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Abstract. In this paper we study connections between Schnyder woods
and orthogonal surfaces. Schnyder woods and the face counting approach
have important applications in graph drawing and dimension theory.
Orthogonal surfaces explain the connections between these seemingly
unrelated notions. We use these connections for an intuitive proof of
the Brightwell-Trotter Theorem which says that the face lattice of a 3-
polytope minus one face has dimension three. Our proof yields a compan-
ion linear time algorithm for the construction of the three linear orders
that realize the face lattice.
Coplanar orthogonal surfaces are in correspondance with a large class of
convex straight line drawings of 3-connected planar graphs. We show that
Schnyder’s face counting approach with weighted faces can be used to
construct all coplanar orthogonal surfaces and hence the corresponding
drawings. Appropriate weights are computable in linear time.

1 Introduction

In two fundamental papers [15, 16] Schnyder developed a theory of Schnyder
labelings and Schnyder woods for planar triangulations. The second paper deals
with grid drawings of planar graphs and contains the first of numerous applica-
tions of Schnyder woods in the area of graph drawing. For example, the results
in [1], [2], [5], [13] use Schnyder woods, and more references can be found in [6].

In [15], Schnyder presented a characterization of planar graphs in terms of
order dimension. We briefly introduce the terminology needed for the statement
of this result: With a graph G = (V, E), associate an order PG of height two on
the set V ∪ E. The order relation is defined by setting x < e in PG if x ∈ V ,
e ∈ E and x ∈ e. The order PG is called the incidence order of G.

The dimension of an order P is the least k such that P admits an order pre-
serving embedding in R

k equipped with the dominance order. In the dominance
order we have that u ≤ v if and only if ui ≤ vi holds for each component i. For
more on order dimension see [17], [3] or [7].

Theorem 1 (Schnyder’s Theorem). A graph is planar if and only if the
dimension of its incidence order is at most three.

In the same paper Schnyder also shows that the incidence poset of vertices,
edges and faces of a planar triangulation has dimension four, but the dimen-
sion drops to three upon removal of a face. Brightwell and Trotter [4] extended



Schnyder’s Theorem to the general case of embedded planar multigraphs. The
main building block for the proof is the case of 3-connected planar graphs.

Theorem 2 (Brightwell-Trotter Theorem). The incidence order of the ver-
tices, edges and faces of a 3-connected planar graph G has dimension four. More-
over, if F is a face of G, then the incidence order of the vertices, edges and all
faces of G except F has dimension three.

Note that, by Steinitz’s Theorem, the incidence poset of vertices, edges and
faces of a 3-connected planar graph is just the face lattice of the corresponding
3-polytope with 0 and 1 removed.

The original proof of Theorem 2 in [3] was long and technical, and Felsner
gave a simpler one in [7]. Consecutively, Felsner [8] showed that every Schnyder
wood of a 3-connected planar graph is supported by a rigid orthogonal surface
(Theorem 5). An orthogonal surface is called rigid if it supports a unique graph,
see Figures 3 and 4.b. By a result of Miller [14], Felsner’s result implies Theo-
rem 2. In Section 3 we present an intuitive proof of Theorem 5, that leads to
a simple linear time algorithm for the computation of the rigid surface. The
reduction to topological sorting it uses is simpler and more efficient than the
constructions that are implicit in the other proofs. The idea is to start with the
orthogonal surface S obtained from a Schnyder wood S by face counting. If this
surface is non-rigid it is possible to make some local adjustments at a non-rigid
edge by moving some of the flats up or down in the direction of their normal
vector, see Figure 4. The nontrivial point is to show that these adjustments can
be combined in such a way that the whole surface becomes rigid.

The rest of the paper is organized as follows. In Section 2 we give definitions
and a brief introduction into the structural properties of Schnyder woods and
orthogonal surfaces which are required for the discussion in the later parts of
this paper. For a more detailed introduction we refer the reader to [9].

