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Abstract. Sweeping is an important algorithmic tool in geometry. In the first part
of this paper we define sweeps of arrangements and use the ‘Sweeping Lemma’ to show
that Euclidean arrangements of pseudolines can be represented by wiring diagrams and
zonotopal tilings.

In the second part we introduce a further representation for Euclidean arrangements of
pseudolines. This representation records an ‘orientation’ for each triple of lines. It turns out
that a ‘triple orientation’ corresponds to an arrangement exactly if it obeys a generalized
transitivity law. Moreover, the ‘triple orientations’ carry a natural order relation which
induces an order relation on arrangements. A closer look on the combinatorics behind this
leads to a series of signotope orders closely related to higher Bruhat orders. We investigate
the structure of higher Bruhat orders and give new purely combinatorial proofs for the
main structural properties. Finally, we reconnect the combinatorics of the second part
to geometry. In particular we show that maximum chains in the higher Bruhat orders
correspond to sweeps.
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1 Introduction

Sweeping is an important algorithmic tool in geometry. In the first part of this paper
(Sections 2 and 3) we define sweeps of arrangements and use the ‘Sweeping Lemma’ to
prove representations of Euclidean arrangements by allowable sequences, wiring diagrams
(c.f. [11]) and zonotopal tilings (c.f. [26]). We also use the Sweeping Lemma to give a new
proof of Levi’s Extension Lemma.

In the second part (Section 4) we introduce a further representation for Euclidean
arrangements of pseudolines. This representation records an ‘orientation’ for each triple
of lines. It turns out that a ‘triple orientation’ corresponds to an arrangement exactly if
it obeys a generalized transitivity law. Moreover, the ‘triple orientations’ carry a natural
order relation which induces an order relation on arrangements. A closer look on the
combinatorics behind this leads to a series of orders S,(n) whose elements will be called
signotopes. These orders exist for all pairs (r,n) with 1 <r < mn. S,.(n) is closely related
to the higher Bruhat order B(n,r — 1) defined by Manin and Schechtman [17] and further
studied by Ziegler [26]. We investigate the structure of these orders and give a purely
combinatorial proof for the main structural result on higher Bruhat orders: There is a
surjective mapping, C' — a¢, from maximum chains in S, _1(n) to elements of S,(n)
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In Section 5 the combinatorics of the second part is reconnected to geometry: A
signotope a € Sy (n) represents an arrangement A(«) of n pseudohyperplanes in R” and a
maximum chain C in S,_;(n) represents a sweep of the arrangement A(a¢) in R".

Section 6 concludes with a brief collection of open problems.

1.1 Arrangements of Pseudolines

A pseudoline is a curve in the Euclidean plane whose removal from the plane leaves two
unbounded connected components. In other words: a pseudoline is a simple curve which
goes to infinity on both sides. An arrangement of pseudolines is a family of pseudolines
with the property that each pair of pseudolines has a unique point of intersection, where
the two pseudolines cross. Since in this paper we are not concerned about realizabil-
ity questions we abbreviate and say arrangement when we really mean arrangement of
pseudolines, we also say line instead of pseudoline.

An arrangement is simple if no three pseudolines have a common point of intersection.
The order of an arrangement is the number of its pseudolines. An arrangement partitions
the plane into cells of dimensions 0, 1 or 2, the vertices, edges and faces of the arrange-
ment. Two arrangements are isomorphic if there is an isomorphism of the induced cell
decompositions respecting the labeling of the lines. Edges and faces of the arrangement
may either be bounded or unbounded. Let F' be an unbounded cell of arrangement 4 and
let F be the complementary face of F, i.e., the face separated from F by all pseudolines.
We may orient all pseudolines such that F' is in the left halfspace and F in the right
halfspace of every line. This orientation of pseudolines induces an orientation of the edges
of the arrangement. The pair (A, F') is a marked arrangement or an arrangement with
northface F and southface F. If there is no explicit reference to the northface of a marked
arrangement A embedded in a coordinatized plane we assume that the northface is the
face containing the ray to (0, 00). Two marked arrangements are isomorphic if there is an
isomorphism of the induced cell decompositions respecting the labeling and the orientation
of the edges. See Figure 1 for an illustration.
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Figure 1: Arrangements 4 and B are isomorphic as arrangements but non-isomorphic as
marked arrangements.



2 Sweeping the Plane

Our main tool in proving a number of combinatorial encodings for Euclidean arrangements
in Section 3 will be the ability of sweeping the arrangement. In this section we set up
this tool, the main result is the Sweeping Lemma (Lemma 1) showing that Euclidean
arrangements can be swept. This result is not new, we are aware of at least two sources.
Snoeyink and Hershberger [22] have a theorem implying the Sweeping Lemma for simple
arrangements. In the book on oriented matroids [1] a result equivalent to the Sweeping
Lemma is derived as a consequence of Levi’s extension lemma. Here we revert the direction
and prove Levi’s extension lemma (Lemma 6) using sweep techniques.

To begin with we formalize the notion of a sweep. Let (A, F') be a marked arrangement.
A sweep of A with northpole in F' is a sequence cg, ¢1, - . - ¢, of curves such that each curve

¢; has fixed points Z € F and = € F as endpoints. Further requirements are:
(1) None of the curves ¢; contains a vertex of arrangement A.

(2) Each curve ¢; has exactly one point of intersection with each line [;.
(3) Besides at their endpoints any two curves ¢; and ¢; are disjoint.

(4)

For any two consecutive curves ¢;, ¢;11 of the sequence there is exactly one vertex
of arrangement A between them, i.e., in the interior of the closed curve ¢; U ¢;41.

5) Every vertex of the arrangement is between a unique pair of consecutive curves
y g que p )
hence, the interior of the closed curve ¢g U ¢, contains all vertices of A.

See Figure 2 for an example of a sweep for the arrangement A of Figure 1.

Figure 2: A sweep for arrangement A

Note that if ¢g, ..., ¢, is a sweep for A then the reversed sequence is also a sweep for
A. One of these sweeps is from left to right and the other from right to left. As usual we
will always think of a sweep as a left to right sweep. A discrete sweep as defined here can



be transformed into a continuous sweep by appropriate interpolation between any pair c;,
¢i+1 of curves. The dependency on the chosen points z and T can also be eliminated.

Lemma 1 (Sweeping Lemma) Let (A, F) be a marked Euclidean arrangement of pseu-
dolines. Then there is a sweep sequence of curves for A, i.e., A can be swept.

Proof. Let G = (V, E) be the graph such that the vertices V' of G are the vertices of A
and the edges of G are the finite edges of the arrangement A. Let E be the orientation
of the edges of G induced by the orientation of pseudolines (the northface is in the left
halfplane of each pseudoline).

Claim A. The orientation B is an acyclic orientation of G.

Walking ‘at infinity’ and clockwise from F to F the pseudolines of A are met in some
order. Let permutation 7 be the corresponding order of the labels, w.l.o.g. we assume that
7 is the identity.

We prove the above claim by contradiction: Assuming that E is not acyclic we choose
a cycle C such that the area enclosed by the corresponding curve in A4 is minimal. Tt is
easy to conclude that C corresponds to the boundary of a face of A. With respect to this
face the cycle C' may be oriented clockwise or counterclockwise. We consider the first case
(clockwise) the other is symmetric.

Let eq,eg,..., e, be edges of C' and let i; be the supporting pseudoline of e;. Since
e; and ej;q1 are consecutive on C' the lines 7; and ;41 cross at a vertex of C. From the
definition of 7 and the clockwise orientation of C' it follows that i; < i;;1 (see Figure 3).
Hence 11 <19 < ... < 1 < %1 a contradiction. AN

increasing line labels

Figure 3: Assuming an oriented cycle.

Since G = (V, ﬁ) is acyclic there exists a topological sorting vy, va,...,v, of G. Fix
points x € F and T € F.



Claim B. There exists a sweep of curves ¢, c1,..., ¢, such that vertices vy,...,v; are to
the left of ¢; and vertices v;y1,...,v, are to the right of ¢; for alls =1,...,r.

