the single equation 1 · w = c, with the all-one vector 1. This equation

14



together with the three equations of an inner vertex v is a dependent system: 1 = r1(v) +
r2(v) + r3(v) and c = v1 + v2 + v3. Therefore, we have at most

1 + 2(n − 3) = 2n − 5 = f − 1

linearly independent row vectors.
Let S be a Schnyder wood on a 3-connected planar map. If S has k + 3 bidirected edges,

then it has f −1 = 2n−5−k bounded faces. If e = vw is a bidirected edge in colors i−1 and
i + 1, then ri(v) = ri(w) and vi = wi. Therefore, among the 2n − 5 potentially independent
vectors, there are at most 2n − 5 − k different ones. Hence, there are at most f − 1 linearly
independent row vectors. △

Let eF be the (f−1)-dimensional row vector with a single one at the position corresponding
to the face F .

Claim 2. The vector eF is in the linear span of the region-face incidence vectors {ri(v) | i ∈
{1, 2, 3}, v ∈ V }.

Proof. We distinguish three cases:
Case 1. The boundary of F is a directed cycle C (bidirected edges are allowed on C). From
Lemma 4 or more directly from the rule of faces (A3) it follows that the cycle C consists of
three directed paths in the three colors. If C is clockwise, the order of the paths is P1, P2,

v2 v3

v3v1

v2

R1(v2)

v1

R2(v1) R3(v2)

R2(v3)

R3(v1)

R1(v3)

Figure 13: Faces with a directed cycle in the boundary.

P3 and if C is counterclockwise the order of the paths is P1, P3, P2, see Figure 13. Let vi

be the first vertex of path Pi. In the clockwise case consider the regions R2(v1), R3(v2) and
R1(v3), they are disjoint and cover the bounded area B except the face F . Hence

1 − (r2(v1) + r3(v2) + r1(v3)) = eF .

In the counterclockwise case, the regions in question are R3(v1), R1(v2) and R2(v3) and the
equation becomes

1 − (r3(v1) + r1(v2) + r2(v3)) = eF .

Case 2. We assume that the boundary of F is not a directed cycle.We may assume that the
three special edges e1, e2, e3 have endvertices v1, w1, v2, w2, v3, w3 clockwise in this order on
the boundary of F (possibly wi−1 = vi). We assume that there are two unidirected special
edges of the same color i say e1 = (v1, w1), e2 = (w2, v2).

Subcase w1 = v2. We first treat the case that e3 is directed as (w3, v3), this includes the
case where e3 is bidirected. The left of Figure 14 shows the situation with i = 1.
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v1

v2

w2

v3

w1

w3

v1 w2

w3

w1 v2

v3

R1(v1) R1(w2)

R3(w2)

R2(w3)

R2(v1)

R3(v3)

Figure 14: Faces without directed cycle, unidirected edges of the same color, and w1 = v2.

As illustrated in the figure R1(v1), R2(v1) and R3(v3) partition B \ F , hence

1 − (ri(v1) + ri+1(v1) + ri−1(v3)) = eF .

If e3 is directed as (v3, w3), then, as shown in the right part of Figure 14:

1 − (ri−1(w2) + ri(w2) + ri+1(w3)) = eF .

Subcase w1 6= v2. In this case the boundary of F between w1 and w2 consists of edges
bidirected in colors i− 1, i + 1. Let R be the region enclosed by this bidirected path, Pi(w1),
and Pi(v2), and r the corresponding vector. Note that, as in Figure 15, R1(w1), R2(w1) and

R2(w1) R3(v2)
v2

R

F

w1

R1(w1)

Figure 15: The region R in the case i = 1.

R3(v2) partition B \ R, hence

1 − (ri(w1) + ri+1(w1) + ri−1(v2)) = r.

