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Abstract. We propose a Ramsey theory for binary trees and prove that for every
r-coloring of “strong copies” of a small binary tree in a huge complete binary tree T ,
we can find a strong copy of a large complete binary tree in T with all small copies
monochromatic. As an application, we construct a family of graphs which have tree-
chromatic number at most 2 while the path-chromatic number is unbounded. This
construction resolves a problem posed by Seymour.
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(T. Mészáros) Fachbereich Mathematik und Informatik, Kombinatorik und Graphen-
theorie, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany

(P. Micek) Theoretical Computer Science Department, Faculty of Mathematics and
Computer Science, Jagiellonian University, Kraków, Poland

E-mail addresses: fidelbc@math.gatech.edu, felsner@math.tu-berlin.de,

meszaros.tamas@fu-berlin.de, piotr.micek@tcs.uj.edu.pl, heather.smith@math.gatech.edu,

libbytaylor@gatech.edu, trotter@math.gatech.edu.
Date: February 15, 2017.
Key words and phrases. Binary tree, Ramsey theory, tree-decomposition.
Stefan Felsner is partially supported by DFG Grant Fe 340/11-1. Tamás Mészáros is supported
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1. Introduction

Let G be a graph. A tree-decomposition of G is a pair (T,B) where T is a tree and
B = (Bt | t ∈ V (T )) is a family of subsets of V (G), satisfying:

(T1) for each v ∈ V (G) there exists t ∈ V (T ) with v ∈ Bt; and for every edge uv ∈ E(G)
there exists t ∈ V (T ) with u, v ∈ Bt;

(T2) for each v ∈ V (G), if v ∈ Bt ∩Bt′′ for some t, t′′ ∈ V (T ), and t′ lies on the path in
T between t and t′′, then v ∈ Bt′ .

Many researchers refer to the subset Bt as a bag and they consider Bt as an induced
subgraph of G. With this convention, |Bt| is just the number of vertices of G in the
bag Bt, while χ(Bt) is the chromatic number of the induced subgraph of G determined
by the vertices in Bt.

The quality of a tree-decomposition (T, (Bt | t ∈ V (T ))) is usually measured by its
width, i.e. the maximum of |Bt| − 1 over all t ∈ V (T ). Then the tree-width of G is the
minimum width of a tree-decomposition of G. In this paper we study the tree-chromatic
number of a graph, a concept introduced by Seymour in [6]. The chromatic number of
a tree-decomposition (T, (Bt | t ∈ V (T ))) is the maximum of χ(Bt) over all t ∈ V (T ).
The tree-chromatic number of G, denoted by tree-χ(G), is the minimum chromatic
number of a tree-decomposition of G. A tree-decomposition (T, (Bt | t ∈ V (T ))) is a
path-decomposition when T is a path. The path-chromatic number of G, denoted by
path-χ(G), is the minimum chromatic number of a path-decomposition of G. Clearly,
for every graph G we have

ω(G) 6 tree-χ(G) 6 path-χ(G) 6 χ(G).

Furthermore, if G = Kn is the complete graph on n vertices, then ω(G) = χ(G) = n,
so all these inequalities can be tight. Accordingly, it is of interest to ask whether for
consecutive parameters in this inequality, there is a sequence of graphs for which one
parameter is bounded while the next parameter is unbounded.

In [6], Seymour shows that the classic Erdős construction [1] for graphs with large girth
and large chromatic number yields a sequence {Gn : n > 1} with ω(Gn) = 2 and
tree-χ(Gn) unbounded.

For an integer n > 2, the shift graph Sn is a graph whose vertex set consists of all closed
intervals of the form [a, b] where a, b are integers with 1 6 a < b 6 n. Vertices [a, b],
[c, d] are adjacent in Sn when b = c or d = a. As is well known (and first shown in [2]),
χ(Sn) = dlg ne, for every n > 2. On the other hand, the natural path decomposition
of Sn shows that path-χ(Sn) 6 2, for every n > 2, so as noted in [6], the family of shift
graphs has bounded path-chromatic number and unbounded chromatic number.
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Accordingly, it remains only to determine whether there is an infinite sequence of graphs
with bounded tree-chromatic number and unbounded path-chromatic number. How-
ever, these two parameters appear to be more subtle in nature. As a first step, Huynh
and Kim [4] showed that there is an infinite sequence {Gn : n > 1} of graphs with
tree-χ(Gn)→∞ and tree-χ(Gn) < path-χ(Gn) for all n > 1.