Proof. Let R be the union of the closed bounded cells of A. Define ¢y as the union of
three curves. The first and the second connect = to R within F and Z to R within F, the
third is the left boundary of an e-tube of the left boundary of R and connected to the two
other curves. For an appropriate € this gives a curve as desired.

Now suppose that ¢; 1, ¢ < r, has been defined. Let i,...,%; be the lines of A
containing vertex v; and assume 4; < ... < 4;. Let T be the triangle defined by curve
¢i—1 and the two lines iy and 4;. Since v; is a source (minimal) in the restriction of
t0 vy ..., v, and vy,...,v;_1 are left of ¢;_; vertex v; is the unique vertex of A in the
triangular region T'. Define ¢; as the right boundary of an e-tube around ¢;_; and T'. For
an appropriate e this gives a curve as desired, see Figure 4. A

Figure 4: Defining ¢; based on ¢;_1 and the shaded triangular region T

This concludes the proof of the lemma. O

3 Applications of Sweeping

In combinatorial geometry it is often useful to encode a geometric object by a combinatorial
structure and further work with this structure. There are several combinatorial encodings
for arrangements. In the first part of this section we review allowable sequences and wiring
diagrams. These representations have been introduced by Goodman and Pollack [11]. The
same authors [12] give an overview on work related to allowable sequences and mention
some applications. There are two reasons to including a complete treatment of this subject
here. The relation between allowable sequences and arrangements of pseudolines is a
special case of a more general phenomenon in the theory of signotopes (higher Bruhat
orders) which will be the topic of Subsection 4.4, Theorem 13. Furthermore we believe
that sweeps are the natural approach to these representations.



In Subsection 3.2 we prove the equivalence between arrangements and zonotopal tilings.
This is a special (rank 3) case of the celebrated Bohne-Dress Theorem which states a
bijection between zonotopal tilings and oriented matroid liftings. No elementary proof of
the special case was known. Recently we learned that Elnitsky [4] found another simple
proof for the correspondence. We will make use of zonotopal tilings in our figures since
they provide us with canonical pictural representations of arrangements, see e.g. Figure 8.

Further sources for encodings of arrangements are Goodman and Pollack [12], Edels-
brunner [3], Felsner [5] and Knuth [15].

In the last application we use the sweep technique to prove Levi’s extension lemma.

3.1 Allowable Sequences and Wiring Diagrams

Let ¢g,c1, ..., ¢, be a sweep sequence of curves for the marked arrangement (A, F') of order
n. Traversing curve ¢; from T to £ we meet the lines of A in some order. Since each line is
met by ¢; exactly once the order of the crossings corresponds to a permutation 7; of [n].

Consider the labels of lines crossing at vertex v;. Since the region T defined in the
proof of Claim B is empty of vertices of A and by property 2 of the sweep curve c¢;
the lines i1,...,4; containing vertex v; are a consecutive substring of m;_1. Moreover,
in permutation m; 1 these lines are in the reversed order and this is the only difference
between m;_1 and m;. Relabeling the lines of A appropriately we may assume that mg is
the identity permutation.

Example A. The sequence of permutations obtained from the sweep of Figure 2 is
4,5 1,2 1,3,5 2,5 1,4
(1,2,3,4,5) — (1,2,3,54) — (2,1,3,54) — (2,5,3,1,4) — (5,2,3,1,4) —

2,3 2,4 3,4
(5,2,3,4,1) = (5,3,2,4,1) = (5,3,4,2,1) = (5,4,3,2,1).
The sequence 7, ..., has the following properties:
(1) mp is the identity permutation and , is the reverse permutation on [n].

(2) Each permutation 7;, 1 <4 < r is obtained by the reversal of a consecutive substring
M; from the preceding permutation 7;_1.

(3) Any two elements z,y € [n] are joint members of exactly one move M;, i.e., reverse
their order exactly once.

A sequence ¥ = mq,...,m, of permutations with properties (1), (2) and (3) is called an
allowable sequence of permutations. If each move from m;_1 to m; consists in the reversal of
just one pair of elements, i.e., an adjacent transposition, we have r = (g) and the sequence
Y is called a simple allowable sequence. We have thus seen how to obtain an allowable
sequence of permutations from every marked arrangement (A, F'). However, more can be
said:

Every topological sorting of the graph 8 of (A, F) induces an allowable sequence.
Consider the allowable sequences Y and ¥’ corresponding to topological sortings o and o’

of 6 with the property that o = vy,...,v;,v01,...,v, and o' = vy,...,0i41,0iy...,0p,
i.e., 0 and ¢’ differ in an adjacent transposition. It follows that v; and v;y are both
minimal elements in the restriction of G to {v;,vi+1,vit2,...,v,}. Hence, there is no

line in A that contains vertices v; and v;y1 and the labels of lines involved in the moves
M; : -y — m; and My : m; — miy1 in ¥ are disjoint. In fact for j # 4,4 + 1 the



permutations 7; and w; in ¥ and X' coincide and M] = M;; and M/, ; = M;. Call two
allowable sequences ¥ and Y elementary equivalent if ¥ can be transformed into ¥’ by
interchanging two disjoint adjacent moves. Two allowable sequences ¥ and ¥/ are called
equivalent if there exists a sequence ¥ = Xy, 35, ..., 3, = ¥/ such that 3; and ¥;,; are
elementary equivalent for 1 < ¢ < m. It is well known that it is possible to transform any
topological sorting of a directed acyclic graph G into any other by a sequence of adjacent
transpositions, i.e., reversals of adjacent pairs of unrelated vertices. Therefore, any two
allowable sequences corresponding to the same marked arrangement (A, F') are equivalent.

Theorem 2 There is a bijection between equivalence classes of allowable sequences and
marked arrangements of pseudolines. Moreover, this bijection maps simple allowable se-
quences to simple arrangements.

Proof. We have already seen how to define the equivalence class of allowable sequences
corresponding to a marked arrangement.

Let 3 be an allowable sequence. Start drawing n horizontal lines called wires and
vertical lines pg,...,p,. Label the crossing of the ith wire from below with p; with the
label p;(i). Draw pseudoline ¢ such that it interpolates the crossings with its label as in
Figure 5.

Po b1 D2 b3 Y& b5 Pe b7 Dbs

A A
V A
J\ A X
A X

— N W Ot

Figure 5: A wiring diagram for the arrangement of Figure 2

Following Goodman [9] we call the arrangement thus obtained a wiring diagram for ¥.
Since the vertical lines py, ..., p, essentially are a sweep sequence of curves for the wiring
diagram we see that the mapping from arrangements to allowable sequences is surjective.
Let (A, F) be any marked arrangements (A, F') such that ¥ corresponds to a sweep of
cg,...,cp of A. It is obvious that the part of A between c;_; and ¢; is isomorphic to the
part of the wiring diagram between p; 1 and p;. These isomorphisms for ¢ = 1, .., can be
glued together to an isomorphism of the arrangements. This proves injectivity and hence
the first part of the theorem.

The second part of the theorem is obvious. O

It is interesting to ask for the change in the representation when the northface is
changed. Let (A, F) be a marked arrangement and redefine the northface to be the
unbounded 2-cell F’ to the left of F. Cells F and F' are separated by line n. The directed
graph @' is obtained from G by reverting the orientations of all edges with supporting
line n. Now choose a topological sorting o for @ such that all vertices of A which are
right or (below) line n precede the vertices on n and all vertices left or (above) line n



come later. Let v,...,v; 1, be the left block of o, v;,...,v; 1 be the middle block, i.e.,
the ordered sequence of vertices on line n, and vj,...,v, be the right block. It follows
that vi,...,v;—1,vj—1,...,v,9j,...,0; is a topological sorting of 6’. Note that the order
in which the lines enter v, for ¢ < k < j has also changed, in @ line n was the highest
line entering v, and in ﬁ’ line n is the lowest line entering vg. Hence, from the allowable
sequence X of (A, F) with moves Mj,..., M, corresponding to v1,...,v, we obtain a
sequence Xj with moves My, ..., M;_q, M]’Ll, ooy M, M, ..., M,, where M} is obtained
from M}, by moving element n from the top to the bottom. An allowable sequence ¥’ for
(A, F") is obtained from X by relabelingn -1 —2— ... 5 n—-1—n.

