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tionSweeping is an important algorithmi
 tool in geometry. In the �rst part of this paper(Se
tions 2 and 3) we de�ne sweeps of arrangements and use the `Sweeping Lemma' toprove representations of Eu
lidean arrangements by allowable sequen
es, wiring diagrams(
.f. [11℄) and zonotopal tilings (
.f. [26℄). We also use the Sweeping Lemma to give a newproof of Levi's Extension Lemma.In the se
ond part (Se
tion 4) we introdu
e a further representation for Eu
lideanarrangements of pseudolines. This representation re
ords an `orientation' for ea
h tripleof lines. It turns out that a `triple orientation' 
orresponds to an arrangement exa
tly ifit obeys a generalized transitivity law. Moreover, the `triple orientations' 
arry a naturalorder relation whi
h indu
es an order relation on arrangements. A 
loser look on the
ombinatori
s behind this leads to a series of orders Sr(n) whose elements will be 
alledsignotopes. These orders exist for all pairs (r; n) with 1 � r � n. Sr(n) is 
losely relatedto the higher Bruhat order B(n; r� 1) de�ned by Manin and S
he
htman [17℄ and furtherstudied by Ziegler [26℄. We investigate the stru
ture of these orders and give a purely
ombinatorial proof for the main stru
tural result on higher Bruhat orders: There is asurje
tive mapping, C ! �C , from maximum 
hains in Sr�1(n) to elements of Sr(n)September, 1999 1



In Se
tion 5 the 
ombinatori
s of the se
ond part is re
onne
ted to geometry: Asignotope � 2 Sr(n) represents an arrangement A(�) of n pseudohyperplanes in Rr and amaximum 
hain C in Sr�1(n) represents a sweep of the arrangement A(�C) in Rr .Se
tion 6 
on
ludes with a brief 
olle
tion of open problems.1.1 Arrangements of PseudolinesA pseudoline is a 
urve in the Eu
lidean plane whose removal from the plane leaves twounbounded 
onne
ted 
omponents. In other words: a pseudoline is a simple 
urve whi
hgoes to in�nity on both sides. An arrangement of pseudolines is a family of pseudolineswith the property that ea
h pair of pseudolines has a unique point of interse
tion, wherethe two pseudolines 
ross. Sin
e in this paper we are not 
on
erned about realizabil-ity questions we abbreviate and say arrangement when we really mean arrangement ofpseudolines, we also say line instead of pseudoline.An arrangement is simple if no three pseudolines have a 
ommon point of interse
tion.The order of an arrangement is the number of its pseudolines. An arrangement partitionsthe plane into 
ells of dimensions 0, 1 or 2, the verti
es, edges and fa
es of the arrange-ment. Two arrangements are isomorphi
 if there is an isomorphism of the indu
ed 
ellde
ompositions respe
ting the labeling of the lines. Edges and fa
es of the arrangementmay either be bounded or unbounded. Let F be an unbounded 
ell of arrangement A andlet F be the 
omplementary fa
e of F , i.e., the fa
e separated from F by all pseudolines.We may orient all pseudolines su
h that F is in the left halfspa
e and F in the righthalfspa
e of every line. This orientation of pseudolines indu
es an orientation of the edgesof the arrangement. The pair (A; F ) is a marked arrangement or an arrangement withnorthfa
e F and southfa
e F . If there is no expli
it referen
e to the northfa
e of a markedarrangement A embedded in a 
oordinatized plane we assume that the northfa
e is thefa
e 
ontaining the ray to (0;1). Two marked arrangements are isomorphi
 if there is anisomorphism of the indu
ed 
ell de
ompositions respe
ting the labeling and the orientationof the edges. See Figure 1 for an illustration.
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2 Sweeping the PlaneOur main tool in proving a number of 
ombinatorial en
odings for Eu
lidean arrangementsin Se
tion 3 will be the ability of sweeping the arrangement. In this se
tion we set upthis tool, the main result is the Sweeping Lemma (Lemma 1) showing that Eu
lideanarrangements 
an be swept. This result is not new, we are aware of at least two sour
es.Snoeyink and Hershberger [22℄ have a theorem implying the Sweeping Lemma for simplearrangements. In the book on oriented matroids [1℄ a result equivalent to the SweepingLemma is derived as a 
onsequen
e of Levi's extension lemma. Here we revert the dire
tionand prove Levi's extension lemma (Lemma 6) using sweep te
hniques.To begin with we formalize the notion of a sweep. Let (A; F ) be a marked arrangement.A sweep of A with northpole in F is a sequen
e 
0; 
1; : : : 
r, of 
urves su
h that ea
h 
urve
i has �xed points x 2 F and x 2 F as endpoints. Further requirements are:(1) None of the 
urves 
i 
ontains a vertex of arrangement A.(2) Ea
h 
urve 
i has exa
tly one point of interse
tion with ea
h line lj.(3) Besides at their endpoints any two 
urves 
i and 
j are disjoint.(4) For any two 
onse
utive 
urves 
i, 
i+1 of the sequen
e there is exa
tly one vertexof arrangement A between them, i.e., in the interior of the 
losed 
urve 
i [ 
i+1.(5) Every vertex of the arrangement is between a unique pair of 
onse
utive 
urves,hen
e, the interior of the 
losed 
urve 
0 [ 
r 
ontains all verti
es of A.See Figure 2 for an example of a sweep for the arrangement A of Figure 1.A 
0

x

x43
2

5

1

8

Figure 2: A sweep for arrangement ANote that if 
0; : : : ; 
r is a sweep for A then the reversed sequen
e is also a sweep forA. One of these sweeps is from left to right and the other from right to left. As usual wewill always think of a sweep as a left to right sweep. A dis
rete sweep as de�ned here 
an3



be transformed into a 
ontinuous sweep by appropriate interpolation between any pair 
i,
i+1 of 
urves. The dependen
y on the 
hosen points x and x 
an also be eliminated.Lemma 1 (Sweeping Lemma) Let (A; F ) be a marked Eu
lidean arrangement of pseu-dolines. Then there is a sweep sequen
e of 
urves for A, i.e., A 
an be swept.Proof. Let G = (V;E) be the graph su
h that the verti
es V of G are the verti
es of Aand the edges of G are the �nite edges of the arrangement A. Let �!E be the orientationof the edges of G indu
ed by the orientation of pseudolines (the northfa
e is in the lefthalfplane of ea
h pseudoline).Claim A. The orientation �!E is an a
y
li
 orientation of G.Walking `at in�nity' and 
lo
kwise from F to F the pseudolines of A are met in someorder. Let permutation � be the 
orresponding order of the labels, w.l.o.g. we assume that� is the identity.We prove the above 
laim by 
ontradi
tion: Assuming that �!E is not a
y
li
 we 
hoosea 
y
le C su
h that the area en
losed by the 
orresponding 
urve in A is minimal. It iseasy to 
on
lude that C 
orresponds to the boundary of a fa
e of A. With respe
t to thisfa
e the 
y
le C may be oriented 
lo
kwise or 
ounter
lo
kwise. We 
onsider the �rst 
ase(
lo
kwise) the other is symmetri
.Let e1; e2; : : : ; ek be edges of C and let ij be the supporting pseudoline of ej . Sin
eej and ej+1 are 
onse
utive on C the lines ij and ij+1 
ross at a vertex of C. From thede�nition of � and the 
lo
kwise orientation of C it follows that ij < ij+1 (see Figure 3).Hen
e i1 < i2 < : : : < ik < i1 a 
ontradi
tion. 4
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Figure 3: Assuming an oriented 
y
le.Sin
e �!G = (V;�!E ) is a
y
li
 there exists a topologi
al sorting v1; v2; : : : ; vr of �!G . Fixpoints x 2 F and x 2 F . 4



Claim B. There exists a sweep of 
urves 
0; 
1; : : : ; 
r su
h that verti
es v1; : : : ; vi are tothe left of 
i and verti
es vi+1; : : : ; vr are to the right of 
i for all i = 1; : : : ; r.Proof. Let R be the union of the 
losed bounded 
ells of A. De�ne 
0 as the union ofthree 
urves. The �rst and the se
ond 
onne
t x to R within F and x to R within F , thethird is the left boundary of an �-tube of the left boundary of R and 
onne
ted to the twoother 
urves. For an appropriate � this gives a 
urve as desired.Now suppose that 
i�1, i � r, has been de�ned. Let i1; : : : ; it be the lines of A
ontaining vertex vi and assume i1 < : : : < it. Let T be the triangle de�ned by 
urve
i�1 and the two lines i1 and it. Sin
e vi is a sour
e (minimal) in the restri
tion of �!Gto vi; : : : ; vr and v1; : : : ; vi�1 are left of 
i�1 vertex vi is the unique vertex of A in thetriangular region T . De�ne 
i as the right boundary of an �-tube around 
i�1 and T . Foran appropriate � this gives a 
urve as desired, see Figure 4. 4
i
i�1
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Figure 4: De�ning 
i based on 
i�1 and the shaded triangular region T .This 
on
ludes the proof of the lemma.3 Appli
ations of SweepingIn 
ombinatorial geometry it is often useful to en
ode a geometri
 obje
t by a 
ombinatorialstru
ture and further work with this stru
ture. There are several 
ombinatorial en
odingsfor arrangements. In the �rst part of this se
tion we review allowable sequen
es and wiringdiagrams. These representations have been introdu
ed by Goodman and Polla
k [11℄. Thesame authors [12℄ give an overview on work related to allowable sequen
es and mentionsome appli
ations. There are two reasons to in
luding a 
omplete treatment of this subje
there. The relation between allowable sequen
es and arrangements of pseudolines is aspe
ial 
ase of a more general phenomenon in the theory of signotopes (higher Bruhatorders) whi
h will be the topi
 of Subse
tion 4.4, Theorem 13. Furthermore we believethat sweeps are the natural approa
h to these representations.5