In [6], Seymour proposed the following construction. Let Tn be the complete (rooted)
binary tree with 2n leaves. When y and z are distinct vertices in Tn, the path from y
to z is called a “V ” when the unique point on the path which is closest to the root of Tn
is an intermediate point x on the path which is strictly between y and z. We refer to x
as the low point of the V formed by y and z.

For a fixed value of n, we can then form a graph Gn whose vertices are the V ’s in Tn. We
take V adjacent to V ′ in Gn when an end point of one of the two paths is the low point
of the other. Clearly, ω(Gn) 6 2. Furthermore, it is easy to see that χ(Gn)→∞ with n
(we will say more about this observation later in the paper). Seymour [6] suggested that
the family {Gn : n > 1} has unbounded path-chromatic number.

To settle whether Seymour’s intuition was correct, we needed to develop methods for
working with arbitrary path decompositions of the graph Gn, extracting sufficient reg-
ularity to permit a detailed analysis of structural properties. Discovering regularity is a
central theme in Ramsey theory, so it should not be surprising that developing Ramsey
theoretic tools on binary trees will be a major component of this paper.

Although it is sometimes inadvisable to tell “how the story ends,” we report that the
Ramsey theoretic approach led us to find that graphs in the family {Gn : n > 1} have
path-chromatic number at most 2. On the one hand, it can be argued that no additional
tools were required to discover this fact. One has to simply devise the appropriate path-
decomposition for Gn at the outset.

However, our Ramsey theoretic approach allowed us to make the following minor mod-
ification to the construction. In the binary tree Tn, a subtree is called a “Y ” when it
has 3 leaves and the closest vertex in the subtree to the root of Tn is one of the three
leaves. We then let Hn be the graph whose vertex set consists of the V ’s and Y ’s in Tn.
Furthermore, Y is adjacent to Y ′ in Hn if and only if one of the two upper leaves of one
of them is the lowest leaf in the other. Also, a Y is adjacent to a V if and only if one
of the upper leaves in the Y is the low point of the V .

It is clear that tree-χ(Hn) 6 2. Using our Ramsey theoretic tools, we will then be able
to show that path-χ(Hn)→∞ with n, so that Seymour’s question has been successfully
resolved.

The rudiments of a Ramsey theoretic framework for binary trees were developed orig-
inally in connection with the question as to whether the local dimension of a poset is
bounded in terms of the tree-width of its cover graph, and these tools are used in [5] to
answer this question in the negative. However, the Ramsey theoretic tools we develop
here are more comprehensive, and we believe they will be of independent interest.
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Figure 1. A Full Binary Tree, a Binary Tree, and a Complete Binary
Tree of Order 3.

2. Ramsey Theory on Binary Trees

Although the concepts are included in elementary mathematics and computer science
courses, we need some notation and terminology for working with binary trees. We
view binary trees as posets. The elements of a binary tree T are in correspondence to
binary strings such that with a string x in T all prefixes of x also correspond to elements
of T . To simplify notation we frequently refer to elements of T via their corresponding
strings, see Figure 1. There is a relation y 6 x in T whenever y is a prefix of string x.
The empty string corresponds to the least element (root) of T .

When a string is of modest length, we may write it explictly, e.g., x = 01001101 and we
write xy to denote the concatenation of x and y. The length of an element of a binary
tree is defined as the length of its string and the length of binary tree is the maximum
length of an element of the tree. Note that the poset height of a binary tree of length n
is n+ 1.

For two elements y < x in a binary tree T we say that x is in the left subtree above y
in T if y0 is a prefix of x and we say y is in the right subtree above x in T when y1 is a
prefix of x.

A binary tree T is full if for each x ∈ T either x is a maximal element (leaf) of T or
both the left and the right subtree are non-empty, i.e., either both x0 and x1 are not
in T or both x0 and x1 are in T .

A binary tree is complete of order n if its elements are in correspondence to all binary
strings of length at most n. Hence, if T is a complete tree1 of order n then it has 2n+1−1
elements, 2n leaves and length n. In particular, a complete binary tree of order 0 is a
one-point poset. For each n > 0, we define Tn to be a complete binary tree of order n.

For binary trees R, S, T with R being a subtree of T we say that R is a strong copy
of S in T when there is a function f : S → R satisfying the following two requirements:

1The complete (rooted) binary tree we discussed in an informal manner in the opening section of
this paper is just the cover graph of the poset T .
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Figure 2. A binary tree and two copies of the tree within T4. Only the
right one is a strong copy.

