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Abstract. We study a min-max relation conjectured by Saks and West:
For any two posets P and Q the size of a maximum semiantichain and
the size of a minimum unichain covering in the product P ×Q are equal.
For positive we state conditions on P and Q that imply the min-max
relation. However, we also have an example showing that in general the
min-max relation is false. This disproves the Saks-West conjecture.

1 Introduction

Partial order theory plays an important role in many disciplines of computer sci-
ence and engineering. It has applications in distributed computing, concurrency
theory, programming language semantics and data mining. Posets and partic-
ularly products of posets are used for modeling dynamic behavior of complex
systems that can be captured by causal relations. Min-max relations in posets,
such as Dilworth’s Theorem [1], relate to flow problems, perfect matchings and
integer programming. Often the proofs are constructive using methods of com-
binatorial optimization.

This paper is about min-max relations with respect to chains and antichains
in posets. In a poset, chains and antichains are sets of pairwise comparable and
pairwise incomparable elements, respectively. By the height h(P ) and the width

w(P ) of poset P we mean the size of a largest chain and a largest antichain,
respectively.

Dilworth [1] proved that any poset P can be covered with w(P ) many chains.
Greene and Kleitman [4] generalized Dilworth’s Theorem. A k-antichain family

in P is a subset of P which may be decomposed into k disjoint antichains.
We denote the size of a maximal k-antichain family of P by dk(P ) or simply
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dk if the poset is unambiguous from the context. The theorem of Greene and
Kleitman says that for every k there is a chain-partition C of P such that dk(P ) =∑

C∈C min(k, |C|). In [9] (also see [13]) Saks proves the theorem of Greene and
Kleitman by showing the following equivalent statement.

Theorem 1. In a product C × Q where C is a chain, the size of a minimum

chain covering with chains of the form {c} × C′ and C × {q} equals the size

of a maximum subset S ⊆ C ×Q containing no two-element chain of the form

{c} × C′ or C × {q}. In particular this number is dmin(|C|,h(Q))(Q).

The Saks-West Conjecture states a generalization of Theorem 1. In a product
P × Q we call a chain a unichain if it is of the form {p} × C′ or C × {q}. A
semiantichain is a set S ⊆ P ×Q such that no two distinct elements of S form
a unichain. The conjecture states that the size of a largest semiantichain equals
the size of a smallest unichain covering. Several partial results and special cases
for posets satisfying the conjecture were obtained in the [8, 10, 11, 16, 17].

This paper is structured as follows. In Section 2 we provide a sufficient cri-
terion for pairs of posets to satisfy the Saks-West Conjecture. This allows to
reproduce several known results and to contribute new classes satisfying the
conjecture. Moreover, we present a new class of posets, such that all P from this
class satisfy the conjecture with any Q. For negative, in Section 3 we provide a
counterexample to the Saks-West Conjecture. The example can be modified to
produce an arbitrary large gap between the size of a largest semiantichain and
the size of a smallest unichain covering. In Section 4 we comment on some nat-
ural dual versions of the Saks-West Conjecture raised by Trotter and West [12]
and ask a few open questions related to algorithmic complexity

2 Constructions

In this section we obtain positive results for posets admitting certain chain and
antichain partitions. Dually to the concept of k-antichain family we call a subset
of P a k-chain family if it is the union of k disjoint chains. Similarly to dk(P )
we denote the size of a maximal k-chain family of P by ck(P ) or simply ck. We
will make use of the following theorem of Greene [3]:

Theorem 2. For any poset P there exists a partition λP = {λP
1 ≥ . . . ≥ λP

w}
of |P | such that ck(P ) = λP

1 + . . . + λP
k and dk(P ) = µP

1 + . . . + µP
k for each k,

where µP denotes the partition conjugate to λP , i.e., µP
i = max{j | λP

j ≥ i} for

i = 1, . . . , h(P ).

Following Viennot [14] we call the Ferrers diagram of λP the Greene diagram

of P , denoted by G(P ). We say that P is d-decomposable if it has an antichain

partition A1, A2, . . . , Ah with |
⋃k

i=1 Ai| = dk for each k. This is, |Ak| = µP
k for

all k.
For posets P and Q with families of disjoint antichains {A1, . . . , Ak} and

{B1, . . . , Bℓ}, respectively, the set A1 ×B1 ∪ . . .∪Amin(k,ℓ) ×Bmin(k,ℓ) is a semi-
antichain of P × Q. A semiantichain that can be obtained this way is called
decomposable semiantichain, see [10]. By our definitions we have the following
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Fig. 1. A poset P with its Greene diagram G(P ). Note that P is not d-decomposable
but c-decomposable.