We briefly mention another representation for marked arrangements where the change
from the representation of (A, F') to the representation (A, F') is more transparent. Let
a; be the permutation of {1,..,n} \ 7 reporting the order from left to right in which the
other pseudolines cross line i, for i = 1,..,n. Goodman and Pollack [11] call this the local
sequences of unordered switches of the arrangement. Felsner [5] used sweeps to show
that local sequences are a representation for marked arrangements. In case of non-simple
arrangements local sequences are slightly more general structures than permutations since
several lines can cross line ¢ in the same point. For the arrangement of Figure 2 the local
sequences are a; = [2,{3,5},4], as = [1,5,3,4], as = [{1,5},2,4], as = [5,1,2,3] and
a5 = [4,{1,3},2]. To change from the local sequences of (A, F) to those of (A, F') we
revert sequence «,, and relabeln -1 — 2 — ... = n —1 — n as before. In Section 4
Theorem 8 we characterize those («;);=1., corresponding to simple marked arrangements.

3.2 Zonotopal Tilings

A particularly nice representation of arrangements of pseudolines is the representation by
‘zonotopal tilings’. Basically this is a standardized drawing of the ‘dual graph’ of the
arrangement. Figure 6 should make the connection clear. Below, in Theorem 3 we prove
a bijection between zonotopal tilings and arrangements.

Figure 6: An arrangement with its dual graph and the dual graph as zonotopal tiling.

A 2-dimensional zonotope is a centrally symmetric 2n-gon, or equivalently the Minkowski
sum of a set of line segments in R2. With a vector v; we associate the line segment
[—vi, +v;]. The Minkowski sum of the line segments corresponding to V = {vy,...,v,} is



the set .
Z(V)={Zcivi:—lgciglforalllgign}.
i=1

A zonotopal tiling T is a tiling of Z(V') by translates of zonotopes Z(V;) with V; C V. A
zonotopal tiling is a simple zonotopal tiling if all tiles are rhombi, i.e., |V;| = 2 for all 4.
A zonotopal tiling together with a distinguished vertex x of the boundary of Z(V) is a
marked zonotopal tiling. The next theorem is a precise statement for the correspondence
suggested by Figure 6. The proof of the theorem is based on a Sweeping Lemma for
zonotopal tilings, Lemma 4.

Theorem 3 Let V be a set of n pairwise non-collinear vectors in R?.

(1)  There is a bijection between marked zonotopal tilings of Z(V') and marked arrange-
ments of order n.

(2)  Via this bijection simple tilings correspond to simple arrangements.

Before going into the proof let us comment on the broader context Theorem 3. the
theorem is equivalent to the rank 3 version of the Bohne-Dress Theorem which gives
a bijection between zonotopal tilings of d-dimensional zonotopes and oriented matroids
of rank d + 1 with a realizable one-element contraction. The correspondence between
oriented matroids and arrangements is given by the representation theorem for oriented
matroids. This theorem states that oriented matroids of rank d + 1 are in bijection with
arrangements of pseudohyperplanes in d-dimensiononal projective space. An accessible
treatment of these connections is given by Zigler [27]. A more geometric proof of the
Bohne-Dress Theorem was given by Richter-Gebert and Ziegler [20].

In the first part of the proof we give the mapping from zonotopal tilings to equivalence
classes of allowable sequences. Let Z (V') be a marked zonotope with V' a set of n pairwise
non-collinear vectors. The zonotope Z = Z(V) is a centrally symmetric 2n-gon. Rotate
7 such that the distinguished vertex z is the unique highest vertex of Z, in particular the
boundary of Z has no horizontal edge. Assume that the vectors in V are labeled such
that along the left boundary of Z, i.e., on the left path from the lowest vertex T to z, the

segments correspond to vy, ve,...,v, in this order.
Given a zonotopal tiling 7 consider the set of y-monotone path along segments of
T from Z to x. We define a sweep of T with northpole x as a sequence pg,p1,...,pr of

y-monotone path from T to z in 7 with the following properties.

(1) Any two consecutive paths p;, p;11 of the sequence have exactly one tile T; of tiling
T between them, i.e., in the interior of the closed curve p; U p;i1.

(2) Every tile is between a unique pair of consecutive paths, therefore, py U p, is the
boundary of Z(V).

As we did for sweeps of arrangements we further assume that the sweep of T is from
left to right, i.e., pg is the left boundary of Z (V).

Remark. There is some interest in the maximum number m(n) of y-monotone T to = path
a marked zonotopal tiling can have. Knuth [15, page 39] conjectures that m(n) < n2" 2.
Via an inductive argument this would imply that the number of marked arrangements of



n pseudolines is bounded by II}_,m(k). Therefore, the conjectured bound would show

that this number is at most 27°/27°("*) which would be an improvement over the currently
best upper bound 2°-69%” | Felsner [5).

A sweep of tiling 7 induces a total order Ty, Ty, ..., T, on the tiles of 7 with the property
that after removing the tiles of any initial segment Ty,...,T;_1 tile T; can be separated
from the remaining tiles T;,1,...,7, by a translation to the left parallel to the z-axis,
we call this the separation property. Conversely, an order Ty, T5, ..., T, of the tiles with
the separation property corresponds to a sweep: Define path p; as the right boundary of
the union of T,...,T;. To proof that a zonotopal tiling 7 can be swept it is therefore
sufficient to show that there is a total order of the tiles with the separation property.

Guibas and Yao [14] observed that given any set Ci,Cy,...,C, of disjoint convex
objects in the plane there is at least one object C; that can be translated to the left
parallel to the z-axis without ever colliding with another object from the set. Hence, by
induction every set of disjoint convex objects admits a total ordering Cy,Cy, ..., C, with
the separation property, i.e., for i = 1,..,7 given the sets C;,...,C, we can separate C}
from the remaining sets by a translation to the left parallel to the xz-axis. As a special
case we obtain:

Lemma 4 FEvery marked zonotopal tiling T can be swept.

Define a graph G = (V, E) such that the vertices V' of G are the tiles of 7 and the
edges of G are pairs of tiles sharing a common segment. Let E be an orientation of the
edges of G such that an edge {T,T'} of G points from the tile on the left side of the
segment T NT" to the tile on the right side. Since the boundary of Z consists entirely
of non horizontal edges this orientation is well defined. The orientation of the edges of
G represents the ‘immediate blocking relation’” with respect to translations parallel to the
x-axis. From Lemma 4 we obtain:

Fact A. The orientation E is an acyclic orientation of G.

From the correspondence between marked zonotopal tilings and marked arrangements
indicated in Figure 6 we see that we met graph G and its orientation already in the proof
of Lemma 1. A formal proof of this ‘obvious fact’ will be implicit in the next lemma. For
later use we note:

Fact B. Every topological sorting of @ has the separation property.

The next lemma, is the ‘zonotopal equivalent’ of Theorem 2.

Lemma 5 There is a bijection between marked zonotopal tilings and equivalence classes
of allowable sequences. Moreover, this bijection maps simple zonotopal tilings to classes of
simple allowable sequences.

Proof. First we show how to associate an allowable sequence to every sweep of a zonotopal
tiling. Recall that sweeps of 7 correspond to topological sortings of G. Given a sweep
sequence py, . . . , pr of paths we associate to each path p; a sequence m; recording the labels
of the vectors which define the segments along the path in the order of the path from =
to . The sequence 7y is a permutation, the identity. Any two consecutive sequences 7;
and m;41 only differ in a substring where path p; takes the left boundary and path p;;

10



takes the right boundary of tile T;. Since T; is a zonotope the same labels appear on both
boundaries but in reversed order. Hence, all 7; are permutations, moreover, m; — m;41 is
a move as in part (2) of the definition of allowable sequences. We also note that 7, is the
reverse permutation.

It remains to prove property (3) of allowable sequences, namely, that any two elements
a,b € [n] are reversed in exactly one move. This is shown by an argument involving
volumes. Due to a formula of McMullen (see Shephard [21, Prop. 2.2.12]) the volume of

a 2-dimensional zonotope Z(v1,...,v,) is given as follows
vol(Z(vy, ... vn)) =Y _vol(Z(vi,v) =Y _ 4| det(v;,v;)].
i<j i<j

A move reverting iy < i9 < .. < ig corresponds to a tile T = Z(v;,,..,v;,) of volume
Zz‘jq‘k 4|det(v;;,v;,)|. Each pair has to be reversed at least once and this exhausts the
volume of the zonotope Z (V). Hence there can be no additional reversals and property (3)
is established.