To represent the vector eF we can now use the representations found in Subcase w1 = v2, we
only have to add r on the right side. △

Case 3. We assume that the boundary of F is not a directed cycle. and that there are no
two unidirected special edges of the same color. Then, there are two unidirected special edges
of different colors i − 1, i + 1, say e1 = (v1, w1), e2 = (w2, v2) and the third special edge is
bidirected in colors i − 1, i + 1.

Subcase w1 = v2. The left of Figure 16 shows the situation with i = 1.
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v2w1

v3

w2

w3

v1

R2(w1)
R3(v2)

R1(w2)
R1(v1)

R1(w3)

v3

w2

w3

v1

R2(w1)
R3(v2)

R1(w2)
R1(v1)

R1(w3)

w1
v2

Figure 16: Faces without directed cycle, and unidirected edges of different colors.

As illustrated in the figure R3(v2), R1(w2), R1(v1) and R2(w1) cover B \ F , and exactly the
faces in R1(w3) are covered twice. Hence,

1 − (ri−1(v2) + ri(w2) + ri(v1) + ri+1(w1) − ri(w3)) = eF .

Subcase w1 6= v2. This is analogous to Case 2, subcase w1 6= v2, the right of Figure 16
shows the situation. △

The dimension of the span of the face vectors eF is f − 1. Claim 2 implies that the span
of the face vectors is contained in the span of the region vectors ri(v). Together with Claim 1
this implies that the span of the region vectors is of dimension f − 1. Let r1, . . . , rf−1 be a
selection of rows which is a basis of this space and let R be the square matrix with rows ri.
Note that in the proof of Claim 1 one such basis is explicitly given. By Claim 2 there is a
matrix A with A · R = If−1, that is R is invertible and the linear system (∗) has a unique
solution. 2

Next we will show how to obtain an efficient algorithm that computes the representation
as in Theorem 9 for a given orthogonal surface S.

Theorem 10 Let a non-degenerate, axial, coplanar orthogonal surface S be given, which is
generated by n minima. A Schnyder wood S for S can be computed in O(n log n) time. Given
S, the translation vector and the face weights can be computed in O(n) time.

Proof. We will first describe how extract the Schnyder wood S from S. The algorithm scans S

from bottom to top with a sweep plane orthogonal to the x1-axis. Figure 17 shows a snapshot
of the intersection of P with S. For the sweep algorithm we need a data structure which
maintains a finite ordered set of real numbers and allows us to insert and delete elements.
Furthermore, we need access to the predecessor and successor of a given query value. Dynamic
search trees perform all these operations in logarithmic time.

The algorithm builds a Schnyder wood S in the form of clockwise adjacency lists for the
vertices, where we also store the information about the type of each edge relative to this vertex,
see also Corollary 2. The correctness of the algorithm will follow from the invariant (∗).

(∗)
Having seen a subset W ⊂ V of the generators of S the algorithm knows all
colored and directed edges of S which are induced by W .

We give a description of the algorithm. A priority queue Q and a dynamic tree P (the sweep
front) both ordered lexicographically with respect to (x1, x2) are the data structures used.
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Figure 17: Projection of the explored part of S onto the sweep plane. The dotted lines
represent the new edges when v is added, the other colored lines the sweep front. The grey
lines and vertices are the part of the surface that was already explored.

Initialize S as a path of green-blue bidirected edges between the vertices with minimum x1-
coordinate, which are ordered by increasing x2-coordinate. P is also initialized with these
vertices, Q with all other vertices. A step of the algorithm takes the first element v of Q, adds
it to P and creates a representative for v in S. The blue outgoing edge of v to its predecessor p
in P is added. If p1 = v1 the edge is green-blue bidirected, if p2 = v2 it is red-blue bidirected,
otherwise it is unidirected. Let s1, . . . , sℓ be the successors of v in P , where sℓ is the first
one with smaller or equal x3-coordinate than v. Remove s1, . . . , sℓ−1 from P adding a red
unidirected edge from si to v in S for those si which do not yet have a red outgoing edge.
Finally, check if u, the vertex to be added next, lies on the same x1-flat as v (in which case
u and v will be joined by a green-blue edge when u is considered). If not, add the green
outgoing edge of v which ends at sℓ. If (sℓ)3 = v3 this edge is green-red bidirected, otherwise
it is green unidirected. This is done for all vertices in Q and the invariant (∗) guarantees that
the result is a Schnyder wood S induced by S.