As mentioned above, Section 3 deals with rigid orthogonal surfaces. Section 4
is concerned with coplanar surfaces, that is orthogonal surfaces with the property
that all generating minima lie on some plane. The interest in this class originates
from their close connection to planar straight line drawings. Connecting the min-
ima of a coplanar surface by straight line segments yields a plane and convex
straight line drawing of the graph. Similar approaches for non-coplanar surfaces
fail as the drawings need not be crossing-free. We show that all coplanar sur-
faces supporting S can be obtained using Schnyder’s original construction with
appropriately weighted faces. At the end of the section, we give an example of
a Schnyder wood that has no supporting orthogonal surface which is simultane-
ously rigid and coplanar. We conclude with a related open problem.

Some proofs are omitted in this paper, others are considerably shortened.
Complete proofs can be found in the full version [10].

2 Basics on Schnyder Woods and Orthogonal Surfaces

All the proofs omitted in the this section can be found in [9], [8] or [7]. A planar
map M is a simple planar graph G together with a fixed planar embedding of



G. Let a1, a2, a3 be three vertices occurring in clockwise order on the outer face
of M . A suspension Mσ is obtained by attaching a half-edge that reaches into
the outer face to each of these special vertices.

Let Mσ be a suspended 3-connected planar map. A Schnyder wood rooted at
a1, a2, a3 is an orientation and coloring of the edges of Mσ with the colors 1, 2,
3 (alternatively: red, green, blue) satisfying the following rules1.

(W1) Every edge e is oriented in one directin or in two opposite directions. The
directions of edges are colored such that if e is bidirected the two directions
have distinct colors.

(W2) The half-edge at ai is directed outwards and colored i.

(W3) Every vertex v has outdegree one in each color. The edges e1, e2, e3 leav-
ing v in colors 1, 2, 3 occur in clockwise order. Each edge entering v in color i

enters v in the clockwise sector from ei+1 to ei−1.

(W4) There is no interior face the boundary of which is a directed monochro-
matic cycle.

We will sometimes refer to the Schnyder wood of a planar map, without
choosing a suspension explicitly. Let M be a planar map with a Schnyder wood.
Let Ti denote the digraph induced by the directed edges of color i. Every inner
vertex has outdegree one in Ti. Therefore, every v is the starting vertex of a
unique i-path Pi(v) in Ti. The next lemma implies that each of the digraphs Ti

is acyclic, and hence the Pi(v) are simple paths.

Lemma 1. Let M be a planar map with a Schnyder wood (T1, T2, T3). Let T−1
i

be obtained by reversing all edges from Ti. The digraph Di = Ti ∪ T−1
i−1 ∪ T−1

i+1 is
acyclic for i = 1, 2, 3.

By the rule of vertices (W3) every vertex has out-degree one in Ti. Disregard-
ing the half-edge at ai, this makes ai the unique sink of Ti. Since Ti is acyclic
and has n − 1 edges we obtain:

Corollary 1. Ti is a directed tree rooted at ai, for i = 1, 2, 3.

The i-path Pi(v) of a vertex v is the unique path in Ti from v to the root ai.
Lemma 1 implies that for i 6= j the paths Pi(v) and Pj(v) have v as the only
common vertex. Therefore, P1(v), P2(v), P3(v) divide M into three regions R1(v),
R2(v), and R3(v), where Ri(v) denotes the region bounded by and including the
two paths Pi−1(v) and Pi+1(v), see Figure 1.

Lemma 2. If u and v are vertices with u ∈ Ri(v), then Ri(u) ⊆ Ri(v). The
inclusion is proper if u ∈ Ri(v) \ (Pi−1(v) ∪ Pi+1(v)).

Lemma 3. If the directed edge e = (u, v) is colored i, then Ri(u) ⊂ Ri(v),
Ri−1(u) ⊇ Ri−1(v) and Ri+1(u) ⊇ Ri+1(v). At least one of the latter two inclu-
sions is proper.

1 We assume a cyclic structure on the colors so that i+1 and i−1 are always defined.



v

1

1

2

3

3
1

1

3

2

2

2
3

3

32

1

3
2

2

1

1 v

R2(v)

R1(v)

R3(v)

1

3 2

3

3

1

2

1

1

2

1

2

2
3

1

2

3

3

3

2

1

2
3

1

1
32

Fig. 1. An orthogonal surface, the induced Schnyder wood and the regions of a vertex
v in this Schnyder wood. The small numbers correspond to edge colors.