(i) f is a poset isomorphism, i.e., f is a bijection and for all x, y ∈ S, x 6 y in S if
and only if f(x) 6 f(y) in R;

(ii) for all x, y ∈ S with x < y in S, y is in the left (right) subtree above x in S if and
only if f(y) is in the left (right) subtree above f(x) in T (see Figure 2).

As usual we let [r] denote the set {1, 2, . . . , r}. Also, an r-coloring of a set X is just
a map φ : X → [r]. In some situations, we will consider a coloring φ using a set of r
colors, but the set will not simply be the set [r].

We begin with a result which can be considered as the analogue of the pigeon-hole
principle for binary trees. However, note that the inductive structure of the argument
is just the same as for the general form of Ramsey’s theorem for graphs. In the statement
of the theorem, the notation pt is an abbreviation for “point”.

Theorem 2.1. For every r > 1 and every p > 0 there is a least integer n0 = pt(p; r)
so that if n > n0 and φ is an r-coloring of the elements of a complete binary tree Tn of
order n, then there is some α ∈ [r] and a strong copy R of a complete binary tree Tp of
order p in Tn such that φ assigns color α to every element in R.

Proof. The argument proceeds by double induction, with the first induction on the
number r of colors. For the second induction we look at sequence (p1, p2, . . . , pr) of
non-negative integers, and show that there is a least integer n0 = pt(p1, p2, . . . , pr) so
that if n > n0 and φ is an r-coloring of the elements in a complete binary tree Tn of
order n, then there is some α ∈ [r] and a strong copy R of a complete binary tree Tpα
of order pα in Tn such that φ assigns color α to every element in R. The induction is
on the sum p1 + p2 + · · ·+ pr.

The case when r = 1 is trivial, just set pt(p; 1) = pt(p) = p, for all p. If r > 3, then we
note that:

pt(p1, p2, . . . , pr) 6 pt(pt(p1, p2, . . . , pr−1), pr).
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Now consider the case where r = 2. As is the tradition in Ramsey theory, we now take
color 1 to be “red” and color 2 to be “blue”. Trivially, pt(0, p2) = p2 since if we color
any element in Tp2 red, we get a red copy of a complete binary tree of order 0 and if we
color all elements blue, then we get a blue copy of a complete binary tree of order p2.
Similarly, pt(p1, 0) = p1. Now, for p1, p2 > 1 we claim that:

pt(p1, p2) 6 1 + max{pt(p1 − 1, p2), pt(p1, p2 − 1)}.

To see that this claim holds, let n > 1+max{pt(p1−1, p2), pt(p1, p2−1)} and let φ be a
red-blue coloring of Tn. Suppose first that φ assigns color red to the empty string in Tn.
We then consider the left tree TL above the empty string, noting that TL is a complete
binary tree of order n− 1 > pt(p1 − 1, p2). If there is a blue strong copy of a complete
binary tree of order p2 in this subtree, we are done. Otherwise, there is a red strong
copy of a complete binary tree of order p1 − 1 in TL. Similarly, in the right tree TR
above the empty string in Tn, there is again a red strong copy of a complete binary tree
of order p1 − 1. Together with the empty string, we then have a red strong copy of a
complete tree of order p1 in Tn. The argument when φ assigns color blue to the empty
string is symmetric. With this observation, the proof of the theorem is complete. �

Here is the general theorem we are about to prove.

Theorem 2.2. Let (p,m, r) be a triple of integers with p > m > 0 and r > 1. Then
there is a least positive integer n0 = Ram(p,m; r) so that if n > n0, Q is a full binary
tree of length at most m and φ is an r-coloring of the strong copies of Q in a complete
binary tree Tn of order n, then there is a color α ∈ [r] and a strong copy R of a complete
binary tree Tp of order p in Tn such that φ assigns color α to every strong copy of Q
contained in R.

We note that Theorem 2.1 is the special case m = 0 of this result, i.e. Ram(p, 0; r) =
pt(p; r). As is often the case in Ramsey theory, we do not prove Theorem 2.2 directly.
Instead, we have a second statement which can be viewed as a “bipartite” version. The
two statements are then proved concurrently with an inductive argument which switches
back and forth between the two.

