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A rectangular dissection is a partition of a frame rect-
angle into rectangles, Figure 1 shows an example.
Rectangular dissections are studied in various fields:

Figure 1: A rectangular dissection.

• architects look at them in the context of floorplan
generation [11, 14],

• floorplaning is relevant for module placement in
VLSI design [4, 21],

• in graph drawing rectangular dissections play a
role in various representation models for planar
graphs [12, 8],

• in cartography rectilinear dissections are studied
as a special class of cartograms [13, 19, 17].

Figure 2:
Near rectangular dissections in applications.

Note that in the applications the areas of the rect-
angles of a dissection are relevant, actually in most
cases these areas are prescribed. A rectangular dis-
section is area-universal if for any assignment of pos-
itive weights to the rectangles there is an equivalent
dissection such that the areas of rectangles are equal
to the given weights.

The key player in this article is Theorem 2 which
characterizes area-universal rectangular dissections.
In Section 2 we state the theorem and discuss some
proofs and generalizations. Before getting there we
present two problems which do not appear to have
much in common. In Section 3 we show that both
problems can be solved by clever applications of the
theorem.

1 Two Problems

From now on a dissection shall be a rectangular dis-
section unless it is explicitly said. A dissection is
generic if it has no cross, i.e., no point where four
rectangles of the partition meet. A segment of a dis-
section is a maximal nondegenerate interval that be-
longs to the union of the boundaries of the rectan-
gles. In general we disregard the four segments from
the boundary frame, i.e., we only consider inner seg-
ments. Segments are either horizontal or vertical.
The segments of a generic dissection are internally
disjoint. Two dissections R and R′ are weakly equiva-
lent if there exist a bijection φ between their segments
that preserves the orientation (horizontal/vertical)
and such that segment s has an endpoint on segment t
in R iff φ(s) has an endpoint on φ(t) in R′. A set P of
points in IR2 is generic if no two points from P have
the same x or y coordinate.
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Figure 3: A generic set of six points and a generic
dissection with six segments.

Let P be a set of n points in a rectangle frame F
and let R be a generic dissection with n segments.
A cover map from R to P is a dissection R′ that is
weakly equivalent to R and has outer rectangle F
such that every segment of R′ contains exactly one
point from P . Figure 4 shows an example.

a)

Figure 4: Two cover maps from the dissection of
Fig. 3.b to the point set of Fig. 3.a.

Ackerman et al. [1] posed the following problem:

Problem 1 Does a cover map from R to P exist for
all pairs (R,P ) where R is a generic dissection with
n segments and P is a generic set of n points?

The second problem is about rectilinear duals of
planar graphs. In this drawing model the vertices
are represented by simple rectilinear polygons, while
edges are represented by side-contacts between the
corresponding polygons, see Figure 5.

Now assume that positive weights w(v) have been
assigned to the vertices of the graph. A rectilinear
cartogram is a rectilinear dual with the additional
property that for all vertices the area of the poly-
gon representing v equals w(v). A relevant parame-
ter measuring the complexity of a cartogram is the
maximum number of sides of any polygon.

Figure 5: A graph with a rectilinear dual containing
two white holes.

Problem 2 What is the minimum number k such
that any given planar triangulation with positive
weights w(v) admits a rectilinear cartogram with ≤k-
sided polygons in a rectangular frame F of area∑

v w(v)?

A counting argument shows that the minimum k
has to be at least 8. To see this note that a vertex
of degree 3 enforces that at least one of the polygons
representing the neighbors has a concave corner. Now
let T+ be a triangulation obtained from a triangula-
tion T by stacking a new vertex of degree 3 into each
face of T . If T has n vertices, then there are 2n − 5
new vertices in T+. Together the n polygons repre-
senting the old vertices have at least 2n− 5 concave
corners. If n > 5 there is at least one polygon with
two concave corners, hence, with at least 8 sides.

2 The tool: area-universality of
the weak equivalence class

The following theorem is a formalization of the state-
ment given in the heading: weak equivalence classes
are area-universal.

Theorem 1 Let R be a dissection with rectangles
r1, . . . , rn+1, let the frame F be a rectangle and let
w : {1, . . . , n + 1} → IR+ be a weight function with∑

i w(i) = area(F ). There exists a unique dissection
R′ contained in F that is weakly equivalent to R such
that the area of the rectangle φ(ri) in R′ is w(i).