Observation 3 If P and Q are d-decomposable, then P ×Q has a decomposable

semiantichain of size
min(hP ,hQ)∑

i=1

µP
i µ

Q
i .

In order to construct unichain coverings for P ×Q one can apply Theorem 1
repeatedly. The resulting coverings are called quasi-decomposable in [10]. More
precisely

Proposition 1. In a product P × Q where C is a chain covering of P there is

a unichain covering of size

∑

C∈C

dmin(|C|,h(Q))(Q).

Proof. Use Theorem 1 on every C × Q for C ∈ C. The union of the resulting
unichain coverings is a unichain covering of P × Q and is of the claimed size.

⊓⊔

Dually to d-decomposable we call P c-decomposable if it has a chain partition
C1, C2, . . . , Cw with |

⋃k
i=1 Ci| = ck, i.e., |Ck| = λP

k for all k. Chain partitions
with the latter property have been referred to as completely saturated, see [10,
7]. The following theorem has already been noted implicitly by Tovey and West
in [10].

Theorem 4. If P is c- and d-decomposable and Q is d-decomposable, then the

size of a maximum semiantichain and the size of a minimum unichain covering

in the product P × Q are equal. The size of these is obtained by the two above

constructions, i.e.,

min(hP ,hQ)∑

i=1

µP
i µ

Q
i =

w(P )∑

j=1

dmin(λP
j
,h(Q))(Q).



Proof. Since P and Q are d-decomposable, there is a semiantichain of size∑min(hP ,hQ)
i=1 µP

i µ
Q
i by Observation 3. On the other hand if we take a chain cov-

ering C of P witnessing that P is c-decomposable we obtain a unichain covering

of size
∑w(P )

j=1 dmin(λP
j ,h(Q))(Q) by Proposition 1. We have to prove that these

values coincide. Therefore consider the Greene diagrams G(P ) and G(Q). Their
merge G(P,Q) is the set of unit-boxes at coordinates (i, j, k) with j ≤ w(P ),

i ≤ min(λP
j , h(Q)), and k ≤ µ

Q
i , see Figure 2. Note that the merge is not sym-

metric in P and Q. Now counting the boxes in G(P,Q) by j-slices is just the
right hand side of our formula. On the other hand if we count the boxes by
i-slices we obtain the left hand side of the formula. This concludes the proof.

⊓⊔

G(Q) G(P ) G(P,Q)

i

k
j

Fig. 2. The merge of two Greene diagrams.

Theorem 4 includes some interesting cases for the min-max relation that have
been known but also adds a few new cases. These instances follow from proofs
that certain classes of posets are d-decomposable, respectively c-decomposable.

A graded poset P whose ranks yield an antichain partition witnessing that
P is d-decomposable is called strongly Sperner, see [6]. For emphasis we repeat

• Strongly Sperner posets are d-decomposable.

For a chain C in P denote by r(C) the set of ranks used by C. A chain-
partition C of P is called nested if for each C,C′ ∈ C we have r(C) ⊆ r(C′)
if |C| ≤ |C′|. The most famous class of nested chain partitions are the sym-
metric chain partitions. In [6] it is proved that nested chain-partitions are com-



pletely saturated and that posets admitting a nested chain partition are strongly
Sperner. Hence we have the following

• Posets that have a nested chain partition are c- and d-decomposable.

The fact that products of posets with nested chain partitions satisfy the Saks-
West Conjecture was proved earlier in [16]. A special class of strongly Sperner
posets are LYM posets. A conjecture of Griggs [5] that remains open [2, 15] and
seems interesting in our context is that LYM posets are c-decomposable.

• Orders of width at most 3 are d-decomposable.