In Subse
tion 3.2 we prove the equivalen
e between arrangements and zonotopal tilings.This is a spe
ial (rank 3) 
ase of the 
elebrated Bohne-Dress Theorem whi
h states abije
tion between zonotopal tilings and oriented matroid liftings. No elementary proof ofthe spe
ial 
ase was known. Re
ently we learned that Elnitsky [4℄ found another simpleproof for the 
orresponden
e. We will make use of zonotopal tilings in our �gures sin
ethey provide us with 
anoni
al pi
tural representations of arrangements, see e.g. Figure 8.Further sour
es for en
odings of arrangements are Goodman and Polla
k [12℄, Edels-brunner [3℄, Felsner [5℄ and Knuth [15℄.In the last appli
ation we use the sweep te
hnique to prove Levi's extension lemma.3.1 Allowable Sequen
es and Wiring DiagramsLet 
0; 
1; : : : ; 
r be a sweep sequen
e of 
urves for the marked arrangement (A; F ) of ordern. Traversing 
urve 
i from x to x we meet the lines of A in some order. Sin
e ea
h line ismet by 
i exa
tly on
e the order of the 
rossings 
orresponds to a permutation �i of [n℄.Consider the labels of lines 
rossing at vertex vi. Sin
e the region T de�ned in theproof of Claim B is empty of verti
es of A and by property 2 of the sweep 
urve 
ithe lines i1; : : : ; it 
ontaining vertex vi are a 
onse
utive substring of �i�1. Moreover,in permutation �i�1 these lines are in the reversed order and this is the only di�eren
ebetween �i�1 and �i. Relabeling the lines of A appropriately we may assume that �0 isthe identity permutation.Example A. The sequen
e of permutations obtained from the sweep of Figure 2 is(1; 2; 3; 4; 5) 4;5! (1; 2; 3; 5; 4) 1;2! (2; 1; 3; 5; 4) 1;3;5! (2; 5; 3; 1; 4) 2;5! (5; 2; 3; 1; 4) 1;4!(5; 2; 3; 4; 1) 2;3! (5; 3; 2; 4; 1) 2;4! (5; 3; 4; 2; 1) 3;4! (5; 4; 3; 2; 1):The sequen
e �0; : : : ; �r has the following properties:(1) �0 is the identity permutation and �r is the reverse permutation on [n℄.(2) Ea
h permutation �i, 1 � i � r is obtained by the reversal of a 
onse
utive substringMi from the pre
eding permutation �i�1.(3) Any two elements x; y 2 [n℄ are joint members of exa
tly one move Mi, i.e., reversetheir order exa
tly on
e.A sequen
e � = �0; : : : ; �r of permutations with properties (1), (2) and (3) is 
alled anallowable sequen
e of permutations. If ea
h move from �i�1 to �i 
onsists in the reversal ofjust one pair of elements, i.e., an adja
ent transposition, we have r = �n2� and the sequen
e� is 
alled a simple allowable sequen
e. We have thus seen how to obtain an allowablesequen
e of permutations from every marked arrangement (A; F ). However, more 
an besaid:Every topologi
al sorting of the graph �!G of (A; F ) indu
es an allowable sequen
e.Consider the allowable sequen
es � and �0 
orresponding to topologi
al sortings � and �0of �!G with the property that � = v1; : : : ; vi; vi+1; : : : ; vr and �0 = v1; : : : ; vi+1; vi; : : : ; vr,i.e., � and �0 di�er in an adja
ent transposition. It follows that vi and vi+1 are bothminimal elements in the restri
tion of �!G to fvi; vi+1; vi+2; : : : ; vrg. Hen
e, there is noline in A that 
ontains verti
es vi and vi+1 and the labels of lines involved in the movesMi : �i�1 ! �i and Mi+1 : �i ! �i+1 in � are disjoint. In fa
t for j 6= i; i + 1 the6



permutations �j and �0j in � and �0 
oin
ide and M 0i = Mi+1 and M 0i+1 = Mi. Call twoallowable sequen
es � and �0 elementary equivalent if � 
an be transformed into �0 byinter
hanging two disjoint adja
ent moves. Two allowable sequen
es � and �0 are 
alledequivalent if there exists a sequen
e � = �1;�2; : : : ;�m = �0 su
h that �i and �i+1 areelementary equivalent for 1 � i < m. It is well known that it is possible to transform anytopologi
al sorting of a dire
ted a
y
li
 graph �!G into any other by a sequen
e of adja
enttranspositions, i.e., reversals of adja
ent pairs of unrelated verti
es. Therefore, any twoallowable sequen
es 
orresponding to the same marked arrangement (A; F ) are equivalent.Theorem 2 There is a bije
tion between equivalen
e 
lasses of allowable sequen
es andmarked arrangements of pseudolines. Moreover, this bije
tion maps simple allowable se-quen
es to simple arrangements.Proof. We have already seen how to de�ne the equivalen
e 
lass of allowable sequen
es
orresponding to a marked arrangement.Let � be an allowable sequen
e. Start drawing n horizontal lines 
alled wires andverti
al lines p0; : : : ; pr. Label the 
rossing of the ith wire from below with pj with thelabel pj(i). Draw pseudoline i su
h that it interpolates the 
rossings with its label as inFigure 5.
1234
5 p0 p1 p2 p3 p4 p5 p6 p7 p8
Figure 5: A wiring diagram for the arrangement of Figure 2Following Goodman [9℄ we 
all the arrangement thus obtained a wiring diagram for �.Sin
e the verti
al lines p0; : : : ; pr essentially are a sweep sequen
e of 
urves for the wiringdiagram we see that the mapping from arrangements to allowable sequen
es is surje
tive.Let (A; F ) be any marked arrangements (A; F ) su
h that � 
orresponds to a sweep of
0; : : : ; 
r of A. It is obvious that the part of A between 
i�1 and 
i is isomorphi
 to thepart of the wiring diagram between pi�1 and pi. These isomorphisms for i = 1; ::; r 
an beglued together to an isomorphism of the arrangements. This proves inje
tivity and hen
ethe �rst part of the theorem.The se
ond part of the theorem is obvious.It is interesting to ask for the 
hange in the representation when the northfa
e is
hanged. Let (A; F ) be a marked arrangement and rede�ne the northfa
e to be theunbounded 2-
ell F 0 to the left of F . Cells F and F 0 are separated by line n. The dire
tedgraph �!G 0 is obtained from �!G by reverting the orientations of all edges with supportingline n. Now 
hoose a topologi
al sorting � for �!G su
h that all verti
es of A whi
h areright or (below) line n pre
ede the verti
es on n and all verti
es left or (above) line n7




ome later. Let v1; : : : ; vi�1, be the left blo
k of �, vi; : : : ; vj�1 be the middle blo
k, i.e.,the ordered sequen
e of verti
es on line n, and vj; : : : ; vr be the right blo
k. It followsthat v1; : : : ; vi�1; vj�1; : : : ; vi; vj ; : : : ; vr is a topologi
al sorting of �!G 0. Note that the orderin whi
h the lines enter vk for i � k � j has also 
hanged, in �!G line n was the highestline entering vk and in �!G 0 line n is the lowest line entering vk. Hen
e, from the allowablesequen
e � of (A; F ) with moves M1; : : : ;Mr 
orresponding to v1; : : : ; vr we obtain asequen
e �00 with moves M1; : : : ;Mi�1;M�j�1; : : : ;M�i ;Mj ; : : : ;Mr, where M�k is obtainedfrom Mk by moving element n from the top to the bottom. An allowable sequen
e �0 for(A; F 0) is obtained from �00 by relabeling n! 1! 2! : : :! n� 1! n.We brie
y mention another representation for marked arrangements where the 
hangefrom the representation of (A; F ) to the representation (A; F 0) is more transparent. Let�i be the permutation of f1; ::; ng n i reporting the order from left to right in whi
h theother pseudolines 
ross line i, for i = 1; ::; n. Goodman and Polla
k [11℄ 
all this the lo
alsequen
es of unordered swit
hes of the arrangement. Felsner [5℄ used sweeps to showthat lo
al sequen
es are a representation for marked arrangements. In 
ase of non-simplearrangements lo
al sequen
es are slightly more general stru
tures than permutations sin
eseveral lines 
an 
ross line i in the same point. For the arrangement of Figure 2 the lo
alsequen
es are �1 = [2; f3; 5g; 4℄, �2 = [1; 5; 3; 4℄, �3 = [f1; 5g; 2; 4℄, �4 = [5; 1; 2; 3℄ and�5 = [4; f1; 3g; 2℄. To 
hange from the lo
al sequen
es of (A; F ) to those of (A; F 0) werevert sequen
e �n and relabel n ! 1 ! 2 ! : : : ! n � 1 ! n as before. In Se
tion 4Theorem 8 we 
hara
terize those (�i)i=1::n 
orresponding to simple marked arrangements.3.2 Zonotopal TilingsA parti
ularly ni
e representation of arrangements of pseudolines is the representation by`zonotopal tilings'. Basi
ally this is a standardized drawing of the `dual graph' of thearrangement. Figure 6 should make the 
onne
tion 
lear. Below, in Theorem 3 we provea bije
tion between zonotopal tilings and arrangements.