These lemmas are crucial for the applications of the face-count vector (v1, v2, v3)
of a vertex v with respect to a Schnyder wood which is defined by

vi = the number of faces of M contained in region Ri(v).

Later we will use this vector to construct orthogonal surfaces supporting a given
Schnyder wood. In that context {(v1, v2, v3) | v ∈ V } will be the generating set
for the surface.

Another tool needed from the theory of Schnyder woods is the edge split. The
following lemma from [2] describes the generic face in a Schnyder wood.

Lemma 4. Given a Schnyder wood S let F be an interior face. The edges on the
boundary of F can be partitioned into six sets occurring in clockwise order around
F . The sets are defined as follows (in case of bidirected edges the clockwise color
is noted first): One edge from the set {red-cw, blue-ccw, red-blue}, any number
(possibly 0) of edges green-blue, one edge from the set {green-cw, red-ccw, green-

red}, any number of edges blue-red, one edge from the set {blue-cw, green-ccw,
blue-green}, any number of edges red-green. The three edges from the first, third,
and fifth set are the special edges of the face.

Given a Schnyder wood S let e be a bidirected edge such that one of its
directions is colored j and F be the incident face to which e is not special.
Choose a vertex w of F such that the angle of w in F is labeled j. To split e

towards w is to divide the bidirected edge e into two uni-directed copies and to
move the head of the j colored copy to connect to w. Figure 2 illustrates the
operation.

Lemma 5. Let S be a Schnyder wood and e a bidirected edge of S. Then, split-
ting e yields a Schnyder wood on the resulting graph.

We now introduce orthogonal surfaces and review some facts that we will need
in the sequel. Consider R

3 equipped with the dominance order. We write u∨v

and u∧v to denote the join (component-wise maximum) and meet (component-
wise minimum) of u, v ∈ R

3. Let V ⊂ R
3 be an antichain, i.e., a set of pairwise

incomparable elements. The filter generated by V in R
3 is the set

〈V〉 = {α ∈ R
3 | α ≥ v for some v ∈ V}.
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Fig. 2. The two possible types of splits of a non-special bidirected red-green edge uv

in F . The numbers in the figure correspond to the edge colors.

The boundary SV of 〈V〉 is the orthogonal surface generated by V , see Figure 1.
If u, v ∈ V ⊂ SV and u∨v ∈ SV , then SV contains the union of the two line

segments joining u and v to u∨v; we refer to such arcs as elbow geodesics in SV .
The orthogonal arc of v ∈ V in direction of the standard basis vector ei is the
piece of the ray v+λei, λ ≥ 0, which follows a crease of SV . Clearly every vector
v ∈ V has exactly three orthogonal arcs, one parallel to each coordinate axis.
Some orthogonal arcs are unbounded while others are bounded. Observe that
u∨v shares two coordinates with at least one (and perhaps both) of u and v, so
every elbow geodesic contains at least one bounded orthogonal arc.

Let M be a planar map. A drawing M →֒ SV is a geodesic embedding of M

into SV , if the following axioms are satisfied:

(G1) Vertex axiom. There is a bijection between the vertices of M and V .

(G2) Elbow geodesic axiom. Every edge of M is an elbow geodesic in SV , and
every bounded orthogonal arc in SV is part of an edge of M .

(G3) There are no crossing edges in the embedding of M on SV .

An orthogonal surface SV ⊂ R
3 is called axial if contains exactly three un-

bounded orthogonal arcs. Figure 1 shows an axial orthogonal surface. These
definitions have been proposed by Miller [14] who, essentially, also observed the
following theorem.

Theorem 3. Let V be axial and M →֒ SV be a geodesic embedding, then the
embedding induces a Schnyder wood of Mσ, which is suspended at the unbounded
orthogonal rays. Conversely, every Schnyder wood of a suspended map Mσ in-
duces an axial geodesic embedding of Mσ.

An embedding of a Schnyder wood into an orthogonal surface is shown in Fig-
ure 1. A proof of the theorem can be found in [9].