This theorem was first proven by Wimer et al. [21].
They take the width xi and height yi of rectangle ri
as variables and show that the system consisting of
linear equations which correspond to left-to-right and
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bottom-to-top sequences of rectangles together with
the non-linear equations xiyi = w(i) has a unique
solution. The theorem was rediscovered by Eppstein
et al. [5]. They prove it with an argument based
on “invariance of domain”. Both proofs are purely
existential though in [5, 6] it is noted that the solu-
tion can be computed by iteratively reducing the dis-
tance between the present weights and the intended
weight vector (w(i))i. Below we discuss an iterative
approach and a corresponding proof based on ‘air-
pressure’ in some detail. Before getting there, how-
ever, we introduce a class of dissections so that we can
state the most important special case of the theorem.

Two dissections are dual equivalent if they have the
same dual graph. In most applications we are inter-
ested in finding an appropriate member of the dual
equivalence class. If two dissections are weakly equiv-
alent they need not be dual equivalent, for example
in Figure 4 the rectangle in the lower left corner has
4 neighbors in the left dissection but only 3 in the
right dissection.

A segment s of a dissection is one-sided if s is the
side of at least one of the rectangles, in other words
all the segments that have an endpoint on s are on
the same side of s. A dissection is one-sided if every
segment of the dissection is one sided. The following
observation was made in [6].

Proposition 1 All dissections in the weak equiva-
lence class of a one-sided dissection are dual equiva-
lent.

Together with Theorem 1 this yields the key theorem.

Theorem 2
One-sided dissections are area-universal.

With the following definitions we set the stage for
a generalization of Theorem 1. Let µ : [0, 1]2 → IR+

be a density function on the unit square with mass 1,

i.e.,
∫ 1

0

∫ 1

0
µ(x, y)dxdy = 1. We assume that µ is well

behaved so that all the integrals we need exist and
are positive. The mass of an axis aligned rectangle
r ⊆ [0, 1]2 is defined as m(r) =

∫∫
r
µ(x, y)dxdy.

Theorem 3 Let µ : [0, 1]2 → IR+ be a density func-
tion on the unit square. If R is a dissection with
rectangles r1, . . . , rn+1 and w : {1, . . . , n + 1} → IR+

a positive weight function with
∑n+1

1 w(i) = 1 then
there exists a unique dissection R′ in the unit square
that is weakly equivalent to R such that the mass of
the rectangle φ(ri) in R′ is exactly w(i).

In [9] this theorem was proven with the air-pressure
technique proposed by Izumi, Takahashi and Kaji-
tani [10]. A short non-constructive proof of Theo-
rem 3 was given by Schrenzenmaier [16, page 21], he
adapted the proof of Theorem 1 from [5].

We describe the idea from [9]: Consider a real-
ization of R in the unit square and compare the
mass m(ri) to the intended mass w(i). The quotient
of these two values can be interpreted as the pressure
inside the rectangle. Integrating this pressure along
a side of the rectangle yields the force by which ri is
pushing against the segment that contains the side.
The difference of pushing forces from both sides of a
segment yields the effective force acting on the seg-
ment. The intuition is that shifting a segment in
direction of the effective force yields a better balance
of pressure in the rectangles. We show that iterating
such improvement steps drives the realization of R to-
wards a situation with m(ri) = w(i) for all i, i.e., the
procedure converges towards the dissection R′ whose
existence we want to show.

Let ri = [xl, xr]× [yb, yt] be a rectangle of R. The

pressure p(i) in ri is p(i) = w(i)
m(ri)

. Let s be a segment

of R and let ri be one of the rectangles with a side
in s. Let s be vertical with x-coordinate xs and let
s∩ri span the interval [yb(i), yt(i)]. The (undirected)
force imposed on s by ri is the pressure p(i) of ri times
the density dependent length of the intersection.

f(s, i) = p(i)

∫ yt(i)

yb(i)

µxs
(y)dy.

The force acting on s is obtained as a sum of the
directed forces imposed on s by incident rectangles.

f(s) =
∑

ri left of s

f(s, i)−
∑

ri right of s

f(s, i).

Symmetric definitions apply to horizontal segments.
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Balance for rectangles and segments

Definition 1 A segment s is in balance if f(s) = 0.
A rectangle ri is in balance if m(ri) = w(i), i.e., if
p(i) = 1.

Lemma 1 All rectangles ri of R are in balance if and
only if all segments are in balance.

Proof. We only show one direction. Since all rect-
angles are in balance we can eliminate the pressures
from the definition of the f(s, i). With this simplifi-
cation we get for a vertical segment s

f(s) =
∑
ri left

∫ yt(i)

yb(i)

µxs(y)dy−
∑

rj right

∫ yt(j)

yb(j)

µxs(y)dy.

Hence f(s) = Ms−Ms = 0, where Ms is the integral
of the fiber density µxs

along s.