Figure 6: An arrangement with its dual graph and the dual graph as zonotopal tiling.A 2-dimensional zonotope is a 
entrally symmetri
 2n-gon, or equivalently the Minkowskisum of a set of line segments in R2 . With a ve
tor vi we asso
iate the line segment[�vi;+vi℄. The Minkowski sum of the line segments 
orresponding to V = fv1; : : : ; vng is8



the set Z(V ) = � nXi=1 
i vi : �1 � 
i � 1 for all 1 � i � n�:A zonotopal tiling T is a tiling of Z(V ) by translates of zonotopes Z(Vi) with Vi � V . Azonotopal tiling is a simple zonotopal tiling if all tiles are rhombi, i.e., jVij = 2 for all i.A zonotopal tiling together with a distinguished vertex x of the boundary of Z(V ) is amarked zonotopal tiling. The next theorem is a pre
ise statement for the 
orresponden
esuggested by Figure 6. The proof of the theorem is based on a Sweeping Lemma forzonotopal tilings, Lemma 4.Theorem 3 Let V be a set of n pairwise non-
ollinear ve
tors in R2 .(1) There is a bije
tion between marked zonotopal tilings of Z(V ) and marked arrange-ments of order n.(2) Via this bije
tion simple tilings 
orrespond to simple arrangements.Before going into the proof let us 
omment on the broader 
ontext Theorem 3. thetheorem is equivalent to the rank 3 version of the Bohne-Dress Theorem whi
h givesa bije
tion between zonotopal tilings of d-dimensional zonotopes and oriented matroidsof rank d + 1 with a realizable one-element 
ontra
tion. The 
orresponden
e betweenoriented matroids and arrangements is given by the representation theorem for orientedmatroids. This theorem states that oriented matroids of rank d + 1 are in bije
tion witharrangements of pseudohyperplanes in d-dimensiononal proje
tive spa
e. An a

essibletreatment of these 
onne
tions is given by Zigler [27℄. A more geometri
 proof of theBohne-Dress Theorem was given by Ri
hter-Gebert and Ziegler [20℄.In the �rst part of the proof we give the mapping from zonotopal tilings to equivalen
e
lasses of allowable sequen
es. Let Z(V ) be a marked zonotope with V a set of n pairwisenon-
ollinear ve
tors. The zonotope Z = Z(V ) is a 
entrally symmetri
 2n-gon. RotateZ su
h that the distinguished vertex x is the unique highest vertex of Z, in parti
ular theboundary of Z has no horizontal edge. Assume that the ve
tors in V are labeled su
hthat along the left boundary of Z, i.e., on the left path from the lowest vertex x to x, thesegments 
orrespond to v1; v2; : : : ; vn in this order.Given a zonotopal tiling T 
onsider the set of y-monotone path along segments ofT from x to x. We de�ne a sweep of T with northpole x as a sequen
e p0; p1; : : : ; pr ofy-monotone path from x to x in T with the following properties.(1) Any two 
onse
utive paths pi, pi+1 of the sequen
e have exa
tly one tile Ti of tilingT between them, i.e., in the interior of the 
losed 
urve pi [ pi+1.(2) Every tile is between a unique pair of 
onse
utive paths, therefore, p0 [ pr is theboundary of Z(V ).As we did for sweeps of arrangements we further assume that the sweep of T is fromleft to right, i.e., p0 is the left boundary of Z(V ).Remark. There is some interest in the maximum numberm(n) of y-monotone x to x patha marked zonotopal tiling 
an have. Knuth [15, page 39℄ 
onje
tures that m(n) � n2n�2.Via an indu
tive argument this would imply that the number of marked arrangements of9



n pseudolines is bounded by �nk=1m(k). Therefore, the 
onje
tured bound would showthat this number is at most 2n2=2+o(n2) whi
h would be an improvement over the 
urrentlybest upper bound 20:69n2 , Felsner [5℄.A sweep of tiling T indu
es a total order T1; T2; : : : ; Tr on the tiles of T with the propertythat after removing the tiles of any initial segment T1; : : : ; Ti�1 tile Ti 
an be separatedfrom the remaining tiles Ti+1; : : : ; Tr by a translation to the left parallel to the x-axis,we 
all this the separation property. Conversely, an order T1; T2; : : : ; Tr of the tiles withthe separation property 
orresponds to a sweep: De�ne path pi as the right boundary ofthe union of T1; : : : ; Ti. To proof that a zonotopal tiling T 
an be swept it is thereforesuÆ
ient to show that there is a total order of the tiles with the separation property.Guibas and Yao [14℄ observed that given any set C1; C2; : : : ; Cr of disjoint 
onvexobje
ts in the plane there is at least one obje
t Ci that 
an be translated to the leftparallel to the x-axis without ever 
olliding with another obje
t from the set. Hen
e, byindu
tion every set of disjoint 
onvex obje
ts admits a total ordering C1; C2; : : : ; Cr withthe separation property, i.e., for i = 1; ::; r given the sets Ci; : : : ; Cr we 
an separate Cifrom the remaining sets by a translation to the left parallel to the x-axis. As a spe
ial
ase we obtain:Lemma 4 Every marked zonotopal tiling T 
an be swept.De�ne a graph G = (V;E) su
h that the verti
es V of G are the tiles of T and theedges of G are pairs of tiles sharing a 
ommon segment. Let �!E be an orientation of theedges of G su
h that an edge fT; T 0g of G points from the tile on the left side of thesegment T \ T 0 to the tile on the right side. Sin
e the boundary of Z 
onsists entirelyof non horizontal edges this orientation is well de�ned. The orientation of the edges ofG represents the `immediate blo
king relation' with respe
t to translations parallel to thex-axis. From Lemma 4 we obtain:Fa
t A. The orientation �!E is an a
y
li
 orientation of G.From the 
orresponden
e between marked zonotopal tilings and marked arrangementsindi
ated in Figure 6 we see that we met graph G and its orientation already in the proofof Lemma 1. A formal proof of this `obvious fa
t' will be impli
it in the next lemma. Forlater use we note:Fa
t B. Every topologi
al sorting of �!G has the separation property.The next lemma is the `zonotopal equivalent' of Theorem 2.Lemma 5 There is a bije
tion between marked zonotopal tilings and equivalen
e 
lassesof allowable sequen
es. Moreover, this bije
tion maps simple zonotopal tilings to 
lasses ofsimple allowable sequen
es.Proof. First we show how to asso
iate an allowable sequen
e to every sweep of a zonotopaltiling. Re
all that sweeps of T 
orrespond to topologi
al sortings of �!G . Given a sweepsequen
e p0; : : : ; pr of paths we asso
iate to ea
h path pi a sequen
e �i re
ording the labelsof the ve
tors whi
h de�ne the segments along the path in the order of the path from xto x. The sequen
e �0 is a permutation, the identity. Any two 
onse
utive sequen
es �iand �i+1 only di�er in a substring where path pi takes the left boundary and path pi+110