Now we have to show that the set of sweeps of 7 maps to an equivalence class of
allowable sequences. From Fact B we already know that the sweeps of 7 are in one-to-one
correspondence with topological sortings of G.

Consider topological sortings o and o’ of E') which only differ in an adjacent trans-
position and let ¥ and X' be the two corresponding allowable sequences. From o =
Ty,....,T;,Tix1,....,Trand o' =Ty,...,Tjs1,T;, ..., T, it follows that the tiles T; and T}
are both minimal elements in the restriction of G to {7}, Tjy1, Tito, ..., T, }. Hence there
is no horizontal line intersecting both of them. From the y-monotonicity of p;_1 and the
fact that m; 1 is a permutation we conclude that V; N V;y1 = 0 when T; = Z(V;) and
Tix1 = Z(Viy1). This shows that the moves M; : m;_1 — m; and M1 : m; — w1 in 2
are disjoint and hence ¥ and ¥ are elementary equivalent. The argument can be read
backwards to show that if ¥ and ¥’ are elementary equivalent allowable sequences and %
corresponds to a topological sorting of G then so does X'.

For the inverse mapping we have to associate a marked zonotopal tiling to an equiva-
lence class of allowable sequences. Build the tiling from left to right starting with the left
boundary of Z(V'). After placing i tiles, three properties remain invariant:

(1) The union of the already placed tiles together with the left boundary of Z is a simply
connected region.

(2) The right boundary of this region is a y-monotone path p;.
(3) The segments along path p; are in the order given by ;.

From this it is obvious that we can place the tile T;;; corresponding to move M;; such
that the invariant remains valid. Since the last permutation 7, is the reverse of the identity
path p, is the right boundary of Z(V'). The volume formula implies that the tiles have
been placed without overlap. Therefore, the placement of tiles Ty,..., T, is a tiling T of

Z(V).
It is easily seen that equivalent allowable sequences lead to the same tiling while non-
equivalent allowable sequences produce different tilings. 0

Theorem 3 is now easily obtained:

11



proof (Theorem 3). Statement (1) is a direct consequence of Theorem 2 and Lemma 5.
Combining the two bijections it is seen that the graph of edges of the marked zonotopal
tiling corresponding is the dual of the graph of the corresponding marked arrangement
with the marked face F' of the arrangement and the marked vertex z of the tiling dually
corresponding to each other. For statement (2) we additionally note that an arrangement
is simple exactly if all bounded regions of the dual graph are quadrangles. O

Remark. Richter-Gebert and Ziegler [20] use a similar volume argument in their proof
of the Bohne-Dress Theorem. A proof of Theorem 3 avoiding the volume argument was
recently given by Elnitsky [4] in the context of reduced decompositions.

3.3 Levi’s Extension Lemma

Lemma 6 Let A be an arrangement of order n and let p,q be two points in the plane
which do not both lie on any of the lines of A. Then there is a pseudoline ¢ containing p
and q such that AU c is an arrangement of order n + 1.

The original source for the lemma stated for projective arrangements is Levi [16], an
English transcription is found in Griinbaum [13]. A proof using a variant of sweeps, namely
cyclic sweeps, was given by Snoeyink and Hershberger [22]. Here we use the projective
space as auxiliary tool.

Proof. We detail the proof for the case where p and ¢ are not incident to a line of A and
leave the obvious modifications to include special cases to the interested reader.

Let p be contained in face F, of A. Let [y,...,[, be the pseudolines of A and without
loss of generality let /; contain an edge e of the boundary of F},. Add the line at infinity I
to the arrangement and map it back to Euclidean space such that [y is the line at infinity
thus obtaining an arrangement A’ with lines [, l2, ... ,[,,. Mark A’ such that p € F, is the
northpole. Apply the Sweeping Lemma to find a curve c crossing the face Fj, containing
g. Line c can be bent in Fj; to make g a point on c. Extending ¢ from p to infinity we see
that A'Uc is an arrangement of order n+ 1. Adding the line at infinity, i.e., /; we obtain a
projective arrangement of order n + 2 which is mapped back to the Euclidean plane using
ls as line at infinity. This gives an arrangement of lines [y,...,[,,c with both points p
and ¢ on line c. 0

It is notable that higher dimensional analogs of the Extension Lemma fail. Examples
can be given of arrangements of pseudoplanes in three-space such that for some triples of
points p, g, r no pseudoplane can be added to extend the arrangement and contain the three
points (see Goodman and Pollack [10]). Richter-Gebert [19] has constructed examples
showing that the above non-existence result is already true for two points instead of three.

4 Flips, Arrangements and Signotopes

In the first part of the paper we have studied arrangements of pseudolines as individual
objects. In this part we will change the focus and consider the set of all arrangements.
More precisely we consider a graph G,, whose vertices are all combinatorially different sim-
ple marked arrangements of n pseudolines in the Euclidean plane and edges corresponding
to elementary flips (see Figure 7), i.e., arrangements A and B are adjacent if they only
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differ in the orientation of a single triangle. Figure 8 shows the graph G, for n = 5 with
the arrangements represented by zonotopal tilings.

Figure 7: Elementary flip at the shaded triangle.

In Subsection 4.1 we introduce an encoding of arrangements by triangle orientations.
This encoding imposes a natural orientation on G,. In Subsection 4.2 we generalize the
patterns and define an order S, (n), for all 1 < r < n, such that S;(n) is the Boolean lattice,
Sa(n) is the weak Bruhat order of the symmetric group and Ss(n) is the abovementioned
orientation of G,. The elements of S,(n) will be called signotopes. Subsection 4.3 gives
some constructions for new signotopes from old ones. The main structural result about
signotopes is the surjective mapping from maximum chains in S,_;(n) to the elements of
Sy(n), this result is derived in Subsection 4.4. Note that we have already seen a special
case of this mapping in Theorem 2: Maximum chains in the weak Bruhat order Sy(n)
are simple allowable sequences and elements of S3(n) are marked simple arrangements of
pseudolines.

4.1 Encoding arrangements by triangle orientations

Flips are nicely described in the different encodings of arrangements. In the encoding by
zonotopal tilings the projection of a cube is replaced by the view of the cube from the
other side. In the encoding by local sequences an adjacent transposition of elements 7 and
J is applied to the local sequence ay, of line k& and similarly to local sequences «; and «;
when the flip-triangle is confined by lines i, 7 and k.

In the representation by allowable sequences the transformation is not that obvious.
The change is easy to describe if we recall that the allowable sequences of a marked
arrangement (A, F') correspond to topological sortings of a directed graph G'. The change
on G is again a local one.

We now introduce a further representation for simple marked arrangements of pseu-
dolines. Let (A, F') be such an arrangement of n pseudolines. Consider the arrangement
induced by a triple of {i, 7, k} of lines of A, where we assume i < j < k. Note that these
three lines can induce two combinatorial different arrangements. Either the crossing of
lines ¢ and k is above line j, denote this by the symbol — or the crossing is below line j,
denoted by +. The shaded triangles of Figure 7 are a — triangle on the left side and a +
triangle on the right side. With this convention a marked simple arrangement induces a
triangle-sign function f : ([731}) —{—,+}

Note that for i < j and all k # 4,j we have f({i,j,k}) = — iff on line k, the crossing
with line 7 precedes the crossing with line j, i.e., on the local sequence ay, the pair (i, 7) is a
non-inversion. Since local sequences encode marked arrangements, i.e., arrangements with
the same local sequences are isomorphic, it follows that the above defined sign patterns
f: ([g}) — {—,+} also encode marked simple arrangements of pseudolines.

13
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Figure 8: The graph G5 as diagram of the signotope order S3(n).

Clearly not every possible sign pattern f : ([g}) — {—,+} will correspond to an

arrangement, there are simply too many such functions. Below we derive an obvious
necessary condition on the sign patterns of arrangements. Later it will be shown that this
necessary condition is already sufficient.