When Q is a full binary tree and R is a strong copy of Q in T , we will say that R is a
bipartite copy of Q in T when the least element of R is the least element of T . For a
triple of integers (p,m, r) with p > m > 0 and r > 1 let n0 = BpRam(p,m; r) be a least
positive integer so that if n > n0, Q is a full binary tree of length at most m and φ is
an r-coloring of the bipartite copies of Q in a complete binary tree Tn of order n, then
there is a color α ∈ [r] and a bipartite copy R of a complete binary tree Tp of order p
in Tn such that φ assigns color α to every bipartite copy of Q in R.

With Theorem 2.1 as the basis of the induction, the following two claims imply Theo-
rem 2.2.

Claim 1. For all p > m > 0 and r > 1, if Ram(p− 1,m; r′) exists for all r′ > r, then
BpRam(p,m+ 1; r) exists.
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Claim 2. For all m > 1, if BpRam(p,m; r) exists for all pairs (r, p) with r > 1 and
p > m, then Ram(p,m; r) exists for all pairs (r, p) with r > 1 and p > m.

Note that BpRam(p, 0; r) = p as there is only one bipartite copy of Q in any non-empty
tree T .

We begin with the proof of Claim 1. Let p > m > 0 and r > 1. We will show that
BpRam(p,m+1; r) exists and is at most n0 := 1+Ram(p−1,m; r′) where r′ = r ·22q+1−1

and q = Ram(p− 1,m; r).

Let Q be a full binary tree of length at most m + 1 and let φ be an r-coloring of a
complete binary tree Tn of order n > n0.

If Q is of length 0, then the statement holds as n > n0 = 1 + Ram(p − 1,m; r′) >
1 + (p − 1) = p. If Q is of length at least 1, then the left subtree and the right
subtree above the root in Q are non-empty and will be denoted Q0 and Q1, respectively.
Then Q0 and Q1 have length at most m− 1.

In the tree Tn, the left (right) subtree above the root of Tn will be denoted F0 (F1,
respectively). Of course, F0 and F1 are complete trees of order n − 1. Then let E1 be
any strong copy of Tq in F1.

Consider a strong copy S of Q0 in F0. We define an r-coloring φS of the strong copies
of Q1 in E1 in a quite natural manner: when S ′ is a strong copy of Q1 in E1, the elements
in {∅} ∪ S ∪ S ′ form a bipartite copy of Q in Tn. We then set φS(S ′) = φ({∅} ∪ S ∪ S ′).

Since q > Ram(p− 1,m; r), there is some αS ∈ [r] and a strong copy ES of Tp−1 in E1

such that φS assigns color αS to every strong copy of Q1 which is contained in ES.

In turn, this process defines a coloring σ of the copies of Q0 contained in F0, i.e., we set
σ(S) = (αS, ES). Note that σ(S) takes one of at most r ·22q+1−1 = r′ values (admittedly
a rough estimate). Since n − 1 > Ram(p − 1,m; r′), there is a color (β,R1) used by σ
and a subposet R0 of F0 so that R0 is a strong copy of Tp−1 and σ assigns color (β,R1)
to every strong copy of Q0 contained in R0.

The trees R0 and R1 together with the root of Tn form a subposet R of Tn which is a
strong copy of Tp, the root of R is the root of Tn, and φ assigns color β to every bipartite
copy of Q in R. This completes the proof of Claim 1.

Now we come to the proof of Claim 2. We first sketch the idea. Let n � s � p
be large enough and let φ be an r-coloring of the strong copies of Q in Tn. First we
iteratively apply the bipartite version to obtain a strong copy of Ts in Tn such that for
every element x in Ts all bipartite copies of Q in the subtree Ts(x) rooted at x have
the same color αx. Assuming s > pt(p; r), then by Theorem 2.1 there is α ∈ [r] and a
strong copy R of Tp in Ts such that αx = α for all elements x of R. It follows that all
strong copies of Q in R have color α.
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Now let s = pt(p; r) and define a sequence q0, q1, . . . , qs in a reverse manner. First set
qs = m. If 0 < i 6 s and qi has been defined, set qi−1 = BpRam(1 + qi,m, r). We now
show that Ram(p,m; r) exists and is at most q0. Fix a full binary tree Q of length at
most m. Let n be any integer with n > 1 + q0 and let φ be an r-coloring of the strong
copies of Q in Tn.

We iteratively construct binary trees Si in Tn for 0 6 i 6 s+ 1 such that

(i) Si is a bipartite copy of a complete binary tree of order i+ qi in Tn;
(ii) for each element x of length less than i in Si there is a color αx ∈ [r] such that all

bipartite copies of Q in Si(x) have color αx.