takes the right boundary of tile Ti. Sin
e Ti is a zonotope the same labels appear on bothboundaries but in reversed order. Hen
e, all �i are permutations, moreover, �i ! �i+1 isa move as in part (2) of the de�nition of allowable sequen
es. We also note that �r is thereverse permutation.It remains to prove property (3) of allowable sequen
es, namely, that any two elementsa; b 2 [n℄ are reversed in exa
tly one move. This is shown by an argument involvingvolumes. Due to a formula of M
Mullen (see Shephard [21, Prop. 2.2.12℄) the volume ofa 2-dimensional zonotope Z(v1; : : : ; vn) is given as followsvol(Z(v1; : : : ; vn)) =Xi<j vol(Z(vi; vj) =Xi<j 4jdet(vi; vj)j:A move reverting i1 < i2 < :: < is 
orresponds to a tile T = Z(vi1 ; ::; vis) of volumePij<ik 4jdet(vij ; vik)j. Ea
h pair has to be reversed at least on
e and this exhausts thevolume of the zonotope Z(V ). Hen
e there 
an be no additional reversals and property (3)is established.Now we have to show that the set of sweeps of T maps to an equivalen
e 
lass ofallowable sequen
es. From Fa
t B we already know that the sweeps of T are in one-to-one
orresponden
e with topologi
al sortings of �!G .Consider topologi
al sortings � and �0 of �!G whi
h only di�er in an adja
ent trans-position and let � and �0 be the two 
orresponding allowable sequen
es. From � =T1; : : : ; Ti; Ti+1; : : : ; Tr and �0 = T1; : : : ; Ti+1; Ti; : : : ; Tr it follows that the tiles Ti and Ti+1are both minimal elements in the restri
tion of �!G to fTi; Ti+1; Ti+2; : : : ; Trg. Hen
e thereis no horizontal line interse
ting both of them. From the y-monotoni
ity of pi�1 and thefa
t that �i�1 is a permutation we 
on
lude that Vi \ Vi+1 = ; when Ti = Z(Vi) andTi+1 = Z(Vi+1). This shows that the moves Mi : �i�1 ! �i and Mi+1 : �i ! �i+1 in �are disjoint and hen
e � and �0 are elementary equivalent. The argument 
an be readba
kwards to show that if � and �0 are elementary equivalent allowable sequen
es and �
orresponds to a topologi
al sorting of �!G then so does �0.For the inverse mapping we have to asso
iate a marked zonotopal tiling to an equiva-len
e 
lass of allowable sequen
es. Build the tiling from left to right starting with the leftboundary of Z(V ). After pla
ing i tiles, three properties remain invariant:(1) The union of the already pla
ed tiles together with the left boundary of Z is a simply
onne
ted region.(2) The right boundary of this region is a y-monotone path pi.(3) The segments along path pi are in the order given by �i.From this it is obvious that we 
an pla
e the tile Ti+1 
orresponding to move Mi+1 su
hthat the invariant remains valid. Sin
e the last permutation �r is the reverse of the identitypath pr is the right boundary of Z(V ). The volume formula implies that the tiles havebeen pla
ed without overlap. Therefore, the pla
ement of tiles T1; : : : ; Tr is a tiling T ofZ(V ).It is easily seen that equivalent allowable sequen
es lead to the same tiling while non-equivalent allowable sequen
es produ
e di�erent tilings.Theorem 3 is now easily obtained: 11



proof (Theorem 3). Statement (1) is a dire
t 
onsequen
e of Theorem 2 and Lemma 5.Combining the two bije
tions it is seen that the graph of edges of the marked zonotopaltiling 
orresponding is the dual of the graph of the 
orresponding marked arrangementwith the marked fa
e F of the arrangement and the marked vertex x of the tiling dually
orresponding to ea
h other. For statement (2) we additionally note that an arrangementis simple exa
tly if all bounded regions of the dual graph are quadrangles.Remark. Ri
hter-Gebert and Ziegler [20℄ use a similar volume argument in their proofof the Bohne-Dress Theorem. A proof of Theorem 3 avoiding the volume argument wasre
ently given by Elnitsky [4℄ in the 
ontext of redu
ed de
ompositions.3.3 Levi's Extension LemmaLemma 6 Let A be an arrangement of order n and let p; q be two points in the planewhi
h do not both lie on any of the lines of A. Then there is a pseudoline 
 
ontaining pand q su
h that A[ 
 is an arrangement of order n+ 1.The original sour
e for the lemma stated for proje
tive arrangements is Levi [16℄, anEnglish trans
ription is found in Gr�unbaum [13℄. A proof using a variant of sweeps, namely
y
li
 sweeps, was given by Snoeyink and Hershberger [22℄. Here we use the proje
tivespa
e as auxiliary tool.Proof. We detail the proof for the 
ase where p and q are not in
ident to a line of A andleave the obvious modi�
ations to in
lude spe
ial 
ases to the interested reader.Let p be 
ontained in fa
e Fp of A. Let l1; : : : ; ln be the pseudolines of A and withoutloss of generality let l1 
ontain an edge e of the boundary of Fp. Add the line at in�nity l1to the arrangement and map it ba
k to Eu
lidean spa
e su
h that l1 is the line at in�nitythus obtaining an arrangement A0 with lines l1; l2; : : : ; ln. Mark A0 su
h that p 2 Fp is thenorthpole. Apply the Sweeping Lemma to �nd a 
urve 
 
rossing the fa
e Fq 
ontainingq. Line 
 
an be bent in Fq to make q a point on 
. Extending 
 from p to in�nity we seethat A0[
 is an arrangement of order n+1. Adding the line at in�nity, i.e., l1 we obtain aproje
tive arrangement of order n+2 whi
h is mapped ba
k to the Eu
lidean plane usingl1 as line at in�nity. This gives an arrangement of lines l1; : : : ; ln; 
 with both points pand q on line 
.It is notable that higher dimensional analogs of the Extension Lemma fail. Examples
an be given of arrangements of pseudoplanes in three-spa
e su
h that for some triples ofpoints p; q; r no pseudoplane 
an be added to extend the arrangement and 
ontain the threepoints (see Goodman and Polla
k [10℄). Ri
hter-Gebert [19℄ has 
onstru
ted examplesshowing that the above non-existen
e result is already true for two points instead of three.4 Flips, Arrangements and SignotopesIn the �rst part of the paper we have studied arrangements of pseudolines as individualobje
ts. In this part we will 
hange the fo
us and 
onsider the set of all arrangements.More pre
isely we 
onsider a graph Gn whose verti
es are all 
ombinatorially di�erent sim-ple marked arrangements of n pseudolines in the Eu
lidean plane and edges 
orrespondingto elementary 
ips (see Figure 7), i.e., arrangements A and B are adja
ent if they only12



di�er in the orientation of a single triangle. Figure 8 shows the graph Gn for n = 5 withthe arrangements represented by zonotopal tilings.
Figure 7: Elementary 
ip at the shaded triangle.In Subse
tion 4.1 we introdu
e an en
oding of arrangements by triangle orientations.This en
oding imposes a natural orientation on Gn. In Subse
tion 4.2 we generalize thepatterns and de�ne an order Sr(n), for all 1 � r � n, su
h that S1(n) is the Boolean latti
e,S2(n) is the weak Bruhat order of the symmetri
 group and S3(n) is the abovementionedorientation of Gn. The elements of Sr(n) will be 
alled signotopes. Subse
tion 4.3 givessome 
onstru
tions for new signotopes from old ones. The main stru
tural result aboutsignotopes is the surje
tive mapping from maximum 
hains in Sr�1(n) to the elements ofSr(n), this result is derived in Subse
tion 4.4. Note that we have already seen a spe
ial
ase of this mapping in Theorem 2: Maximum 
hains in the weak Bruhat order S2(n)are simple allowable sequen
es and elements of S3(n) are marked simple arrangements ofpseudolines.4.1 En
oding arrangements by triangle orientationsFlips are ni
ely des
ribed in the di�erent en
odings of arrangements. In the en
oding byzonotopal tilings the proje
tion of a 
ube is repla
ed by the view of the 
ube from theother side. In the en
oding by lo
al sequen
es an adja
ent transposition of elements i andj is applied to the lo
al sequen
e �k of line k and similarly to lo
al sequen
es �i and �jwhen the 
ip-triangle is 
on�ned by lines i; j and k.In the representation by allowable sequen
es the transformation is not that obvious.The 
hange is easy to des
ribe if we re
all that the allowable sequen
es of a markedarrangement (A; F ) 
orrespond to topologi
al sortings of a dire
ted graph �!G . The 
hangeon �!G is again a lo
al one.We now introdu
e a further representation for simple marked arrangements of pseu-dolines. Let (A; F ) be su
h an arrangement of n pseudolines. Consider the arrangementindu
ed by a triple of fi; j; kg of lines of A, where we assume i < j < k. Note that thesethree lines 
an indu
e two 
ombinatorial di�erent arrangements. Either the 
rossing oflines i and k is above line j, denote this by the symbol � or the 
rossing is below line j,denoted by +. The shaded triangles of Figure 7 are a � triangle on the left side and a +triangle on the right side. With this 
onvention a marked simple arrangement indu
es atriangle-sign fun
tion f : �[n℄3 �! f�;+g.Note that for i < j and all k 6= i; j we have f(fi; j; kg) = � i� on line k, the 
rossingwith line i pre
edes the 
rossing with line j, i.e., on the lo
al sequen
e �k the pair (i; j) is anon-inversion. Sin
e lo
al sequen
es en
ode marked arrangements, i.e., arrangements withthe same lo
al sequen
es are isomorphi
, it follows that the above de�ned sign patternsf : �[n℄3 �! f�;+g also en
ode marked simple arrangements of pseudolines.13