So we turn to proving that the invariant (∗) indeed holds. It is easy to see that it holds
after the initialization. So we assume by induction, that only edges incident to the new vertex
v have to be checked. There can be no incoming unidirected green or blue edges at v in S
at this time, because their starting point has bigger x1-coordinate than v. The red outgoing
edge of v cannot be in S either. It is easy to check that the blue outgoing edge of v and its
red incoming edges are geodesic arcs on S. If the green edge is added, it also corresponds to
a geodesic arc. If the vertex u is the endvertex of the green outgoing edge of v, this edge is
not induced by S yet. We have thus shown, that all edges added to S belong to a Schnyder
wood induced by S. Also, the induced orthogonal arcs are all used by an edge. In the case
where the green outgoing edge of v is not added, this orthogonal arc is not induced by the
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explored part of the surface yet. This proves that the invariant (∗) holds.
We now show the O(n log n) complexity bound for the above algorithm. We access the

predecessor of a vertex only when it is inserted and its successor only when it is inserted or
deleted. As we insert and delete every vertex at most once, this proves the time bound of
O(n log n). Edges can be added in constant time maintaining the clockwise ordering of the
adjacency lists.

The second part of the algorithm is the computation of the face weights. The translation
(t1, t2, t3) can be read off the coordinates of the three special vertices. Normalize all vertex
coordinates by subtracting the translation. The faces are now considered one by one. When
considering a face F , first determine of which of the possible twenty types F is. As indicated
in the proof of Theorem 9 there are two cases where the boundary of F is a clockwise or
counterclockwise directed cycle. The other eighteen cases correspond to the four subcases of
Case 2 and the two subcases of Case 3 in the proof, multiplied with the number of colors.
These six cases are:

• There are two unidirected edges of the same color, w1 = v2, and e3 is directed (w3, v3)

• There are two unidirected edges of the same color, w1 = v2, and e3 is directed (v3, w3)

• There are two unidirected edges of the same color, w1 6= v2, and e3 is directed (w3, v3)

• There are two unidirected edges of the same color, w1 6= v2, and e3 is directed (v3, w3)

• There are two unidirected edges of different color, and w1 = v2

• There are two unidirected edges of different color, and w1 6= v2

Determine the vertices v1, v2, v3 respectively, v1, w1, v2, w2, v3, w3. As all coordinates are nor-
malized, the coordinates correspond to the respective regions’ weights and the weight of F
can be calculated as in the proof of Theorem 9. For example,in the case shown in Figure 14
the weight of F is c − (w2)1 − (w3)2 − (w2)3 where x + y + z = c is the plane on which the
minima lie after the translation.

The runtime of the procedure for one face F cannot be bounded by a constant, because
the boundary of F has to be scanned. But every edge has to be considered only a constant
number of times when calculating the weight of F . As every edge lies in at most two inner
faces, the runtime is linear: every edge is considered only a constant number of times and the
number of edges is linear in the number of vertices for planar graphs. 2

4.2 Rigidity and Coplanarity

The face counting produces a coplanar surface for a given Schnyder wood and in Section 3
we have seen how to construct a rigid surface for a given Schnyder wood. Coplanarity and
rigidity are both useful concepts in the realm of orthogonal surfaces. A natural question
to ask is therefore, if for every Schnyder wood there is an orthogonal surface having both
properties, i.e. that is rigid and coplanar. In this section we will present an example of a
Schnyder wood for which a geodesic embedding can be either rigid or coplanar, but not both.