Since every orthogonal arc leaving a vertex is occupied by an edge, every
angle is completely contained in a flat. Basically, flats are the connected regions
of constant gray-value in our drawings of orthogonal surfaces. To make this
precise, let H be the plane xi = h and F̃1, . . . , F̃ℓ, the connected components of
the interior of H ∩ S. The topological closures F1, . . . , Fℓ of these components
are i-flats of height h. The i-flat of v ∈ V is denoted by Fi(v).

Given Theorem 3, it is natural to ask questions about existence and unique-
ness of geodesic embeddings. A surface with three orthogonal arcs meeting in
a single point does not support a Schnyder wood, see Figure 3.a. We call sur-
faces with a such a pattern degenerate. All other orthogonal surfaces support a
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Fig. 3. a. A degenerate pattern. b. A non-rigid edge (u, v).

Schnyder wood. In Figure 3.b. the edge (u, v) can be replaced by the edge (u, w).
Hence the surface supports two different graphs and also two different Schnyder
woods. The existence of such a choice for an edge is caused by a non-rigidity
in the sense of the following definition. An elbow geodesic connecting vertices
u and v is rigid, if u and v are the only vertices in V dominated by u ∨ v. An
orthogonal surface SV is a rigid surface if all its elbow geodesics are rigid. For
an example, see the left part Figure 4, where the inner blue edge is not rigid.

3 Rigid Orthogonal Surfaces via Flat Shifting

We set Theorem 5 into context before we give a new proof. Miller [14] observed
that a rigid orthogonal surface supports exactly one Schnyder wood and proved:

Theorem 4. Every suspended 3-connected planar map Mσ has a geodesic em-
bedding Mσ →֒ S on some rigid orthogonal surface S.

Together with the following proposition from [14] (see also [8]) this implies the
Brightwell-Trotter Theorem (Theorem 2).

Proposition 1. Let SV be a rigid orthogonal surface. Let Mσ →֒ SV be a
geodesic embedding and F a bounded region of M . If αF is the join of the vertices
of F , then w ∈ F ⇔ w ≤ αF .

We give a new proof of the following result by Felsner [8], who answered a
question by Miller with this extension of Theorem 4.

Theorem 5. If S is a Schnyder wood of a map Mσ, then there is a rigid axial
orthogonal surface S and a geodesic embedding Mσ →֒ S. In particular S is the
unique Schnyder wood supported by S.

We will now give a sketch of the proof. Lemmas 6 and 7 are part of this
sketch. Let S be a Schnyder wood on a 3-connected planar map M = (V, E) and
let S be the orthogonal surface obtained from S via face counting. Let Fi be the
set of i-flats of S. On the set Fi we define a relation Γi by three rules, Figure 4
shows an example.

(a) If (u, v) is an edge of color i, then Fi(u) < Fi(v) in Γi.

(p) If (v, u) is unidirected in color i − 1 or i + 1, then Fi(u) < Fi(v) in Γi.

(r) If (v, u) is unidirected in color j 6= i and there is a vertex w ∈ V such that
Fj(w) = Fj(u) and wi > ui, then Fi(v) < Fi(w) in Γi.
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Fig. 4. A Schnyder wood S on a non-rigid surface, the corresponding relation Γ1, and
S on a rigid surface. For Γ1 a-relations correspond to red arrows, p-relations to cyan
arrows, and the only r-relation to a golden arrow.

The pairs in Γi are classified as a-relations (arc), p-relations (preserve) and r-
relations (repel). Lemma 6 is the heart of the proof of Theorem 5 as it justifies
why the flat shifts (i.e. r-relations) can be combined to obtain a rigid surface.

Lemma 6. The relation Γi defined on Fi is acyclic, for i = 1, 2, 3.

Proof. By symmetry it is enough to prove the case i = 1.
We identify the a- and p-relations with edges of the Schnyder wood S. The

set of vertices lying on a common 1-flat is strongly connected in S via bidirected
green-blue edges. We define a surjective map from the set of red edges in S to
the set of a-relations by mapping an edge (u, v) to the relation F (u) < F (v).
Similarly, there is a surjective map from the blue and green unidirected edges in
S to the p-relations (if (v, u) is such an edge, then F (u) < F (v) is in Γ1).