Figure 8: The graph G5 as diagram of the signotope order S3(n).Clearly not every possible sign pattern f : �[n℄3 � ! f�;+g will 
orrespond to anarrangement, there are simply too many su
h fun
tions. Below we derive an obviousne
essary 
ondition on the sign patterns of arrangements. Later it will be shown that thisne
essary 
ondition is already suÆ
ient.Consider a quadruple of pseudolines h; i; j; k ofA. These lines indu
e a marked arrange-ment of four pseudolines. Sin
e there is only one (unmarked) arrangement of four lineswith eight unbounded fa
es we easily enumerate the eight possible patterns of triangle-signfun
tions for n = 4. The following list shows them, the signs are given in lexi
ographi
alorder of the three-sets, i.e, as f sign(1,2,3), sign(1,2,4), sign(1,3,4), sign(2,3,4) g.f�;�;�;�g; f+;�;�;�g; f+;+;�;�g; f+;+;+;�g;f�;�;�;+g; f�;�;+;+g; f�;+;+;+g; f+;+;+;+gFrom this we obtain a ne
essary 
ondition for the fun
tions f indu
ed by an arrange-ment. For A 2 �[n℄4 � and 1 � i � 4 we let Abi
 denote the set Aminus the ith largest elementof A, e.g., f2; 4; 5; 9gb3
 = f2; 4; 9g. If f 
orresponds to an arrangement A then the restri
-tion of A to the four lines of A has a pattern f signAb4
; signAb3
; signAb2
; signAb1
 g fromthe above list. Order the set f�;+g of signs by � � +. Inspe
ting the above enumerationwe see that the legal sign patterns are 
hara
terized by the following property: For every14



4 element subset P of [n℄ and all 1 � i < j < k � 4 either f(P bi
) � f(P bj
) � f(P bk
) orf(P bi
) � f(P bj
) � f(P bk
). This property is 
alled monotoni
ity.Theorem 7, whose proof will be given in the next se
tion, shows that monotoni
ityalready 
hara
terizes the sign patterns f : �[n℄3 �! f�;+g en
oding arrangements.Theorem 7 A fun
tion f : �[n℄3 �! f�;+g is the triangle-sign fun
tion of a marked simplearrangements Af of order n if and only if f is monotone on all 4-element subsets of [n℄.It is a useful exer
ise to verify that monotoni
ity of the triangle-sign fun
tion indu
edby an arrangement is equivalent to the transitivity of non-inversions and of inversions ofthe lo
al sequen
es �k, hen
e, equivalent to �k being a permutation. Combining theseremarks with Theorem 7 we obtain:Theorem 8 A set (�i)i=1::n with �i a permutation of [n℄nfig is the set of lo
al sequen
esof a simple marked arrangement of order n if and only if for all i < j < k the pairs(i; j); (i; k); (j; k) are inversions in �k; �j ; �i or they are all three non-inversions.An equivalent 
hara
terization theorem has been obtained by Streinu [24℄ in the 
ontextof generalized 
on�gurations of points.4.2 Signotopes and their OrdersIn this se
tion we generalize the 
on
ept of triangle-sign fun
tions. Re
all some notations.The set [n℄ = f1; ::; ng is equipped with the natural linear order. The set of r elementsubsets of [n℄ is �[n℄r �. For A 2 �[n℄r � with r � i we let Abi
 denote the set A minus the ithlargest element of A. The set f�;+g of signs is ordered by � � +.De�nition 1 For integers 1 � r � n a r{signotope on [n℄ is a fun
tion � from the relements subsets of [n℄ to f�;+g su
h that for every r+1 element subset P of [n℄ and all1 � i < j < k � r+1 either �(P bi
) � �(P bj
) � �(P bk
) or �(P bi
) � �(P bj
) � �(P bk
).We refer to this property as monotoni
ity.Let Sr(n) denote the set of all r-signotopes on [n℄ equipped with the order relation� � � if �(A) � �(A) for all A 2 �[n℄r �. Call Sr(n) the r{signotope order.Note that for r = 3 the de�nitions re
e
t our observations for the en
odings of markedsimple arrangements of pseudolines made in the previous se
tion. In parti
ular Theorem 7implies that S3(n) is a partial order on the set of marked arrangements of n pseudolines.Indeed S3(n) is an orientation of the graph Gn, see Figure 8.The list below 
olle
ts some other spe
ial 
ases and easy observations.(1) For r = 1 monotoni
ity is va
uous and S1(n) is just the latti
e of subsets of [n℄.(2) For all n � r � 1 there is a unique minimal and a unique maximal element in Sr(n),namely the 
onstant � and the 
onstant + fun
tion.(3) The diagram of Sr(r + 1) is a (2r + 2)-gon for all r � 1.(4) There is a natural 
orresponden
e between 2-signotopes on [n℄ and permutationsof n. Permutation � and 2-signotope � 
orrespond to ea
h other if a pair (i; j) is15



an inversion of � i� �(i; j) = +. For the proof that this is a bije
tion, note thatmonotoni
ity of � 
orresponds to transitivity of the inversion relation and transitivityof the non-inversion relation for �. In the weak Bruhat order of the symmetri
 group,the permutations are ordered by in
lusion of their inversion sets. By the indi
ated
orresponden
e between 2-signotopes and permutations, S2(n) is isomorphi
 to theweak Bruhat order of Sn.Manin and S
he
htman [17℄ introdu
ed the higher Bruhat order B(n; r�1) whi
h is anorder relation on the set of r-signotopes on [n℄. The higher Bruhat order relation �HB isde�ned as follows: Let � and � be two r-signotopes with �(A) = �(A) for all r-subsets Aof [n℄ but just one A� where �(A�) = � and �(A�) = + in this 
ase we 
all the pair (�; �)a single-step. The order relation �HB is the transitive 
losure of the single-step relation,i.e, � �HB � i� there is a sequen
e � = �0; �1; : : : �t = � su
h that for i = 1; : : : ; t thepair (�i�1; �i) is a single-step. Higher Bruhat orders were further studied by Voevodskijand Kapranov [25℄ and Ziegler [26℄. In parti
ular, Ziegler showed that the higher Bruhatorder B(n; r � 1) and the signotope order Sr(n) are not equal in general. His exampleis B(8; 3) 6= S4(8). For r � 2 obviously B(n; r � 1) = Sr(n). Ziegler also shows thatB(n; n� k� 1) = Sn�k(n) for k � 3. The question whether B(n; 2) = S3(n) was left openby Ziegler. This problem was resolved aÆrmatively by Felsner and Weil [7℄.It should also be mentioned that Ziegler [26℄ gives a geometri
 interpretation of sig-notopes. We give a di�erent interpretation in Theorem 7 (dimension 2) and Se
tion 5(general dimension). In terms of the 
losely related theory of oriented matroids our geo-metri
 obje
ts are the adjoints of the duals of Ziegler's; see [8℄ for details.4.3 New Signotopes from OldVarious operations 
an be performed on signotopes. As in matroids we 
an performdeletion and 
ontra
tion but there exist other 
onstru
tions of new signotopes from old.In this subse
tion we review these operations. Some of the 
onstru
tions, e.g. deletion,
ontra
tion and weak boundary, will be useful later.(1) For an r-signotope � the 
omplement � is obtained by ex
hanging all signs of �. �is a r-signotope.(2) For an r-signotope � on a linearly ordered set X and Y � X with jX n Y j � rde�ne the deletion �"Y to be the indu
ed fun
tion on �XnYr �. Deletion of Y gives ar-signotope on X n Y .(3) For an r-signotope � on a set X and Y � X with jY j < r de�ne the 
ontra
tion �#Yto be the fun
tion on �XnYr�jY j� with �#Y (A) = �(A [ Y ). Contra
tion of Y gives a(r � jY j)-signotope on X n Y .Let � be an r-signotope on [n� 1℄. A one-element expansion of � is an r-signotope � inSr(n) su
h that � = �"n.Lemma 9 The one-element expansions of � 2 Sr(n� 1) form a latti
e in Sr(n).Proof. Let � and �0 be expansions of �. Let 
 : �nr� ! f�;+g be the fun
tion with
(A) = + if �(A) = + or �0(A) = +. We 
laim that 
 is a r-signotope and hen
e the16