Proof. Since P has width at most 3 there are only three possible values of µi in
the Greene diagram of P . Let a, b, c be the numbers of 3s, 2s, and 1s in µ1, . . . , µk,
respectively. We have to find an antichain partition of P such that a antichains
will be of size 3, b antichains will be of size 2 and c antichains will have size 1.
Let A ⊆ P be a maximum (a+b)-antichain. We have the following |A| = 3a+2b,
h(A) = a + b and |P − A| = c. The last gives us c antichains of size 1. To find

the other antichains consider a partition A =
⋃h(A)

i=1 Bi such that Bi is the set of
minimal points in Bi∪ . . .∪Bh(A). Since |Bi| 6 3 we may consider a′, b′, c′ as the
numbers of 3s, 2s, and 1s in all |Bi| (for i = 1, . . . , h(A)). With these numbers
we have |A| = 3a′ + 2b′ + c′ and h(A) = a′ + b′ + c′. Obviously, a′ 6 a because
otherwise there would be an (a+1)-antichain in A bigger than 3a+2. Also, note
that |A| − 2h(A) = a = a′ − c′. Thus c′ = 0, a′ = a and b′ = b. This concludes
the proof. ⊓⊔

• Series-parallel orders are c- and d-decomposable.

Proof. This can be proved along a composition sequence. Therefore let the
antichain-partitions {A1, . . . , Ah(P )} and {A′

1, . . . , A
′
h(P ′)} be witnesses for d-

decomposability of P and P ′, respectively. In a parallel composition P ‖ P ′

any k-antichain family decomposes into a k-antichain family of P and one of
P ′ and vice-versa. Hence dk(P ‖ P ′) = dk(P ) + dk(P ′). Say h(P ) ≤ h(P ′),
then {A1 ∪ A′

1, . . . , Ah(P ) ∪ A′
h(P ), A

′
h(P )+1, . . . A

′
h(P ′)} is an antichain partition

of P ‖ P ′ proving it to be d-decomposable. In a series composition P ;P ′ any
k-antichain family decomposes into a (k − ℓ)-antichain family of P and an ℓ-
antichain family of P ′ and vice-versa. Ordering A1, . . . , Ah(P ), A

′
1, . . . , A

′
h(P ′) by

decreasing size yields a witness for d-decomposability of P ;P ′. The proof for
c-decomposability goes along the same lines. ⊓⊔

Since weak orders form a subclass of series-parallel orders we immediately get:

• Weak orders are c- and d-decomposable.

We call a poset P rectangular if P contains a poset L consisting of the
disjoint union of w chains of length h and P is contained in a weak order U of
height h with levels of size w each. Here containment is meant as an inclusion
among binary relations. Clearly, rectangular posets are graded with nested chain-
decomposition. Thus they are c-and d-decomposable, but more can be said.



According to our knowledge the next result is the strongest generalization of
Theorem 1 that has been obtained so far.

Theorem 5. In a product P×Q where P is rectangular of width w and height h

the size of a largest semiantichain equals the size of a smallest unichain covering.

Moreover, this number is w · dmin(h,h(Q))(Q).

Proof. P contains a poset L consisting of the disjoint union of w chains of length
h and P is contained in a weak order U of height h with levels of size w. By
Proposition 1 we have a unichain covering of L×Q of size

∑w

i=1 dmin(h,h(Q))(Q).
Moreover this is an upper bound on the size of a minimum unichain covering of
P×Q. On the other hand in U×Q we can find a decomposable semiantichain as a
product of the ranks of U with the antichain decomposition B1, . . . , Bmin(h,h(Q))

of a maximal min(h, h(Q))-antichain family in Q. The size of this semiantichain

is then
∑min(h,h(Q))

i=1 w|Bi| = w · dmin(h,h(Q))(Q) in U ×Q. This is a lower bound
on the size of the largest semiantichain in P ×Q. This concludes the proof. ⊓⊔

3 A bad example

To analyze the upcoming example we need the following property of weak orders.

Proposition 2. If P is a weak order and Q is an arbitrary poset, then the

maximal size of a semiantichain in P × Q can be expressed as
∑k

i=1 µ
P
i · |Bi|

where B1, B2, . . . , Bk is a family of disjoint antichains in Q.