In order to deal with the r-relations we construct a Schnyder wood S′ from
S using edge splits (see page 4). Let e = (v, u) ∈ S be a unidirected blue edge
and F (u) < F (v) the corresponding p-relation. Let F (uk) > . . . > F (u1) be the
set of flats that have an r-relation F (v) < F (uj) related to e, the order on this
set coming from the a-relations. The edges {u, u1} and {uj−1, uj} are bidirected
in red and green in S. Construct S′ by splitting the edges {u, u1}, {u1, u2}, . . .,
{uk−1, uk} towards v. This is legal since the angle of v in the face in question
has label 2 (green), see Lemma 5.

Repeat this operation for other r-relations in Γ1 which come from unidirected
blue edges. A symmetric operation is used to introduce edges for all r-relations
in Γ1 which come from unidirected green edges in the Schnyder wood S.

In the Schnyder wood S′ we associate an edge with every relation in Γ1.
The a-relations and p-relations are mapped as above while with an r-relation
F (u) < F (v) we associate the blue or green edge (v, u) which was introduced
into S′ by a split.

The idea is to show that a cycle C in Γ1 would induce a cycle C ′ in T1∪T−1
2 ∪

T−1
3 using the inverse of the mapping from edges to relations described above.

Here the Ti, i ∈ {1, 2, 3}, are the respective trees of S′ and the existence of C ′

yields a contradiction to Lemma 1. Note that consecutive relations F (u) < F (v)
and F (u′) < F (v′) in C, i.e., F (v) = F (u′), may correspond to different vertices



v 6= u′ from the flat F (v). This does not yield gaps in the intended cycle C ′

because vertices on the same flat are connected by a path of green-blue bidirected
edges. The contradiction shows that Γi is acyclic. ⊓⊔

Let S be the orthogonal surface supporting S which is generated by the face
counting vectors (c.f. Theorem 3). Let Γ ∗

i be the transitive closure of Γi which is
an order on Fi by Lemma 6. Let Li be a linear extension of Γ ∗

i . An i-flat Fi of S is
mapped to its position on Li, more formally to αFi

= |{F ′
i ∈ Fi : F ′

i < Fi in Li}|.
With V we associate a set of points Vα = {(αF1(v), αF2(v), αF3(v)) | v ∈ V } ⊂ R

3.
We will outline the rest of the proof of Theorem 5, the first step is to prove the
following lemma.

Lemma 7. If Ri(u) = Ri(v), then u′
i = v′i and if Ri(u) ⊂ Ri(v), then u′

i < v′i.

Lemma 7 is the key to proving the following four statements, which complete
the proof of Theorem 5: Vα is an antichain in R

3, SVα
is non-degenerate, SVα

supports the Schnyder wood S, and SVα
is rigid. This completes the proof sketch

for Theorem 5.
Next, we present a simple algorithm which, given a Schnyder wood S, com-

putes a rigid orthogonal surface S inducing S.

Proposition 2. There is an O(n) algorithm computing a rigid orthogonal sur-
face for a given Schnyder wood S.

Proof. We assume that S is given in the form of adjacency lists ordered clockwise
around each vertex. With each edge in the adjacency list of a vertex v, the infor-
mation about the coloring and orientation of that edge is stored. By symmetry
it is sufficient to show how to obtain the first coordinate for all vertices of S in
linear time. Produce a copy of the vertex set. On this copy build a digraph Dr:
For every red edge there is an edge pointing in the same direction in Dr and for
all blue and green unidirected edges there is an edge pointing in the opposite
direction. Check at each original vertex if its red outgoing edge is green in the
reverse direction and if it has a unidirected blue incoming edge. If so, there is
an edge from the start of the blue edge to the end of the red outgoing edge.
This single repel-edge is sufficient as other repel relations associated to the same
unidirected blue edge will be implied by transitivity. Treat repel relations as-
sociated to green unidirected edges analogously. Finally, contract all blue-green
edges from S in Dr. Then, compute a topological sorting of Dr and assign each
vertex the topsort-number of its flat as first coordinate. All this can be done in
O(n) time. Three runs of this procedure, one for each coordinate are required.
The correctness of the algorithm is implied by Theorem 5. ⊓⊔

Theorem 6. Let P be a 3-polytope with n vertices. Then, a Brightwell-Trotter
realizer for P can be computed in O(n) time.