Balancing segments and optimizing the
entropy

Proposition 2 If a segment s of R is unbalanced,
then we can keep all the other segments at their po-
sition and shift s parallel to a position where it is in
balance. The resulting dissection R′ is weakly equiv-
alent to R.

Definition 2 The entropy of a rectangle ri of R is
defined as −w(i) log p(i). The entropy of the dissec-
tion R is

E =
∑
i

−w(i) log p(i)

The proof of Theorem 3 is in five steps:

(1) The entropy E is always nonpositive.

(2) E = 0 if and only if all rectangles ri of R are in
balance.

(3) Shifting an unbalanced segment s into its bal-
ance position increases the entropy.

(4) The process of repeatedly shifting unbalanced
segments into their balance position makes R
converge to a dissection R′ such that the entropy
of R′ is zero.

(5) The solution is unique.

3 The solutions

Mapping segments on points

Let R be a generic dissection and S be a subset of the
segments of R of size n and let P be a generic set of
n points in a rectangle F . A cover map from (R,S)
to P is a dissection R′ with outer rectangle F that
is weakly equivalent to R such that every segment in
S′ = φ(S) contains exactly one point from P . The
following theorem answers our first problem.

Theorem 4 If R is a generic dissection with a pre-
scribed subset S of the segments of size n and P is a
generic set of n points in a rectangle F , then there is
a cover map R′ from (R,S) to P .

To be able to use Theorem 3 we first transform
the point set P into a suitable density distribution
µ = µP inside F . This density is defined as the sum
of a uniform distribution µ1 with µ1(q) = 1/area(F )
for all q ∈ F and a distribution µ2 that represents
the points of P . Choose some ∆ > 0 such that for all
p, p′ ∈ P we have |xp−xp′ | > 3∆ and |yp−yp′ | > 3∆,
this is possible because P is generic. Define µ2 =∑

p∈P µp where µp(q) takes the value (∆2π)−1 on the
disk D∆(p) of radius ∆ around p and value 0 for q
outside of this disk.

For a density ν over F and a rectangle r ⊆ F we
let ν(r) be the integral of the density ν over r. Using
this notation we can write µ1(F ) = 1 and µp(F ) = 1
for all p ∈ P , hence the total mass of F is µ(F ) =
1 + n.

Next we transform the dissection R into a dissec-
tion RS depending on the set S of segments that has
to cover the points of P . To this end we replace every
segment in S by a thin rectangle, see Figure 6. Let S
be the set of new rectangles obtained from segments
of S.

Define weights for the rectangles of RS as follows.
If RS has r rectangles we define w(r) = 1 + 1/r if
r ∈ S and w(r) = 1/r for all the rectangles of RS

that came from rectangles of R. Note that the total
weight,

∑
r w(r) = 1 + n, is in correspondence to the

total mass µ(R).
The data R with µ and RS with w constitute,

up to scaling of R and w, a set of inputs for Theo-
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Figure 6: Dissections R with as prescribed subset S
of segments (bold and gray) and the dissection RS

obtained by doubling the segments of S.

rem 3. From the conclusion of the theorem we obtain
a dissection R′S weakly equivalent to RS such that
m(r) =

∫∫
r
µ(x, y)dxdy = w(r) for all rectangles r of

R′S .
The definition of the weight function w and the

density µ is so that R′S should be close to a cover
map from (R,S) to P : Only the rectangles r ∈ S
that have been constructed by inflating segments may
contain a disk D∆(p) and each of these rectangles
may contain at most one of the disks. This suggests
a correspondence S ↔ P . However, a rectangle r ∈ S
can use parts of several discs to accumulate mass. To
find a correspondence between S and P we define a
bipartite graph G whose vertices are the points in P
and the rectangles in S:

• A pair (p, r) is an edge of G iff r ∩D∆(p) 6= ∅ in
R′S .

The proof of the theorem is completed by proving
two claims:

• G admits a perfect matching.

• From R′S and a perfect matching M in G we can
produce a dissection R′ that realizes the cover
map from (R,S) to P .

For the first of the claims we check Hall’s match-
ing condition: Consider a subset A of S. Since RS

is realizing the prescribed weights we have m(A) =
µ(A) =

∑
r∈A µ(r) =

∑
r∈A w(r) = |A|(1 + 1/r).

Since µ1(A) < 1 and µp(A) ≤ 1 for all p ∈ P there
must be at least |A| points p ∈ P with µp(A) > 0,
these are the points that have an edge to a rectan-
gle from A in G. We have thus shown that every
A ⊂ S is incident to at least |A| points in G, hence,
there is an injective mapping α : S → P such that
r ∩D∆(α(r)) 6= ∅ in R′S for all r ∈ S.