least upper bound for � and �0. For the 
laim note �rst that every r + 1 element set Phas �(P br+1
) = �0(P br+1
) = �(P br+1
). It follows that restri
ted to P the signotopes �and �0 are 
omparable, i.e., the restri
tions are 
omparable in Sr(P ). On P the fun
tion 
equals the larger of the restri
tions of � and �0. Hen
e for all (r+1)-sets P monotoni
ityof 
 is inherited from either � or �0.We give geometri
 interpretations for the above 
onstru
tions in the two-dimensional
ase, i.e., for r = 3. Proofs for the 
orresponden
es 
an be derived from Theorem 7.Let (A; F ) be the marked arrangement with lines labeled by X 
orresponding to �. Thearrangement 
orresponding to � is (A; F ). Delete the lines of Y from A to obtain thearrangement 
orresponding to �"Y . Let x be an element of X; the 
ontra
tion �#x is thelo
al sequen
e �x of line x in A. One-element expansions of A are obtained by addinga pseudoline n 
ompatible with A that enters the plane in F and leaves in F . The newnorthfa
e is the right one of the two fa
es obtained from F , i.e., the fa
e above n. Lemma 9has the intuitive explanation that with two expansion lines n and ln0 the right boundaryof the region R obtained as union of the left halfplanes of n and n0 is again an expansionline.Ziegler [26℄ proposes two 
onstru
tions of (r + 1)-signotopes from a r-signotope.(4) For a r-signotope � on [n℄ let �� : � [n℄r+1� ! f�;+g be de�ned by ��(P ) = + i��(P b1
) = � and �(P br+1
) = +. The boundary �� of � is an (r + 1)-signotope(see [26℄).(5) For a r-signotope � on [n℄ let �̂ : �[n+1℄r+1 � ! f�;+g be the unique fun
tion with�̂"n+1= �� and �̂#n+1= �. The extension �̂ is an (r + 1)-signotope (see [26℄).Very mu
h in the spirit of these 
onstru
tions we de�ne:(6) For a r-signotope � on [n℄ let ��� : � [n℄r+1� ! f�;+g be de�ned by ���(P ) = + i��(P br+1
) = +.Claim. The weak boundary ��� of � is an (r + 1)-signotope.Proof. Let Q be a r + 2 element set and let P = Qbr+2
. Note that Qbi
br+1
 = P bi
 forall i < r+2. Hen
e, ���(Qbi
) = �(Qbi
br+1
) = �(P bi
). It follows from the monotoni
ityof � that for 1 � i < j < k < r + 2 either ���(Qbi
) � ���(Qbj
) � ���(Qbk
) or���(Qbi
) � ���(Qbj
) � ���(Qbk
).If k = r + 2 and j < r + 1 we note that Qbk
br+1
 = P br+1
 and the monotoni
ity
ondition of ��� for indi
es i; j; k follows from the 
ondition for i; j; k � 1. Finally ifk = r + 2 and j = r + 1 we �nd that Qbj
br+1
 = Qbk
br+1
, hen
e, ���(Qbj
) = ���(Qbk
)and this implies the monotoni
ity 
ondition of ��� for i; j; k. 4(7) For a r-signotope � on [n℄ let ~� : �[n+1℄r+1 � ! f�;+g be the unique fun
tion with~�"n+1= ��� and ~�#n+1= �. The weak extension ~� is a r + 1-signotope.Remark. Weak extensions have been studied by Rambau [18℄, using the name expansionfor these obje
ts, he shows that �! ~� is an order preserving embedding from B(n; r� 1)to B(n+ 1; r).
17



4.4 Maximum Chains of SignotopesThis subse
tion is devoted to the proof of the main stru
tural theorem on signotopes,Theorem 13. This result is already part of publi
ations on higher Bruhat orders [17, 26℄.While Ziegler refers to some non-trivial results from the theory of oriented matroids in hisproof the approa
h we take remains 
ompletely within elementary 
ombinatori
s.With an r-signotope � on [n℄ asso
iate a dire
ted graph with verti
es the r�1 elementsubsets of [n℄ and edges !� de�ned by: For P 2 �[n℄r � and 1 � i < j � r, if �(P ) = + letP bi
 !� P bj
 and if �(P ) = � let P bj
 !� P bi
.Lemma 10 For an r-signotope � on [n℄ the graph with verti
es � [n℄r�1� and edges !� isa
y
li
.Proof. For r = 2 and arbitrary n, relation !� is the transitive tournament 
orrespondingto the permutation whose inversion set is the set of pairs (i; j) with �(i; j) = +.For n = r, relation!� is the lexi
ographi
 order on the r�1 subsets of [r℄ if �([r℄) = �, otherwise, if �([r℄) = + it is the reverse-lexi
ographi
 order.Let n > r > 2 and let � be the signotope obtained from � by deletion of fng. Byindu
tion!� is a
y
li
 on �[n�1℄r�1 �. Let 
 be the signotope obtained from � by 
ontra
tionof fng and view !
 as graph on the vertex set Y = fA 2 � [n℄r�1� : n 2 Ag. By indu
tion!
 is a
y
li
.Let X� = fA 2 �[n�1℄r�1 � : �(A [ fng) = �g and X+ = fA 2 �[n�1℄r�1 � : �(A [ fng) = +g.The three sets X�;X+; Y partition the r�1 element subsets of [n℄, moreover, the subgraphof !� indu
ed by ea
h of the three blo
ks of the partition is a
y
li
: It agrees with thesubgraph indu
ed by !� in 
ase of X� and X+ and with the subgraph indu
ed by !
in the 
ase of Y . Now 
onsider the edges of !� between the blo
ks. By de�nition of X�all edges with one end in X� and the other end in Y are oriented from X� to Y . Also alledges with one end in X+ and the other end in Y are oriented from Y to X+. Therefore,the a
y
li
ity of !� is readily established if we show that all edges with one end in X�and the other end in X+ are oriented from X� to X+. This follows from the next 
laim:Claim. A 2 X� and B !� A implies B 2 X�,i.e., X� is an ideal in the partial orderde�ned by the transitive 
losure of !�.From B !� A it follows that P = A[B is a r subset [n℄. Let i; j be su
h that B = P bi
and A = P bj
. For Q = P [ fng we then obtain Qbi
 = B [ fng, Qbj
 = A [ fng andQbr+1
 = A [B = P . We use the monotoni
ity of � on Q and distinguish two 
ases:(1) If i < j then B !� A implies �(P ) = �(Qbr+1
) = +. From A 2 X� it follows that�(Qbj
) = �(A[ fng) = �. Monotoni
ity for
es �(Qbi
) = �(B [fng) = �, i.e., B 2 X�.(2) If j < i then B !� A implies �(P ) = �(Qbr+1
) = �. From A 2 X� it follows that�(Qbj
) = �(A[ fng) = �. Monotoni
ity for
es �(Qbi
) = �(B [fng) = �, i.e., B 2 X�.Proposition 11 For a r-signotope � on [n℄ there exist a 
hain �0 < �1 < : : : < �( nr�1) of(r � 1)-signotopes in Sr�1(n) su
h that for t = 1; : : : ; � nr�1� the signs of �t�1 and �t di�erat only one (r � 1)-set At. 18



Proof. Let A1; A2; : : : ; A( nr�1) be a topologi
al sorting of !� and de�ne �t(A) = � ifA = Ai for some i > t and �t(A) = + if A = Ai for some i � t. To prove the lemma itremains to show that ea
h �t is a (r � 1)-signotope.For every r element set P and all i; j; k with 1 � i < j < k � r we either haveP bi
 !� P bj
 !� P bk
 or P bk
 !� P bj
 !� P bi
. In the �rst 
ase we have �t(P bi
) ��t(P bj
) � �t(P bk
) for all t and in the se
ond 
ase �t(P bi
) � �t(P bj
) � �t(P bk
) for allt. This proves monotoni
ity for �t.Based on this lemma will next give the proof of Theorem 7. The main motivation forin
luding this here is to illustrate the interpretations of the abstra
t 
ombinatorial obje
tswe are playing with.Proof. [Theorem 7℄ Let � be a 3-signotope, i.e., a fun
tion � : �[n℄3 � ! f�;+g obeyingmonotoni
ity on 4-subsets of [n℄. From Proposition 11 we obtain a 
hain �0; : : : ; �(n2)in S2(n) 
orresponding to �. Ea
h �i en
odes a permutation of [n℄. �0 is the identityand �(n2) the reverse permutation. Moreover, two permutations �t and �t+1 di�er in asingle sign where �t is � and �t+1 is +. Hen
e, there is a single pair (i; j) being a non-inversion of �t but an inversion in �t+1. This pair is an adja
ent pair of both permutations.This shows that �0; : : : ; �(n2) is a simple allowable sequen
e. From Theorem 2 we obtainthat via �0; : : : ; �(n2) signotope � en
odes an arrangement A. From the 
onstru
tion it iseasily veri�ed that the triangle indu
ed by lines i; j; k in A is a + triangle exa
tly when�(ijk) = +. This proves the bije
tion.The next proposition 
an be seen as a generalization of Theorem 2; it shows thatsaturated 
hains of (r � 1)-signotopes 
an be used to en
ode r-signotopes.Proposition 12 Let 1 < r � n and �0 < �1 < : : : < �( nr�1) be a maximum 
hain inSr�1(n). For t = 1; : : : ; � nr�1� let At be the unique (r � 1)-set with �t�1(At) = � and�t(At) = +. There exists a r-signotope � on [n℄ so that A1; : : : ; A( nr�1) is a topologi
alsorting of !�.Proof. For a set A 2 � [n℄r�1� let �(A) be the index of A in the list A1; : : : ; A( nr�1). Notethat monotoni
ity of the �t's implies that for all D 2 �[n℄r � either �(Db1
) < �(Db2
) <: : : < �(Dbr
) or �(Db1
) > �(Db2
) > : : : > �(Dbr
). In the �rst 
ase let �(D) = +in the se
ond 
ase �(D) = �. We have to show that � is a r-signotope, i.e., that � ismonotone at r + 1 sets. Let Q 2 � [n℄r+1� and 
onsider indi
es 1 � i < j < k � r + 1.Suppose �(Qbi
) = �(Qbk
) = +. Let Qbi;j
 denote the set Q minus the ith largest andthe jth largest element of Q, e.g., f1; 2; 5; 7; 8gb2;3
 = f1; 7; 8g. From �(Qbi
) = + weobtain �(Qbi;j
) < �(Qbi;k
). From �(Qbk
) = + we obtain that �(Qbi;k
) < �(Qbj;k
).Hen
e �(Qbi;j
) < �(Qbj;k
) whi
h implies �(Qbj
) = + as required. The argument for�(Qbi
) = �(Qbk
) = � is symmetri
. It is obvious that A1; : : : ; A( [n℄r�1) is a topologi
alsorting for the relation !�.Propositions 11 and 12 together prove the main stru
ture theorem for signotopes.Theorem 13 There is a surje
tive mapping from maximum 
hains in Sr�1(n) to Sr(n).19