Proposition 2 The Schnyder wood shown in Figure 18 cannot be embedded on a rigid and
simultaneously coplanar surface.
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Figure 18: Schnyder wood on a rigid, but not coplanar surface

Proof. Assume that there is such an embedding. Coplanarity means that v1 + v2 + v3 = c =
w1 + w2 + w3 for all v, w ∈ V , hence, vi = wi implies vi−1 −wi−1 = wi+1 − vi+1. In the given
instance rigidity requires f1 > g1, b2 > g2 and d3 > g3. We use the symbol ≺ to highlight the
use of rigidity in the following calculation:

c3 < b3 < a3 < g3 ≺ d3 ⇒ a3 − b3 < d3 − c3

d3 − c3 = c1 − d1

e1 < d1 < c1 < g1 ≺ f1 ⇒ c1 − d1 < f1 − e1

f1 − e1 = e2 − f2

a2 < f2 < e2 < g2 ≺ b2 ⇒ e2 − f2 < b2 − a2

b2 − a2 = a3 − b3

Concatenating the inequalities from the right column of the table we obtain the contradiction
a3 − b3 < a3 − b3. 2

5 Further Representations of Orthogonal Surfaces

In Theorem 9 we have shown that a coplanar orthogonal surface S can be represented by a
Schnyder wood S and a vector (wF )F∈F of weights for the bounded faces of S.

It is interesting to identify other representations for orthogonal surfaces. In this section
we mention some results and problems in this direction. We begin with a positive result.

Proposition 3 A coplanar orthogonal surface S can be represented by a Schnyder wood S
and a vector (ℓF )F∈F of lengths for the bounded faces of S. The length ℓF is the length of an
orthogonal i-edge ending in the point (maximum) of S which represents F . If F is rightmost
on its 1-flat, then ℓF is the length of the 1-edge, otherwise it is the length of the 2-edge.

Figure 19 shows an example. We leave it to the reader to verify that the coplanarity of
the surface and the length of the bold edges uniquely determine the length of all edges of the
surface. Note that as in the case of Theorem 9 the proposition can be rephrased as a result
about the invertibility of a certain matrix. In this case a typical equation corresponding to a
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Figure 19: Combinatorial data together with the length of bold edges represent the surface.

row of the matrix is of the form v1 − w1 = ℓF if F is a rightmost face and v2 − w2 = ℓF for
the other faces.

Another value that is naturally associated to every bounded face F is the height of the
point of S which represents F . For simplicity we define the height of a point p ∈ S as
h(p) = p1 + p2 + p3. Is it true that a coplanar orthogonal surface S can be represented by a
Schnyder wood S and the vector (hF )F∈F of heights?

This question can be generalized to the case of non-coplanar orthogonal surfaces. In this
case we would like to represent a surface by the heights of the points representing the vertices
and faces. The dimension of the vector with an entry for every bounded face and every vertex
actually exceeds the number of values needed to determine the generating minima V of the
normalized surface S by one. Hence the problem:

Problem: (a) Is it true that an orthogonal surface S can be represented by a Schnyder wood
S and the vector (hF )F∈V∪F of heights?
(b) The equations implied by the height constraints must have one linear dependence. What
is the combinatorial interpretation of this dependence?

In a preliminary version of the paper we have posed this heights problem as open. At
that time we could only solve (a) and (b) for the special case where the graph supporting the
Schnyder wood is a stacked triangulation. That is a triangulation that can be constructed
starting from a triangle by repeatedly choosing a triangular face and adding a new vertex to
this face connecting it to the three vertices on the boundary of the face.

Meanwhile we have an affirmative answer for part (a) of the problem while part (b) remains
open. The proof for part (a) can be derived from results which were obtained in our attempt
to prove the following conjecture of Jan Kratochvil2:

Conjecture: Every 4-connected planar triangulation admits a triangle contact representation
with equilateral, axis-aligned triangles.