Proof. As Fusy et al. [11] show, a Schnyder wood S for the edge graph of P

can be computed in O(n) time. Alternatively this can be done with the help of
Kant’s algorithm [12] as well. From S construct a rigid orthogonal surface S,
in time O(n) using Proposition 2. Then, S induces a Brightwell-Trotter realizer
of P by Proposition 1. ⊓⊔



4 Coplanar Surfaces

An orthogonal surface is called coplanar, if there exists a constant c ∈ R such
that every minimum v on the surface fulfills v1 + v2 + v3 = c. Schnyders classic
approach of drawing graphs using the face-count vectors {(v1, v2, v3)|v ∈ V }
yields a subclass of all coplanar surfaces, see Figure 1. We now generalize the
classic approach of counting every bounded face with weight one by allowing
more general face weights. We then use coordinate vectors recording the sum of
weights in the regions of a vertex. We show that this construction, essentially,
yields all coplanar surfaces supporting a given Schnyder wood, and thus all non-
degenerate coplanar surfaces can be obtained from some Schnyder wood this way.
Geodesic embeddings on coplanar surfaces have the pleasant property that the
positions of the vertices in the plane yield a crossing-free and convex straight-line
drawing of the underlying graph. Similar approaches for non-coplanar surfaces
fail as the drawings need not be crossing-free.

Theorem 7. Let S be a coplanar orthogonal surface supporting a Schnyder
wood S. Then there is a unique weight function w : F (S) → R on the set of
bounded faces of S and a unique translation t ∈ R

3 such that for all v ∈ V (S)
and i ∈ {1, 2, 3}

vi = ti +
∑

F∈Ri(v)

w(F ).

Remark. A Schnyder wood S and a weight function w define an orthogonal
surface SS,w. This surface, however, need not support the initial Schnyder wood.
From the proof of Theorem 3 it follows that a necessary and sufficient condition
for an embedding S →֒ SS,w is that

Ri(u) ⊆ Ri(v) =⇒
∑

F∈Ri(u)

w(F ) ≤
∑

F∈Ri(v)

w(F )

with strict inequality whenever Ri(u) ⊂ Ri(v).

Proof sketch for Theorem 7. Let S be a coplanar orthogonal surface and S a
Schnyder wood induced by S. Let where {i, j, k} = {1, 2, 3}. We define ti =
(aj)i = (ak)i, which is possible since Fi(aj) = Fi(ak) for the suspension vertices
a1, a2, a3 of S. First, shift the surface by (t1, t2, t3), such that the suspension
vertices now have coordinates (c, 0, 0), (0, c, 0), (0, 0, c) and v1 + v2 + v3 = c for
all v.

Let f be the number of faces of S. With the region Ri(v) of a vertex v we
associate a row vector ri(v) of length f − 1 with a component for each bounded
face of F . The vector ri(v) is defined by

ri(v)F = 1 if F ∈ Ri(v) and ri(v)F = 0 otherwise.

The existence of a weight assignment to the faces realizing the normalized surface
S is equivalent to finding a vector w ∈ R

f−1 such that

∀v ∈ V, ∀i ∈ {1, 2, 3} : ri(v) · w = vi (∗)

Claim 1. The rank of the linear system (∗) is at most f − 1. Proof omitted. △



Claim 2. Let eF be the (f − 1)-dimensional row vector with a single one at the
position corresponding to the face F . Then, eF is in the span of the region-face
incidence vectors {ri(v) | i ∈ {1, 2, 3}, v ∈ V }.

Proof sketch. For the proof we distinguish several cases: the boundary of F is
a directed cycle, two special edges of the same color are unidirected in opposite
directions, two special edges of different colors are unidirected in opposite direc-
tions. There are several subcases to be distinguished. We present details for only
one case here, the other proofs are similar.

If the boundary of F is not a directed cycle, we may assume that the three
special edges e1, e2, e3 have endvertices v1, w1, v2, w2, v3, w3 clockwise in this
order on the boundary of F (possibly wi−1 = vi). Say e1 = (v1, w1), e2 =
(w2, v2), are two unidirected of the same color in opposite directions.