Given the matching α the construction of the dis-
section R′ that realizes the cover map from (R,S)
to P is completed in three steps as indicated in Fig-
ure 7.

b)a) c)

Figure 7: a) A solution R′S with a matching indi-
cated by the arrows. b) Segments s ∈ S shifted to
the corresponding points. c) Small final adjustments
(clipping and enlarging) yield R′.

Cartograms with optimal complexity

In a series of papers the complexity of polygons has
been reduced from the initial 40 to 34 then 12 and 10.
Finally, in [3] the following optimal result was ob-
tained.

Theorem 5 Every planar triangulation admits an
area-universal rectilinear cartogram with ≤8-sided
polygons.

The construction is fairly easy with the right tools
at hand. First we need a Schnyder wood of the input
triangulation G. Let a1, a2, a3 be the outer vertices
of G, an orientation and coloring of the inner edges
with with 3 colors (we identify colors (1,2,3) with
(red,green,blue)) is a Schnyder wood if:

(1) All edges incident to an outer vertex ai are in-
edges and colored i.

(2) Every inner vertex v has three outgoing edges
colored red, green and blue in clockwise order.
All the incoming edges in an interval between two
outgoing edges are colored with the third color,
see Figure 8.

These structures were defined by Schnyder in [15],
there it is shown that every triangulation admits a
Schnyder wood. Moreover, if Ti is the set of oriented
edges of color i and T−1

i is the same set with reversed
orientations, then it holds that T1 ∪ T−1

2 ∪ T−1
3 is
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Figure 8: Schnyder’s edge coloring rule.

acyclic. This property can be used to show that ev-
ery triangulation has a contact representation with
internally disjoint ⊥ shapes. Figure 9 shows an ex-
ample.
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Figure 9: A triangulation with a Schnyder wood and
a ⊥-representation

The ⊥-representation can be viewed as a rectan-
gular dissection. Now replace every segment of this
dissection by a thin rectangle. This yields a one-
sided dissection RG, see Figure 10(left). With a ver-
tex v of G we associate the polygon Pv formed as
the union of the two rectangles that were obtained
from the two segments of the ⊥ shape representing v
together with the two rectangles that have parts of
the horizontal segment of this ⊥ as bottom side, see
Figure 10(right).

It is easily checked that the polygons Pv have at
most 8 corners, hence, at most 8 sides. Given a set of
weights w : V → IR+ we can arbitrarily break w(v)
into four positive values and assign these to the rect-
angles constituting Pv. Since the dissection RG is
one-sided and, hence, area-universal there is a re-
alization of the dissection where the area of P (v)
equals w(v).

From the thesis of Torsten Ueckerdt [20] we borrow
our last figure which shows a cartogram displaying
real data. The cartogram was computed with the
method of this section.

5

4

6

2

1

3

Figure 10: The one-sided dissection resulting from
the ⊥-representation of Figure 9.

Figure 11: Central European states represented by
polygons with at most 8 sides (left). A cartogram
where the areas are proportional to the emission of
CO2 in 2009 (right).

4 Background and additional
problems

The two main problems regarding area-universal rect-
angular dissections are the following:

• Given R and w, is it possible to effectively com-
pute the weakly equivalent dissection R′ realizing
the weights? (effective Theorem 1)

• Is it possible to effectively recognize graphs that
admit a one-sided dual.

Beside this it would be very interesting to identify
further instances of area-universality. Two such in-
stances are straight line drawings of 3-regular planar
graphs with prescribed face areas (Thomassen [18])
and straight line drawings of grids with prescribed
face areas, a.k.a. table cartograms (Evan et al. [7]).
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The conjecture of Ackerman et al. [1] regarding
mappings of segments to point sets was motivated by
the study of the function Z(P ) counting rectangu-
lations of a generic point set P . Combining results
from [9](lower) and [1](upper) we know that Z(P ) is
in Θ(8n+1/(n + 1)4) and in O(20n/n4). The lower
bound is tight for some sets P , to improve the upper
bound remains an intriguing problem.

The construction of area-universal rectilinear car-
tograms with ≤8-sided polygons is from Alam et
al. [3]. As already noted the construction based on
our key theorem is not known to be effective. Effec-
tive constructions of cartograms with ≤8-sided poly-
gons are known for certain Hamiltonian triangula-
tions [3] and with ≤10-sided polygons for general tri-
angulations [2] Can cartograms with ≤8-sided poly-
gons be constructed effectively for general triangula-
tions?

Recognition of planar graphs which admit rectan-
gular cartograms or cartograms with ≤6-sided poly-
gons is also wide open.
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