Figure 20 shows an example of such a representation. Triangle contact representations for
stacked triangulations and series-parallel graphs have been obtained in [1]. That paper also
contains additional references and background information.

Triangle contact representations are closely related to orthogonal surfaces with the prop-
erty that the points on the surface corresponding to edges of the graph are coplanar. Orthog-
onal surfaces with this property are always rigid. We know that not all Schnyder woods are
supported by such surfaces. Examples are easily derived from the graph of the octahedron

2Conjecture was stated at the Bertinoro Workshop on Graph Drawing 2007.
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Figure 20: A 4-connected triangulation and a triangle contact representation.

(cf. [1] for details). An answer to the following question would contain a proof or refutation
of the above conjecture.

Question: Which planar 3-connected graphs are supported by an edge-coplanar orthogonal
surface?
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[2] I. Bárány and G. Rote, Strictly convex drawings of planar graphs, Documenta Math-
ematica, 11 (2006), pp. 369–391.

[3] N. Bonichon, S. Felsner, and M. Mosbah, Convex drawings of 3-connected planar
graphs, Algorithmica, 47 (2007), pp. 399–420.

[4] G. Brightwell and W. T. Trotter, The order dimension of convex polytopes, SIAM
J. Discrete Math., 6 (1993), pp. 230–245.

[5] G. Brightwell and W. T. Trotter, The order dimension of planar maps, SIAM J.
Discrete Math., 10 (1997), pp. 515–528.

[6] Y. Chiang, C. Lin, and H. Lu, Orderly spanning trees with applications to graph
encoding and graph drawing, SIAM J. Comput, 34 (2005), pp. 924–945.

[7] R. Chuang, A. Garg, X. He, M. Kao, and H. Lu, Compact encodings of planar
graphs via canonical orderings and multiple parentheses, in Proc. 25th Int. Col. on Au-
tom., Lang., and Prog., 1998, pp. 118–129.

22



[8] S. Felsner. http://www.math.tu-berlin.de/~felsner/Schnyder.bib.

[9] S. Felsner, Convex drawings of planar graphs and the order dimension of 3-polytopes,
Order, 18 (2001), pp. 19–37.

[10] S. Felsner, Geodesic embeddings and planar graphs, Order, 20 (2003), pp. 135–150.

[11] S. Felsner, Geometric Graphs and Arrangements, Vieweg Verlag, 2004.

[12] S. Felsner and S. Kappes, Orthogonal surfaces. arXiv: math.CO/0602063, 2006.
Submitted.

[13] E. Fusy, D. Poulalhon, and G.Schaeffer, Dissection and trees, with applications to
optimal mesh encoding and random sampling, in Proc. 16. ACM-SIAM Sympos. Discrete
Algorithms, 2005, pp. 690–699.

[14] G. Kant, Drawing planar graphs using the canonical ordering, Algorithmica, 16 (1996),
pp. 4–32.

[15] C. Lin, H. Lu, and I.-F. Sun, Improved compact visibility representation of planar
graphs via Schnyder’s realizer, SIAM J. Discrete Math., 18 (2004), pp. 19–29.

[16] E. Miller, Planar graphs as minimal resolutions of trivariate monomial ideals, Docu-
menta Math., 7 (2002), pp. 43–90.

[17] W. Schnyder, Planar graphs and poset dimension, Order, 5 (1989), pp. 323–343.

[18] W. Schnyder, Embedding planar graphs on the grid, in Proc. 1st ACM-SIAM Sympos.
Discrete Algorithms, 1990, pp. 138–148.

[19] W. T. Trotter, Combinatorics and Partially Ordered Sets: Dimension Theory, The
Johns Hopkins University Press, 1992.

[20] W. T. Trotter, Partially ordered sets, Handbook of Combinatorics, Vol I, Graham,
Grötschel, Lovász (eds) (1995), pp. 433–480.

23