Consider a quadruple of pseudolines h, 4, 7, k of A. These lines induce a marked arrange-
ment of four pseudolines. Since there is only one (unmarked) arrangement of four lines
with eight unbounded faces we easily enumerate the eight possible patterns of triangle-sign
functions for n = 4. The following list shows them, the signs are given in lexicographical
order of the three-sets, i.e, as { sign(1,2,3), sign(1,2,4), sign(1,3,4), sign(2,3,4) }.

{_7 T _}7 {+a T _}= {+a + = _}= {+7 +, +, _}a
{— = —+}h {—- -+ +} {-+++} {+++ +}

From this we obtain a necessary condition for the functions f induced by an arrange-
ment. For A € ([Z}) and 1 < i < 4 we let Al denote the set A minus the ith largest element
of A, e.g., {2,4,5, 9}[3J = {2,4,9}. If f corresponds to an arrangement A then the restric-
tion of A to the four lines of A has a pattern { sign A4 sign A3), sign A2 sign A" } from
the above list. Order the set {—, 4} of signs by — < +. Inspecting the above enumeration
we see that the legal sign patterns are characterized by the following property: For every
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4 element subset P of [n] and all 1 <i < j < k < 4 either f(P1) < f(PU}) < f(P]) or
f(Ply = f(PUly = f(Plk]). This property is called monotonicity.

Theorem 7, whose proof will be given in the next section, shows that monotonicity
already characterizes the sign patterns f : ([g}) — {—, +} encoding arrangements.

Theorem 7 A function f : ([g}) — {—, +} is the triangle-sign function of a marked simple
arrangements Ay of order n if and only if f is monotone on all 4-element subsets of [n].

It is a useful exercise to verify that monotonicity of the triangle-sign function induced
by an arrangement is equivalent to the transitivity of non-inversions and of inversions of
the local sequences ay, hence, equivalent to «j being a permutation. Combining these
remarks with Theorem 7 we obtain:

Theorem 8 A set («)i=1.n with a; a permutation of [n]\ {i} is the set of local sequences
of a simple marked arrangement of order n if and only if for all i < j < k the pairs
(i.4), (i, k), (j, k) are inversions in oy, o, o; or they are all three non-inversions.

An equivalent characterization theorem has been obtained by Streinu [24] in the context
of generalized configurations of points.

4.2 Signotopes and their Orders

In this section we generalize the concept of triangle-sign functions. Recall some notations.
The set [n] = {1,..,n} is equipped with the natural linear order. The set of r element
subsets of [n] is ([’ﬂ). For A € ([:f}) with r > i we let AL’/ denote the set A minus the ith
largest element of A. The set {—,+} of signs is ordered by — < +.

Definition 1 For integers 1 < r < n a r—signotope on [n] is a function « from the r
elements subsets of [n] to {—,+} such that for every r + 1 element subset P of [n] and all
1 <i<j<k<r+1 either a(Pl) < a(Pll) < a(P¥]) or a(Pl)) = a(PU]) = a(PF]).
We refer to this property as monotonicity.

Let S,(n) denote the set of all r-signotopes on [n] equipped with the order relation
a< Bif a(A) X B(A) for all A € ([:f}). Call S, (n) the r-signotope order.

Note that for » = 3 the definitions reflect our observations for the encodings of marked
simple arrangements of pseudolines made in the previous section. In particular Theorem 7
implies that S3(n) is a partial order on the set of marked arrangements of n pseudolines.
Indeed S3(n) is an orientation of the graph G,,, see Figure 8.

The list below collects some other special cases and easy observations.

(1) For r = 1 monotonicity is vacuous and Si(n) is just the lattice of subsets of [n].

(2) TFor allm > r > 1 there is a unique minimal and a unique maximal element in S, (n),
namely the constant — and the constant + function.

(3) The diagram of S,(r + 1) is a (2r + 2)-gon for all » > 1.

(4) There is a natural correspondence between 2-signotopes on [n| and permutations
of n. Permutation m and 2-signotope « correspond to each other if a pair (i, ) is
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an inversion of 7 iff a(i,j) = 4. For the proof that this is a bijection, note that
monotonicity of a corresponds to transitivity of the inversion relation and transitivity
of the non-inversion relation for . In the weak Bruhat order of the symmetric group,
the permutations are ordered by inclusion of their inversion sets. By the indicated
correspondence between 2-signotopes and permutations, So(n) is isomorphic to the
weak Bruhat order of S,,.

Manin and Schechtman [17] introduced the higher Bruhat order B(n,r —1) which is an
order relation on the set of r-signotopes on [n]. The higher Bruhat order relation <gp is
defined as follows: Let o and 3 be two r-signotopes with a(A) = B(A) for all r-subsets A

of [n] but just one A* where a(A*) = — and B(A*) = + in this case we call the pair («, )
a single-step. The order relation <gp is the transitive closure of the single-step relation,
i.e, @ <gp P iff there is a sequence o = g, aq,...a; = [ such that for s = 1,...,¢ the

pair (a;—1, ;) is a single-step. Higher Bruhat orders were further studied by Voevodskij
and Kapranov [25] and Ziegler [26]. In particular, Ziegler showed that the higher Bruhat
order B(n,r — 1) and the signotope order S,(n) are not equal in general. His example
is B(8,3) # S4(8). For r < 2 obviously B(n,r — 1) = S,.(n). Ziegler also shows that
B(n,n—k—1) = S,_k(n) for £ <3. The question whether B(n,2) = S3(n) was left open
by Ziegler. This problem was resolved affirmatively by Felsner and Weil [7].

It should also be mentioned that Ziegler [26] gives a geometric interpretation of sig-
notopes. We give a different interpretation in Theorem 7 (dimension 2) and Section 5
(general dimension). In terms of the closely related theory of oriented matroids our geo-
metric objects are the adjoints of the duals of Ziegler’s; see [8] for details.

4.3 New Signotopes from Old

Various operations can be performed on signotopes. As in matroids we can perform
deletion and contraction but there exist other constructions of new signotopes from old.
In this subsection we review these operations. Some of the constructions, e.g. deletion,
contraction and weak boundary, will be useful later.

(1) For an r-signotope « the complement @ is obtained by exchanging all signs of a. @
is a r-signotope.

(2) For an r-signotope a on a linearly ordered set X and ¥ C X with | X \ Y| > r
define the deletion oty to be the induced function on (X>Y). Deletion of Y gives a
r-signotope on X \ Y.

(3) For an r-signotope cw on a set X and Y C X with |Y| < r define the contraction aly
to be the function on (i\‘;) with aly (A) = a(AUY). Contraction of Y gives a

(r — |Y'|)-signotope on X \ Y.
Let « be an r-signotope on [n — 1]. A one-element expansion of « is an r-signotope  in
Sr(n) such that o = By,

Lemma 9 The one-element expansions of a € Sy(n — 1) form a lattice in S,(n).

Proof. Let 8 and 3 be expansions of a. Let v : (?) — {—,+} be the function with

r

v(A) = + if B(A) = + or #'(A) = +. We claim that v is a r-signotope and hence the
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least upper bound for 8 and 3. For the claim note first that every r + 1 element set P
has B(PLrt1) = g/(Plr+1ly = o(PLl+1), Tt follows that restricted to P the signotopes £
and @' are comparable, i.e., the restrictions are comparable in S, (P). On P the function ~
equals the larger of the restrictions of 8 and . Hence for all (r + 1)-sets P monotonicity
of 7 is inherited from either 3 or 3’ 0

We give geometric interpretations for the above constructions in the two-dimensional
case, i.e., for r = 3. Proofs for the correspondences can be derived from Theorem 7.
Let (A, F) be the marked arrangement with lines labeled by X corresponding to . The
arrangement corresponding to @ is (A, F). Delete the lines of Y from A to obtain the
arrangement corresponding to aty. Let z be an element of X; the contraction aJ, is the
local sequence ay of line x in 4. One-element expansions of 4 are obtained by adding
a pseudoline n compatible with A that enters the plane in F' and leaves in F. The new
northface is the right one of the two faces obtained from F, i.e., the face above n. Lemma 9
has the intuitive explanation that with two expansion lines n and In' the right boundary
of the region R obtained as union of the left halfplanes of n and n' is again an expansion
line.