Note that whenever Sr(n) = B(n; r � 1) then for any two signotopes � < � in Sr(n)there is a 
hain of maximum length 
ontaining both. In general we 
an show that at leastevery single element of Sr(n) is 
ontained in a 
hain of maximum length.Proposition 14 Every element of Sr(n) is 
ontained in a 
hain of length �nr�+ 1.Proof. Let � 2 Sr(n) and 
onsider the weak boundary ��� of �. This de�nes the dire
tedgraph !��� on �[n℄r �. Note that A !��� B implies �(A) � �(B), i.e., the sets A with�(A) = � form an ideal in the order 
orresponding to !���. Let A1; A2 : : : ; A(nr) bea linear extension of this order su
h that there is a t with �(Ai) = � for all i � tand �(Ai) = + for all i > t. De�ne the sequen
e �j of r-signotopes as in the proof ofProposition 11. The sequen
e of 
omplements �j is a 
hain of r signotopes with �t = �.Proposition 11 implies that the mapping � from maximum 
hains in Sr�1(n) to ele-ments of Sr(n) des
ribed in the proof of Proposition 12 is surje
tive. The two propositionsalso imply that the preimage of � under � is a set of maximum 
hains in Sr�1(n) of thesame size as the set of topologi
al sortings of !�, i.e., linear extensions of the transitive
losure of !�. We 
an even say more about this preimage.Call two maximum 
hains in Sr�1(n) swap-equivalent if one of them 
orresponds to thelist A1; : : : ; A( nr�1) of (r� 1)-sets and the list of the other 
hain di�ers only by an adja
enttransposition, i.e., is of the form A1; ::; At�1; At+1; At; At+2; ::; A( nr�1) for some t.Proposition 15 For r � 3 the set of maximum 
hains in Sr�1(n) mapped by � to � 2Sr(n) is a 
omplete swap-equivalen
e 
lass.Proof. The proof follows from two fa
ts.First, it is possible to transform any topologi
al sorting of a dire
ted a
y
li
 graphinto any other by a sequen
e of adja
ent transpositions, i.e., reversals of adja
ent pairsof unrelated verti
es. Therefore, the preimage of � is 
ontained in one swap-equivalen
e
lass of 
hains in Sr�1(n).Now assume r � 3 that A1; : : : ; A( nr�1) is a topologi
al sorting of !� and let listA1; ::; At�1; At+1; At; At+2; ::; A( nr�1) 
orrespond to a maximum 
hain of Sr�1(n). We 
laimthat At andAt+1 are unrelated in!�. Otherwise P = At[At+1 is a r-set and monotoni
ityonly allows the signs of At and At+1 to be 
hanged in a row if there is an index i so thatone of the two sets is P bi
 and the other is P bi+1
. Consider sign and lo
ation in the list ofa set of P bj
, j 6= i; i + 1, to obtain a 
ontradi
tion to monotoni
ity. Hen
e, At and At+1are unrelated in !� and the se
ond list also 
orresponds to a topologi
al sorting of !�.These 
onsiderations about swap-equivalen
e of the � preimages 
an be rephrased asfollows: Given a r-signotope � the set of (r�1)-signotopes on maximum 
hains of Sr�1(n)mapped to � by � together with the edges (single-steps) used by these 
hains forms alatti
e isomorphi
 to the latti
e of anti
hains of the transitive 
losure of !� (An exampleof this is given in Example B below). In parti
ular this shows that the orders Sr(n) havea lo
al latti
e stru
ture. What about global latti
e stru
ture? It is known that Sr(n) isa latti
e for r � 2. Ziegler [26℄ has shown that Sr(n) is a latti
e for r � n � 2 and thatS3(6) is not a latti
e. 20
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(a) The arrangement. (1,2)
(3,4)(1,4) (1,3)(2,4) (2,3)

(b) The graph !�.
421342314321

2413214321341234
2431
1243(
) The latti
e.Figure 9: Illustrations for Example B.Example B. Let A (as shown in Figure 9(a)) be the arrangement 
orresponding to a3-signotope �. The dire
ted graph !� is shown in Figure 9(b). Note that we met thetransitive redu
tion of this graph (non-dashed edges) several times as �!G (see Lemma 1,Subse
tion 3.1 and Lemma 4). The maximum 
hains of 2-signotopes mapped by � to �are the allowable sequen
es of A. In Subse
tion 3.1 we have seen that they 
orrespondbije
tively to topologi
al sortings of �!G . It follows that the suborder of the weak Bruhatorder indu
ed by permutations � appearing in allowable sequen
es of A is a distributivelatti
e (see Figure 9(
)).5 Geometri
 Interpretations for SignotopesZiegler [26℄ shows that there is a natural bije
tion between the uniform extension poset onthe set of single element extensions of a 
y
li
 hyperplane arrangement Xn;d
 in Rd and thehigher Bruhat order B(n; n�d�1). Felsner and Ziegler [8℄ note that from oriented matroidduality, B(n; n�d�1) has another geometri
 representation as the set of 1{element liftingsof Xn;n�d
 . These liftings 
orrespond to 
ertain aÆne arrangements of pseudohyperplanesin Rn�d�1 . In this se
tion we make the 
onne
tion with the se
ond 
lass of geometri
obje
ts expli
it; that is, we 
hara
terize a 
lass of arrangements of pseudohyperplanes inRd 
orresponding to signotopes � 2 Sd+1(n).A pseudohyperplane H in Rd is a homeomorph of a hyperplane su
h that the two
onne
ted 
omponents of Rd nH are homeomorphi
 to the d-ball. A set fH1; : : : ;Hng ofpseudohyperplanes in Rd is an arrangement of pseudohyperplanes if every two pseudohy-perplanes Hi and Hj interse
t in an (n� 1) dimensional pseudohyperplane and they 
rossat their interse
tion. Moreover, for all j the set fHi \ Hj : i = 1; :::; j � 1; j + 1; :::; ngis an arrangement of n � 1 pseudohyperplanes in Hj �= Rd�1 . We say d-arrangement toabbreviate for `arrangement of pseudohyperplanes in Rd '. A d-arrangement is simple ifany set of d+ 1 pseudohyperplanes has empty interse
tion.So far we have dis
ussed arrangements of pseudolines whi
h had been normalized by a21



marking fa
e F and a spe
i�
 labeling of the lines (in
reasing on a 
lo
kwise walk from Fto F at in�nity). For all arrangements of this se
tion we assume that they are simple andthat they are embedded in Rd in a normalized way as des
ribed in the next paragraph.For i = 1; :::; d� 1 let Ii be the d� i dimensional spa
e at in�nity obtained by settingthe last i 
oordinates equal to �1, i.e., with xd = �1; xd�1 = �1; : : : ; xd�i+1 = �1(if the reader feels un
omfortable with these `spa
es at in�nity' he may assume that thearrangement is embedded in a d-dimensional unit hyper
ube [0; 1℄d and 
onsider Ii as theside of this 
ube obtained by setting the last i 
oordinates equal to 0). We demand that thed-arrangement indu
es a (d� i)-arrangement with the same number of pseudohyperplaneson Ii. Moreover, the pseudohyperplanes are labeled by in
reasing x1 
oordinate at theirinterse
tion with Id�1. We 
all an arrangement with these properties normal.The interse
tion of every set of d � 1 pseudohyperplanes of an arrangement A deter-mines a line of the arrangement. If the arrangement is normal we 
onsider these linesand the edges they support as oriented away from I1. A normal d-arrangement indu
esa sign fun
tion f : � [n℄d+1� ! f�;+g by the following rule: Given i1 < i2 < : : : < id+1 letf(i1; :::; id+1) = � i� on the interse
tion line of the pseudohyperplanes hi3 ; :::; hid+1 theinterse
tion with hi1 
omes before the interse
tion with hi2 .Hurrying ahead we de�ne: A normal d-arrangement A is 
alled a Cd-arrangement if thenormal (d�1)-arrangement indu
ed by A on I1 
orresponds to the minimal signotope �0 2Sd(n); the minimal signotope �0 is the signotope with all signs �. It should be remarkedthat the arrangement 
orresponding to �0 2 Sd(n) is the 
y
li
 arrangement Xn;d
 .Theorem 16 There is a bije
tion between Cd-arrangements with n pseudohyperplanes andsignotopes in Sd+1(n). The signotope 
orresponding to a Cd-arrangement A is the signfun
tion of A as de�ned above.Proof. We use indu
tion on d. Theorem 7 
overs the 
ase d = 2 and may serve as basis forthe indu
tion. For the indu
tion step we also use that if (�; �0) is a single step in Sd(n)then the asso
iated Cd�1-arrangements A and A0 are related by a 
ip at a simpli
ial 
ellbounded by the hyperplanes 
orresponding to the unique d element set A with �(A) = �and �0(A) = +.For d dimensions we �rst 
onsider normal arrangements of d + 1 pseudohyperplaneslabeled by the elements of A = [d + 1℄. Su
h an arrangement A has just one bounded
ell whi
h is a (pseudo)simplex. The set of bounded edges of A forms the skeleton graphof the simplex, i.e., a 
omplete graph Kd+1. The vertex of this graph determined by theinterse
tion of the pseudohyperplanes in Abi
 will itself be denoted Abi
.Claim A. The orientation of lines indu
es an a
y
li
 orientation on the graph of boundededges of A.Let Abi
, Abj
 and Abk
 be any three verti
es of the graph. The three lines Abi;j
; Abi;k
,Abj;k
 are supported by the plane Abi;j;k
 whi
h is a homeomorph of a disk D. Theinterse
tion of Abi;j;k
 with I1 
orresponds to an interval on the boundary of D in whi
hall three lines begin. Sin
e lines and edges are oriented away from I1 the orientation ofthe triangle with verti
es Abi
, Abj
 and Abk
 is a
y
li
. An orientation of the 
ompletegraph Kd+1 with all triangles a
y
li
 is a
y
li
. 4Claim B. For Cd-arrangements the orientation of Kd+1 is either the transitive 
losure22