We treat the case that w1 = v2 and e3 is directed as (w3, v3), (this includes
the case where e3 is bidirected) explicitly. The left of Figure 5 shows the situation
with i = 1.

v1

v2

w2

v3

w1

w3

v1 w2

w3

w1 v2

v3

R1(v1) R1(w2)

R3(w2)

R2(w3)

R2(v1)

R3(v3)

Fig. 5. Faces without directed cycle and w1 = v2.

As illustrated in the figure R1(v1), R2(v1) and R3(v3) partition B \ F , hence

1 − (ri(v1) + ri+1(v1) + ri−1(v3)) = eF .

The case that e3 is directed as (v3, w3) is shown in the right part of Figure 5.△

Claims 1 and 2 together imply that the linear system (∗) has rank f − 1 and
hence a unique solution. ⊓⊔

Next we show how to obtain an efficient algorithm that computes the repre-
sentation of Theorem 7 for a given orthogonal surface S.

Theorem 8. Let a non-degenerate, axial, coplanar orthogonal surface S be
given, which is generated by n minima. A Schnyder wood S for S can be com-
puted in O(n log n) time. Given S, the translation vector and the face weights
can be computed in O(n) time.

Proof. We first sketch how to extract the Schnyder wood S from S. The al-
gorithm scans S from bottom to top with a sweep plane P orthogonal to the
x1-axis. Having seen a subset W ⊂ V of the generators of S the algorithm knows
all colored and directed edges of S which are induced by W . Figure 6.a shows
a snapshot of the intersection of P with S. The order in which the sweep con-
siders the generators is the lexicographic order on (x1, x2). When a minimum v
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Fig. 6. Part a shows the projection of the explored part of an orthogonal surface on
the sweep plane. The dotted arrows represent the new edges added with v, the other
colored arrows are the sweep front. The gray line segments and vertices are the part of
the surface that has already been explored. Part b illustrates Proposition 3, it shows a
rigid but not coplanar surface.

is added, its blue outgoing edge and incoming red edges are added as well. The
green outgoing edge is added only if it is not a green-blue bidirected edge, in this
case it is added when the next minimum is treated. This procedure builds the
Schnyder wood step by step, and needs O(n log n) time when the sweep front is
implemented as a dynamic search tree.

The second part of the algorithm is the computation of the face weights.
After normalizing all coordinate vectors the faces are now considered one by
one. When considering a face F , we first determine the type of F . Based on the
proof of Theorem 7 we distinguish twenty such types.

The weight of F can be computed from certain region weights of boundary
vertices of F . The required region weights are the coordinates of these vertices.
If for example we are in the case shown in Figure 5 then the weight of F is
c−(w2)1−(w3)2−(w2)3 where c is the constant obtained through normalization.

When scanning a face F we touch each edge only once and every edge lies in
at most two inner faces. This implies a runtime of O(n). ⊓⊔

Face counting produces coplanar surfaces supporting a given Schnyder wood
S. In Section 3 we have seen how to construct a rigid surface supporting S.
Coplanarity and rigidity are useful properties for an orthogonal surface. It is
natural to ask whether every Schnyder wood has a supporting surface with both
properties. The answer to this question is negative, the proof of Proposition 3
can be found in [10].

Proposition 3. The Schnyder wood shown in Figure 6.b cannot be embedded
on a rigid and simultaneously coplanar surface.

5 Conclusions

We conclude our investigations of the connections between Schnyder woods and
orthogonal surfaces with an open problem of a flavor similar to Theorem 7. Let
S be a Schnyder wood induced by an orthogonal surface S. From Proposition 1



it follows that the bounded faces of S are in bijection with the maxima of S.
We refer to the set of minima and maxima as V ∪ F . For p ∈ S we define its
height as h(p) = p1 + p2 + p3.

Problem. Given S, do the Schnyder Wood S and the vector h = (h(v))v∈V∪F

of heights uniquely determine S?

We can prove this in the case where the underlying graph is a stacked triangu-
lation. With computer’s help we have verified that the answer is affirmative for
small triangulations with up to twelve vertices.
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