Ziegler [26] proposes two constructions of (r + 1)-signotopes from a r-signotope.

(4) For a r-signotope a on [n] let da : (["}) — {—,+} be defined by da(P) = + iff

r+1
a(P')y = — and a(P"*t1) = 4. The boundary da of a is an (r + 1)-signotope
(see [26]).
(5) For a r-signotope a on [n] let & : ([’;ﬂ}) — {—,+} be the unique function with

&Tp+1= Oda and é&lpi1= . The extension & is an (r + 1)-signotope (see [26]).
Very much in the spirit of these constructions we define:

(6) For a r-signotope a on [n] let 0%« : (r[j_}l) — {—,+} be defined by 9'a(P) = + iff
a(Plrt1) = 4.

Claim. The weak boundary 0 of « is an (r + 1)-signotope.

Proof. Let Q be a r + 2 element set and let P = QU"+2/, Note that Q"+ = pli for
all i < r+2. Hence, 9"a(Q!) = a(Ql ' t1]) = o(PL)). Tt follows from the monotonicity
of a that for 1 < i < j < k < r 4 2 either &a(Ql") < a(QV)) = d%a(QW)) or
o (QU) = 9%a(QU)) = d*a(QH).

If k=r+2and j <r+1 we note that Q¥/l"+1) = plr+1] and the monotonicity
condition of J%« for indices i, j, k follows from the condition for 4,5,k — 1. Finally if
k=r+2and j =r+1 we find that QUIr+1 = Qlkllr+1] hence, *a(QU)) = d*a(Q!F)
and this implies the monotonicity condition of 0%« for i, j, k. YA

(7) For a r-signotope a on [n] let & : ([?ﬂ}) — {—,+} be the unique function with

atht1= 0'a and &lny1= a. The weak extension & is a r + 1-signotope.

Remark. Weak extensions have been studied by Rambau [18], using the name expansion
for these objects, he shows that @ — & is an order preserving embedding from B(n,r —1)
to B(n+1,r).
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4.4 Maximum Chains of Signotopes

This subsection is devoted to the proof of the main structural theorem on signotopes,
Theorem 13. This result is already part of publications on higher Bruhat orders [17, 26].
While Ziegler refers to some non-trivial results from the theory of oriented matroids in his
proof the approach we take remains completely within elementary combinatorics.

With an r-signotope a on [n] associate a directed graph with vertices the » — 1 element
subsets of [n] and edges —, defined by: For P € ([Z}) and 1 <i<j<r, if a(P) =+ let
Plil 5, Pll and if a(P) = — let PUJ -, Pl

Lemma 10 For an r-signotope « on [n] the graph with vertices (T[f}l) and edges —q 18
acyclic.

Proof. For r = 2 and arbitrary n, relation — is the transitive tournament corresponding
to the permutation whose inversion set is the set of pairs (i, 7) with a(7, j) = +.

For n = r, relation —, is the lexicographic order on the r—1 subsets of [r] if a([r]) = —
, otherwise, if a([r]) = + it is the reverse-lexicographic order.

Let n > r > 2 and let # be the signotope obtained from « by deletion of {n}. By
induction — 5 is acyclic on ([:f:l”). Let v be the signotope obtained from « by contraction

of {n} and view —, as graph on the vertex set ¥ = {4 € (T@l) :n € A}. By induction
—~ is acyclic.

Let X~ ={Adec (") :a(AU{n}) =} and X+ = {4 e (") : (AU {n}) = +}.
The three sets X, X+, Y partition the r—1 element subsets of [n], moreover, the subgraph
of —, induced by each of the three blocks of the partition is acyclic: It agrees with the
subgraph induced by —4 in case of X~ and X' and with the subgraph induced by —,
in the case of Y. Now consider the edges of —, between the blocks. By definition of X~
all edges with one end in X~ and the other end in Y are oriented from X~ to Y. Also all
edges with one end in X and the other end in Y are oriented from Y to X . Therefore,
the acyclicity of —, is readily established if we show that all edges with one end in X~
and the other end in X are oriented from X~ to X . This follows from the next claim:

Claim. A € X~ and B —3 A implies B € X" ,i.e., X is an ideal in the partial order
defined by the transitive closure of — 4.

From B —4 A it follows that P = AUB is a r subset [n]. Let 4, be such that B = Pl
and A = PUl. For Q = P U {n} we then obtain Q") = BU {n}, Q) = AU {n} and
Q') = AU B = P. We use the monotonicity of @ on Q and distinguish two cases:

(1) If i < j then B —5 A implies B(P) = a(Q"+")) = 4. From A € X~ it follows that

a(QU)) = a(AU{n}) = —. Monotonicity forces a(Q") = a(BU{n}) = —, i.e., B€ X~.
(2) If j < i then B =5 A implies B(P) = a(Q"+")) = —. From A € X~ it follows that
a(QU)) = a(AU{n}) = —. Monotonicity forces a(Q!") = a(BU{n}) = —, i.e., B€ X .

O

Proposition 11 For a r-signotope o on [n] there exist a chain fy < B < ... < ﬁ( ") of
r—1

(r — 1)-signotopes in Sy _1(n) such that fort =1,..., (Tfl) the signs of B; 1 and By differ
at only one (r — 1)-set A;.
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Proof. Let Ay, Ao,... ,A( ") be a topological sorting of —, and define §;(A) = — if
r—1

A = A; for some i >t and ;(A) = + if A = A; for some i < ¢. To prove the lemma it
remains to show that each ; is a (r — 1)-signotope.

For every r element set P and all 4,7,k with 1 < i < 7 < k < r we either have
plil —> Pl —> P or plEl 5 Pl —, Pl n the first case We have @( iy >
B,(Plly = g, (P¥]) for all t and in the second case G;(Pl) < g, (PU!) < g,(P*]) for all
t. This proves monotonicity for j3;. 0

Based on this lemma will next give the proof of Theorem 7. The main motivation for
including this here is to illustrate the interpretations of the abstract combinatorial objects
we are playing with.

Proof. [Theorem 7] Let « be a 3-signotope, i.e., a function « : ([73”) — {—,+} obeying
monotonicity on 4-subsets of [n]. From Proposition 11 we obtain a chain fy,... ,B(n)
2
in Sy(n) corresponding to . Each ; encodes a permutation of [n]. [y is the identity
and ,B(n) the reverse permutation. Moreover, two permutations f; and ;1 differ in a
2

single sign where (3; is — and (441 is +. Hence, there is a single pair (i, ) being a non-

inversion of 8; but an inversion in 8;11. This pair is an adjacent pair of both permutations.

This shows that Sy, ... ,ﬂ(n) is a simple allowable sequence. From Theorem 2 we obtain

2
that via (g, ..., 8y signotope a encodes an arrangement 4. From the construction it is
2

easily verified that the triangle induced by lines 4,7,k in A is a + triangle exactly when

a(ijk) = +. This proves the bijection. n
The next proposition can be seen as a generalization of Theorem 2; it shows that

saturated chains of (r — 1)-signotopes can be used to encode r-signotopes.

Proposition 12 let 1 < r < nand By < b1 < ... < ﬁ( ") be a mazimum chain in
r—1

Sr—1(n). Fort =1,...,(,",) let A be the unique (r — 1)-set with B_1(A;) = — and
Bi(Ay) = +. There exists a r-signotope o on [n] so that Al,...,A( ") is a topological
r—1

sorting of —q.

Proof. For a set A € (T["}) let p(A) be the index of A in the list Aq,... ,A( ") Note

r—1

that monotonicity of the 3;’s implies that for all D € ([’;}) either p(D1)) < p(D12)) <
. < p(DIYy or p(DMY) > p(D2)) > ... > p(DU")). In the first case let a(D) = +
in the second case a(D) = —. We have to show that « is a r-signotope, i.e., that « is
monotone at r 4+ 1 sets. Let @ € ( _7_1) and consider indices 1 <1 < j < k < r—+1.
Suppose a(Ql") = a(Q¥)) = +. Let Q"I denote the set Q minus the ith largest and
the jth largest element of Q, e.g., {1,2,5,7,8}123/ = {1,7,8}. From a(Ql) = + we
obtain p(Q") < p(Ql*!). From a(Q*!) = + we obtain that p(Ql"*]) < p(QLI+!).
Hence p(QU")) < p(QU7*)) which implies a(QY)) = + as required. The argument for
a(Ql) = a(Q*)) = — is symmetric. It is obvious that Ai,... ,A( i) is a topological

sorting for the relation —,. 0

Propositions 11 and 12 together prove the main structure theorem for signotopes.