of Ab1
 ! Ab2
 ! : : : ! Abd+1
 in whi
h 
ase the sign of the arrangement is + or ofAbd+1
 ! Abd
 ! : : :! Ab1
 in whi
h 
ase the sign is �.Sin
e the graph is a
y
li
 we 
an sweep arrangement A starting with I1. Meaning, we�nd a sequen
e s0; s1; : : : ; sd+1 of pseudohyperplanes su
h that they all share the pseu-dosphere at in�nity with I1 = s0 and between any two 
onse
utive pseudohyperplanessi, si+1 there is exa
tly one vertex of the arrangement. Sin
e the arrangement is a Cdarrangement we know that the �rst vertex to be swept 
orresponds to a simpli
ial 
ellin the arrangement of the minimal element of Sd(d + 1). This arrangement has only twosimpli
ial 
ells one bounded by the pseudohyperplanes in Ab1
 and the other by those inAbd+1
. The arrangement indu
ed on s1 is thus obtained by 
ipping one of these 
ells.After this �rst 
ip one of the two bran
hes of Sd(d+ 1) whi
h as we re
all has the stru
-ture of (2d + 2)-gon is determined. Playing with the bije
tion between the arrangementsindu
ed on the sweep-planes si and the 
orresponding signotopes we see that the sweephas to follow the 
hosen bran
h of Sd(d + 1). This results in one of the above orderingsof the verti
es of Kd+1. The statement about the sign of the arrangement follows from
onsidering the orientation of the edge between Ab1
 and Ab2
. 4From the previous 
laim we obtain generalized 
riteria for determining the sign of ad + 1 element set A in a Cd-arrangement. Consider any two verti
es Abi
 and Abj
 withi < j of the arrangement indu
ed by A. The sign of A is + i� Abi
 pre
edes Abj
 on theline Abi;j
.With this at hand we 
an show monotoni
ity for the sign fun
tions of a Cd-arrangementA with more then d+1 pseudohyperplanes: Let � be the sign fun
tion 
orresponding to Aand let P be a d+2 element set of pseudohyperplanes. For 1 � i < j < k � d+2 we have toshow that �(P bi
) = + together with �(P bj
) = � implies �(P bk
) = � and �(P bi
) = �together with �(P bj
) = + implies �(P bk
) = +. We only prove the �rst impli
ation, theother being similar. From �(P bi
) = + we obtain that vertex P bi;j
 pre
edes vertex P bi;k
on the line P bi;j;k
. From �(P bj
) = � we obtain that vertex P bj;k
 pre
edes vertex P bi;j
on the line P bi;j;k
. From transitivity P bj;k
 pre
edes P bi;k
 and hen
e �(P bk
) = �.So far we have seen that the sign fun
tion of a Cd-arrangement of n pseudohyperplanesis a signotope in Sd+1(n). Given a Cd-arrangement with signotope � the next thing toprove is the 
orresponden
e between simpli
ial 
ells in A and single steps involving �.For the �rst half note that a simpli
ial 
ell of A 
an be 
ipped leading to A0. Sin
e A0is a Cd-arrangement it has a 
orresponding signotope �0. Now 
ompare the ordering ofverti
es on lines of A and A0 to see that � and �0 di�er in just one sign. On the otherhand, if � and �0 only di�er in the sign A then it is possible to show that for all i; j in Athe two verti
es Abi
 and Abj
 are adja
ent along the line Abi;j
. Therefore, the simpli
ial
ell 
orresponding to A is not penetrated by any further pseudohyperplane.Given any Cd-arrangement A, we may move to any other Cd-arrangement (of samedimension with same number of pseudohyperplanes) using 
ips. This is due to the 
on-ne
tedness of Sd+1(n) (Lemma 14). Therefore, the missing link for a 
omplete proof isthe existen
e of a single Cd-arrangement with n pseudohyperplanes. This 
an be pro-vided by 
he
king that the 
y
li
 arrangements have the required properties. Here weindi
ate a 
onstru
tion whi
h is similar in spirit to the 
onstru
tion of wiring diagrams asrepresentatives of pseudolinearrangements:Given � 2 Sd+1(n) 
hoose a 
hain �0 < �1 < : : : < �(nd) in Sd(n) mapped by � to �. By23



indu
tion �0 
orresponds to a Cd�1-arrangement B0 of n pseudohyperplanes. Let A be theunique d-set with di�erent sign in �0 and �1. We know that the pseudohyperplanes from Abound a simpli
ial 
ell in B0. Constru
t B1 by applying a simpli
ial-
ip to this 
ell in B0.Repeat this to obtain a sequen
e B0;B1; : : : ;B(nd) of arrangements in Rd�1 
orrespondingto �0; �1; : : : ; �(nd). Introdu
e a new dimension xd and pla
e arrangement Bi in the aÆne(d � 1)-dimensional spa
e at xd = i. The pseudohyperplane hi of the arrangement A
orresponding to � is obtained by properly interpolating between the ith pseudohyperplanein Bj and Bj+1 for j = 0; : : : ; �nd� � 1 and extending the ith pseudohyperplane of B0 andB(nd) to xd = �1 and xd =1 respe
tively.Note that, as a 
onsequen
e of Theorem 16 Cd-arrangements 
an be swept. This meansthat starting with the sweep-pseudohyperplane I1 the sweep never gets stu
k. While thisproperty is 
learly shared by realizable arrangements there are reasons to believe that\most" higher dimensional arrangements 
an not be swept (e.g. the examples 
onstru
tedby Ri
hter-Gebert [19℄). In fa
t it is not even known whether every d-arrangement ofn > d pseudohyperplanes 
ontains a simpli
ial 
ell.6 Con
lusion and Open ProblemsSummarized in three phrases the 
ontributions of this paper are: Sweeps are an e�e
tivetool in dealing with planar arrangements. In the simple 
ase the mapping from allowablesequen
es to marked arrangements is a spe
ial 
ase of the general existen
e of surje
tivemappings frommaximal 
hains in Sr�1(n) to elements of Sr(n). And that elements of Sr(n)
orrespond to a spe
ial 
lass of arrangements (Cr�1-arrangements) of pseudohyperplanesin Rr�1 whi
h admits sweeps.Hen
e, restri
ted to Cr�1-arrangements maximal 
hains in Sr�1(n) 
an be seen as anr � 1 dimensional generalization of allowable sequen
es. Goodman and Polla
k [11℄ hadalready asked for higher dimensional analogs of allowable sequen
es. Can these ideasbe 
arried further to give su
h analogs for a larger 
lass of arrangements of pseudohy-perplanes? Are there other sets of 
onditions whi
h guarantee the sweepability of anarrangement?Already Manin and S
he
htman [17℄ mention that maximal 
hains in the weak Bruhatorder have a ni
e en
oding in terms of Young tableaux [23, 2℄. They ask for a generalizationto higher dimension, i.e., for en
odings of 
hains in Sr(n), for r > 2. It seems that so farthere is no progress 
on
erning this question.It would be very interesting to understand more of the stru
ture of the graph Gr(n)whose elements are r-signotopes and edges 
orrespond to single-steps, i.e., two r-signotopesare 
onne
ted by an edge if they di�er only in the sign of a single r-set. Only little isknown: Ziegler [26℄ shows that the higher Bruhat order is homotopy equivalent to a sphere.Felsner and Ziegler [8℄ have shown that these graphs 
ontain large subgraphs whi
h formthe skeleton of zonotopes and 
hara
terize those pairs (r; n) where Gr(n) a
tually is theskeleton graph of a zonotope in Rn�r+1 . Questions like minimum and maximum degree ofGr(n) or 
onne
tedness are wide open in general. Even for r = 3 the question 
on
erningthe minimum degree has only re
ently been solved by Felsner and Kriegel [6℄. They showedthat every simple Eu
lidean arrangement of n pseudolines 
ontains n � 2 triangles. We24



venture the following 
onje
ture: Minimum degree and 
onne
tedness of Gr(n) are bothn� r + 1.We 
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