Proof. Let S be a semiantichain in P ×Q. For any X ⊆ P denote by S(X) :=
{q ∈ Q | p ∈ X, (p, q) ∈ S}. Recall that for any p ∈ P the set S({p}) (or
shortly S(p)) is an antichain in Q. Now take a level Ai = {p1, . . . , pk} of P

and let Bi be a maximum antichain among S(p1), . . . , S(pk). Replacing {p1} ×
S(p1), . . . , {pk}×S(pk) in S by Ai ×Bi we obtain S′ with |S′| ≥ |S|. Moreover,
since P is a weak order the S(Ai) are mutually disjoint. This remains true in S′.
Thus S′ is a semiantichain. Applying this operation level by level we construct
a decomposable semiantichain of the desired size. ⊓⊔

Let P and Q be the posets shown on in Figure 3. Since Q is a weak-order
we can use Proposition 2 to determine the size of a maximum semiantichain in
P × Q as 15 = 5 · 2 + 5 · 1 = 6 · 2 + 3 · 1. We focus on two of the maximum
semiantichains:

S1 = {1, 2, 3, 4, 9, 10}× {b, c} ∪ {6, 7, 8} × {a}

and
S2 = {1, 2, 7, 8, 9, 10}× {b, c} ∪ {3, 4, 5} × {a}

If there is an optimal unichain covering of size 15 then every unichain has to
contain one element of each of the two semiantichains S1 and S2. We say that the
element of a maximum semiantichain is paying for the unichain that contains it.
Now look at the three points (11, a), (12, a) and (13, a), they have to be covered
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Fig. 3. A pair (P,Q) of posets disproving the conjecture.

with P -chains. To pay for these three P -chains we need the elements (6, a), (7, a)
and (8, a) from S1 and the elements (3, a), (4, a) and (5, a) from S2. This implies
that (6, a), (7, a) and (8, a) and (3, a), (4, a) and (5, a) have to be covered with
the same three chains of the unichain covering. Since the poset induced by these
6 points has width 4 we have reached a contradiction. Consequently there is no
unichain covering of P ×Q with 15 unichains.

The above construction can be improved to get the gap between a maximum
semiantichain and a minimum unichain covering as big as we want. To see that
just replace Q by a height 2 weak order Q′ with a set A1 of k minima and
a set A2 of k + 1 maxima. Now consider P ′ arising from P by blowing up
the antichains {1, 2} and {9, 10} to antichains of size k + 1. As in the above
proof the size of the maximum semiantichains of P ′ × Q′ can be determined
to be (k + 4)(k + 1) + (k + 4)k = (2k + 4)(k + 1) + 3k. As above, the chains
containing the 3k elements {11, 12, 13}×A1 have to cover the subposet induced
by {3, 4, 5, 6, 7, 8}×A1. The latter is of width 4k. Hence the size of a minimum
unichain covering is of size (2k + 4)(k + 1) + 4k. We have:

Remark 1. The gap between the size of a maximum semiantichain and a mini-
mum unichain covering in P ′ ×Q′ is k.

Recall that there is no gap if one factor of the product is rectangular (see The-
orem 5). Here Q′ is almost rectangular but the gap is large.

In [8] some partial results concerning the conjecture were obtained for the
class of two-dimensional posets. Note that the two factors in our counterexample
are two-dimensional.



4 Further comments

4.1 A question of Trotter and West

In [12] Leslie E. Trotter, Jr. and Douglas B. West define a uniantichain to be
an antichain in P × Q in which one of the coordinates is fixed, and define a
semichain to be a collection of elements of P ×Q in which pairs of elements are
comparable if they agree in either coordinate. In [12] it is also shown that the size
of a minimum semichain covering equals the size of a largest uniantichain. They
state the open problem whether the size of a minimum uniantichain covering
always equals the size of a largest semichain. We remark that taking the two-
dimensional conjugates of P and Q from the previous section yields a negative
answer to that question. Furthermore our positive results may be “dualized”
to provide classes of posets where the size of a minimum uniantichain covering
always equals the size of a largest semichain.

4.2 Open problems

In the present paper the concept of d-decomposability is of some importance.
Also, it seems to be a natural concept in the context of Greene-Kleitman Theory.
We wonder if there is any “nice” characterization of d-decomposable posets. Let
P be the six-element poset on {x1, x2, x3, y1, y2, y3} with xi ≤ y2 and x2 ≤ yi
for all i = 1, 2, 3, see also Figure 1. Is it true that any poset excluding P as an
induced subposet is d-decomposable? Note that this is not a necessary condition:
The Boolean lattice B5 is strongly Sperner. Hence B5 is d-decomposable but the
set

{{1, 2}, {2, 3}, {1, 3}, {2, 3, 5}, {1, 2, 3}, {2, 3, 4}}

induces P .
Another set of questions arises when considering complexity issues. How hard

are the optimization problems of determining the size of a largest semiantichain
or smallest a unichain covering for a given P × Q? What is the complexity of
deciding whether P ×Q satisfies the Saks-West Conjecture?
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