Theorem 13 There is a surjective mapping from maximum chains in Sy_1(n) to Sy(n).
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Note that whenever S,(n) = B(n,r — 1) then for any two signotopes o < 8 in S,(n)
there is a chain of maximum length containing both. In general we can show that at least
every single element of S, (n) is contained in a chain of maximum length.

Proposition 14 Every element of S,(n) is contained in a chain of length (:f) + 1.

Proof. Let a € S;(n) and consider the weak boundary 0"« of . This defines the directed
graph —5+, on ([:}). Note that A —5+, B implies a(A) < «(B), i.e., the sets A with
a(A) = — form an ideal in the order corresponding to —g+. Let A1, As... A ") be
a linear extension of this order such that there is a ¢ with a(4;) = — for all i <t
and «(A;) = + for all i > t. Define the sequence g; of r-signotopes as in the proof of
Proposition 11. The sequence of complements ﬁ_] is a chain of r signotopes with 3; = a. 0

Proposition 11 implies that the mapping II from maximum chains in S,_1(n) to ele-
ments of S, (n) described in the proof of Proposition 12 is surjective. The two propositions
also imply that the preimage of o under II is a set of maximum chains in S,_1(n) of the
same size as the set of topological sortings of —,, i.e., linear extensions of the transitive
closure of —,. We can even say more about this preimage.

Call two maximum chains in S,_1(n) swap-equivalent if one of them corresponds to the
list Aq, ... ,A( ") of (r —1)-sets and the list of the other chain differs only by an adjacent

transposition, i.e., is of the form Aq,.., A; 1, Apy1, Ay, Apyo, -y A( ) for some t.

r—1
Proposition 15 For r > 3 the set of mazimum chains in S,_1(n) mapped by II to a €
Sy(n) is a complete swap-equivalence class.

Proof. The proof follows from two facts.

First, it is possible to transform any topological sorting of a directed acyclic graph
into any other by a sequence of adjacent transpositions, i.e., reversals of adjacent pairs
of unrelated vertices. Therefore, the preimage of « is contained in one swap-equivalence
class of chains in S,_;(n).

Now assume r > 3 that Al,...,A( ") is a topological sorting of —, and let list

r—1

A,y A1, Apyr, Ay Ao, A( ") correspond to a maximum chain of S,_1(n). We claim

that A; and Ay, are unrelated in —qo. Otherwise P = A;UA;; is a r-set and monotonicity
only allows the signs of A; and A;y1 to be changed in a row if there is an index ¢ so that
one of the two sets is Pl") and the other is Plit!). Consider sign and location in the list of
a set of Pl j # 1,1+ 1, to obtain a contradiction to monotonicity. Hence, A; and A;yq
are unrelated in —, and the second list also corresponds to a topological sorting of —.

O

These considerations about swap-equivalence of the II preimages can be rephrased as
follows: Given a r-signotope « the set of (r — 1)-signotopes on maximum chains of S,_;(n)
mapped to « by II together with the edges (single-steps) used by these chains forms a
lattice isomorphic to the lattice of antichains of the transitive closure of —, (An example
of this is given in Example B below). In particular this shows that the orders S, (n) have
a local lattice structure. What about global lattice structure? It is known that S,(n) is
a lattice for r < 2. Ziegler [26] has shown that S,(n) is a lattice for r > n — 2 and that
S3(6) is not a lattice.
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(a) The arrangement. (b) The graph —. (c) The lattice.

Figure 9: Illustrations for Example B.

Example B. Let A (as shown in Figure 9(a)) be the arrangement corresponding to a
3-signotope a. The directed graph —, is shown in Figure 9(b). Note that we met the
transitive reduction of this graph (non-dashed edges) several times as G (see Lemma 1,
Subsection 3.1 and Lemma 4). The maximum chains of 2-signotopes mapped by II to «
are the allowable sequences of A. In Subsection 3.1 we have seen that they correspond
bijectively to topological sortings of G. Tt follows that the suborder of the weak Bruhat
order induced by permutations 7w appearing in allowable sequences of A is a distributive
lattice (see Figure 9(c)).

5 Geometric Interpretations for Signotopes

Ziegler [26] shows that there is a natural bijection between the uniform extension poset on
the set of single element extensions of a cyclic hyperplane arrangement X?’d in R? and the
higher Bruhat order B(n,n—d—1). Felsner and Ziegler [8] note that from oriented matroid
duality, B(n,n—d—1) has another geometric representation as the set of 1-element liftings
of X?’n_d. These liftings correspond to certain affine arrangements of pseudohyperplanes
in R"~9~1_ In this section we make the connection with the second class of geometric
objects explicit; that is, we characterize a class of arrangements of pseudohyperplanes in
R? corresponding to signotopes o € Sy, (n).

A pseudohyperplane H in R? is a homeomorph of a hyperplane such that the two
connected components of R? \ H are homeomorphic to the d-ball. A set {Hy,..., H,} of
pseudohyperplanes in R? is an arrangement of pseudohyperplanes if every two pseudohy-
perplanes H; and H; intersect in an (n — 1) dimensional pseudohyperplane and they cross
at their intersection. Moreover, for all j the set {H; N H; : i =1,...,5 — 1,7 +1,...,n}
is an arrangement of n — 1 pseudohyperplanes in H; = RI=!. We say d-arrangement to
abbreviate for ‘arrangement of pseudohyperplanes in R4’. A d-arrangement is simple if
any set of d + 1 pseudohyperplanes has empty intersection.

So far we have discussed arrangements of pseudolines which had been normalized by a
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marking face F' and a specific labeling of the lines (increasing on a clockwise walk from F
to F' at infinity). For all arrangements of this section we assume that they are simple and
that they are embedded in R? in a normalized way as described in the next paragraph.

Fori=1,...,d — 1 let I; be the d — i dimensional space at infinity obtained by setting
the last ¢ coordinates equal to —oo, i.e., with z4 = —oc, 241 = —00,..., T4 j41 = —00
(if the reader feels uncomfortable with these ‘spaces at infinity’ he may assume that the
arrangement is embedded in a d-dimensional unit hypercube [0, 1] and consider I; as the
side of this cube obtained by setting the last 7 coordinates equal to 0). We demand that the
d-arrangement induces a (d —7)-arrangement with the same number of pseudohyperplanes
on I;. Moreover, the pseudohyperplanes are labeled by increasing z; coordinate at their
intersection with I; ;. We call an arrangement with these properties normal.

The intersection of every set of d — 1 pseudohyperplanes of an arrangement A deter-
mines a line of the arrangement. If the arrangement is normal we consider these lines
and the edges they support as oriented away from I;. A normal d-arrangement induces
a sign function f : (d[:’_}l) — {—,+} by the following rule: Given i1 < iy < ... < igyy let
f(i1,....ig+1) = — iff on the intersection line of the pseudohyperplanes h;,, ..., h the
intersection with h;, comes before the intersection with h;,.

Hurrying ahead we define: A normal d-arrangement A is called a Cy-arrangement if the
normal (d—1)-arrangement induced by A on I corresponds to the minimal signotope oy €
Sg4(n); the minimal signotope g is the signotope with all signs —. Tt should be remarked
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that the arrangement corresponding to ag € Sy(n) is the cyclic arrangement X0

Theorem 16 There is a bijection between Cy-arrangements with n pseudohyperplanes and
signotopes in Sgy1(n). The signotope corresponding to a Cg-arrangement A is the sign
function of A as defined above.

Proof. We use induction on d. Theorem 7 covers the case d = 2 and may serve as basis for
the induction. For the induction step we also use that if (a, ') is a single step in Sy(n)
then the associated Cj_j-arrangements A and A’ are related by a flip at a simplicial cell
bounded by the hyperplanes corresponding to the unique d element set A with «(A) = —
and o/ (A) = +.

For d dimensions we first consider normal arrangements of d + 1 pseudohyperplanes
labeled by the elements of A = [d 4+ 1]. Such an arrangement A has just one bounded
cell which is a (pseudo)simplex. The set of bounded edges of A forms the skeleton graph
of the simplex, i.e., a complete graph K;;. The vertex of this graph determined by the
intersection of the pseudohyperplanes in Al") will itself be denoted Al
Claim A. The orientation of lines induces an acyclic orientation on the graph of bounded
edges of A.

Let Al Alil and A% be any three vertices of the graph. The three lines Al%7], ALk,
Alk] are supported by the plane Al“7k] which is a homeomorph of a disk D. The
intersection of Al"7*] with I; corresponds to an interval on the boundary of D in which
all three lines begin. Since lines and edges are oriented away from I the orientation of
the triangle with vertices AlY, A7l and A%l is acyclic. An orientation of the complete
graph K ., with all triangles acyclic is acyclic. A

Claim B. For Cj-arrangements the orientation of K;,q is either the transitive closure
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of A — ALl — . — Al¢+1] in which case the sign of the arrangement is + or of
Aldt 5 gldl 5 A in which case the sign is —.

Since the graph is acyclic we can sweep arrangement A starting with ;. Meaning, we
find a sequence sg, s1,..., 8411 of pseudohyperplanes such that they all share the pseu-
dosphere at infinity with I; = sy and between any two consecutive pseudohyperplanes
Si, 8i1+1 there is exactly one vertex of the arrangement. Since the arrangement is a Cy
arrangement we know that the first vertex to be swept corresponds to a simplicial cell
in the arrangement of the minimal element of S;(d + 1). This arrangement has only two
simplicial cells one bounded by the pseudohyperplanes in Al') and the other by those in
A9+l The arrangement induced on s; is thus obtained by flipping one of these cells.
After this first flip one of the two branches of Sy(d + 1) which as we recall has the struc-
ture of (2d + 2)-gon is determined. Playing with the bijection between the arrangements
induced on the sweep-planes s; and the corresponding signotopes we see that the sweep
has to follow the chosen branch of Sy(d + 1). This results in one of the above orderings
of the vertices of K;11. The statement about the sign of the arrangement follows from
considering the orientation of the edge between Al') and A[2). JAN

From the previous claim we obtain generalized criteria for determining the sign of a
d+ 1 element set A in a Cy-arrangement. Consider any two vertices Al4 and AUJ with
i < j of the arrangement induced by A. The sign of A is + iff Al precedes AU) on the
line Albdl,

With this at hand we can show monotonicity for the sign functions of a Cy-arrangement
A with more then d+ 1 pseudohyperplanes: Let a be the sign function corresponding to A
and let P be a d+2 element set of pseudohyperplanes. For 1 <i < 7 < k < d+2 we have to
show that a(Pl") = + together with a(PU!) = — implies a(P¥!) = — and o(Pl) = —
together with a(PL)) = + implies a(P'*!) = +. We only prove the first implication, the
other being similar. From a(Pl") = + we obtain that vertex P! precedes vertex Pl
on the line Pl*7*!, From a(Pl1]) = — we obtain that vertex PU*] precedes vertex Pl
on the line Pl%7*4] From transitivity P7F! precedes Pl and hence a(PW)) = —.

So far we have seen that the sign function of a Cj-arrangement of n pseudohyperplanes
is a signotope in Syy1(n). Given a Cy-arrangement with signotope « the next thing to
prove is the correspondence between simplicial cells in A and single steps involving «.
For the first half note that a simplicial cell of A can be flipped leading to A’. Since A’
is a Cy-arrangement it has a corresponding signotope o/. Now compare the ordering of
vertices on lines of A and A’ to see that o and o' differ in just one sign. On the other
hand, if & and o only differ in the sign A then it is possible to show that for all 4,5 in A
the two vertices AlY and AU are adjacent along the line A%, Therefore, the simplicial
cell corresponding to A is not penetrated by any further pseudohyperplane.

Given any Cjy-arrangement A, we may move to any other Cy-arrangement (of same
dimension with same number of pseudohyperplanes) using flips. This is due to the con-
nectedness of Syi1(n) (Lemma 14). Therefore, the missing link for a complete proof is
the existence of a single Cyj-arrangement with n pseudohyperplanes. This can be pro-
vided by checking that the cyclic arrangements have the required properties. Here we
indicate a construction which is similar in spirit to the construction of wiring diagrams as
representatives of pseudolinearrangements:

Given a € S4,1(n) choose a chain 5y < f1 < ... < ﬁ(g) in S4(n) mapped by II to a. By
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induction 3y corresponds to a Cy_i-arrangement By of n pseudohyperplanes. Let A be the
unique d-set with different sign in By and B;. We know that the pseudohyperplanes from A
bound a simplicial cell in By. Construct B; by applying a simplicial-flip to this cell in By.
Repeat this to obtain a sequence By, By, ... ’B(Z) of arrangements in R?~! corresponding
to Go, B1,. - - ,ﬂ(z). Introduce a new dimension z4 and place arrangement B; in the affine

(d — 1)-dimensional space at x4 = i. The pseudohyperplane h; of the arrangement .4
corresponding to « is obtained by properly interpolating between the ith pseudohyperplane
in Bj and Bjy for j =0,..., (g) — 1 and extending the ith pseudohyperplane of By and
B(Z) to g = —oc and 4 = oo respectively. 0

Note that, as a consequence of Theorem 16 Cy-arrangements can be swept. This means
that starting with the sweep-pseudohyperplane I; the sweep never gets stuck. While this
property is clearly shared by realizable arrangements there are reasons to believe that
“most” higher dimensional arrangements can not be swept (e.g. the examples constructed
by Richter-Gebert [19]). In fact it is not even known whether every d-arrangement of
n > d pseudohyperplanes contains a simplicial cell.

6 Conclusion and Open Problems

Summarized in three phrases the contributions of this paper are: Sweeps are an effective
tool in dealing with planar arrangements. In the simple case the mapping from allowable
sequences to marked arrangements is a special case of the general existence of surjective
mappings from maximal chains in S,_;(n) to elements of S;(n). And that elements of S, (n)
correspond to a special class of arrangements (C,_j-arrangements) of pseudohyperplanes
in R"~! which admits sweeps.

Hence, restricted to C,_j-arrangements maximal chains in S,_1(n) can be seen as an
r — 1 dimensional generalization of allowable sequences. Goodman and Pollack [11] had
already asked for higher dimensional analogs of allowable sequences. Can these ideas
be carried further to give such analogs for a larger class of arrangements of pseudohy-
perplanes? Are there other sets of conditions which guarantee the sweepability of an
arrangement?

Already Manin and Schechtman [17] mention that maximal chains in the weak Bruhat
order have a nice encoding in terms of Young tableaux [23, 2]. They ask for a generalization
to higher dimension, i.e., for encodings of chains in S,(n), for r > 2. It seems that so far
there is no progress concerning this question.

It would be very interesting to understand more of the structure of the graph G,(n)
whose elements are r-signotopes and edges correspond to single-steps, i.e., two r-signotopes
are connected by an edge if they differ only in the sign of a single r-set. Only little is
known: Ziegler [26] shows that the higher Bruhat order is homotopy equivalent to a sphere.
Felsner and Ziegler [8] have shown that these graphs contain large subgraphs which form
the skeleton of zonotopes and characterize those pairs (r,n) where G,(n) actually is the
skeleton graph of a zonotope in R* "+, Questions like minimum and maximum degree of
Gr(n) or connectedness are wide open in general. Even for » = 3 the question concerning
the minimum degree has only recently been solved by Felsner and Kriegel [6]. They showed
that every simple Euclidean arrangement of n pseudolines contains n — 2 triangles. We
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venture the following conjecture: Minimum degree and connectedness of G,(n) are both
n—r-+1.

We conclude with a problem that was brought to our attention by a referee. Does the

equivalent of Levi’s extension lemma hold for Cj-arrangements?
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