Let S0 be a subtree of Tn consisting of all elements of length at most q0 in Tn. Clearly S0

is a bipartite copy of Tq0 in Tn. Since there is no element of length less than 0 in S0 the
second condition is void.

Now suppose that Si has been defined. For an element x of length i in Si let Si(x) be
the subtree of Si rooted at x. Since Si has order i+ qi we know that Si(x) is a complete
binary tree of order qi. Since qi = BpRam(1 + qi+1,m, r), there is a bipartite copy B(x)
of T1+qi+1

in Si(x) and some αx ∈ [r] such that all bipartite copies of Q in B(x) have
color αx. The binary tree Si+1 is obtained by replacing Si(x) by B(x) in Si for each x
of length i.

In Ss+1 all elements x of length at most s have their αx fixed. Let S be a subtree of Ss+1

consisting of all elements of length at most s. By construction S is a bipartite copy
of Ts in Tn. It follows from the choice of s and Theorem 2.1 that there is some color
α ∈ [r] and a subposet R of S such that R is a strong copy of Tp and αx = α for every
element x in R. Clearly, this implies that φ assigns color α to every strong copy of Q
contained in R. With this observation, the proof of Claim 2 is complete, and so is the
proof of Theorems 2.2.

We have the following immediate corollary.

Corollary 2.3. Let (p,m, r) be a triple of integers with p > m > 0 and r > 1. Then
there is a least positive integer n0 = Ram(p,m; r) so that if Q is a binary tree of length
at most m and φ is an r-coloring of the strong copies of Q in a complete binary tree Tn
of order n, then there is a color α ∈ [r] and a strong copy R of a complete binary tree
Tp of order p in Tn such that φ assigns color α to every strong copy of Q contained in
R.

Proof. We note that if Q is a non-full binary tree of length m, then it is possible to add
leaves to Q to obtain a full binary tree Q′ of length m which contains Q as an induced
subposet. It is easy to see that if we are given an r-coloring φ of the strong copies of
Q in Tn, there is a natural way to extend φ to an r-coloring of the strong copies of Q′

in Tn. We then apply Theorem 2.2. �
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We pause here to comment that there are other formulations which lead to a Ramsey
theory on binary trees. For example, we can weaken the requirement that R be a strong
copy of Q and only require that R is isomorphic to Q as an ordered tree. However,
since we have no application here for such variations, they will not be discussed further
in this paper.

3. Separating Tree-chromatic Number and Path-chromatic Number

For the remainder of the paper, for a positive integer n, we let Gn be the graph of the
V ’s in the complete binary tree Tn. Strictly speaking, a vertex V in Gn is a path which
is determined by its two endpoints, but we find it convenient to specify V as a triple
(x, y, z), where y and z are the endpoints of the path and x is the low point on the path.
We view V as a triple and not a 3-element set so we can follow the convention that y
is in the left tree above x and z is in the right tree above x. When V1 = (x1, y1, z1) and
V2 = (x2, y2, z2) are vertices in Gn, we note that V1 and V2 are adjacent if and only if
one of the following four statements holds: z1 = x2, y1 = x2, y2 = x1 or z2 = x1.

Also, for each n > 1, we let Hn be the graph of V ’s and Y ’s in Tn. Of course, Gn is
an induced subgraph of Hn. Furthermore, the natural tree-decomposition of Hn shows
that tree-χ(Hn) 6 2 for all n > 1.

Our goals for this section are to prove the following two theorems.

Theorem 3.1. path-χ(Gn) 6 2, for all n > 1.

Theorem 3.2. For every r > 1, there is a positive integer n such that path-χ(Hn) > r.

We elect to follow the line of our research and prove the second of these two theorems
first. In accomplishing this goal, we will discover a path-decomposition of Gn witnessing
that path-χ(Gn) 6 2 for all n > 1.

Our argument for Theorem 3.2 will proceed by contradiction, i.e. we will assume that
there is some positive integer r such that path-χ(Hn) 6 r for all n > 1. The contradic-
tion will come when n is sufficiently large in comparison to r.

For the moment, we take n as a large but unspecified integer. Later, it will be clear
how large n needs to be. We then take a path-decomposition of Hn witnessing that
path-χ(Hn) 6 r. We may assume that the host path in this decomposition is the set N
of positive integers with i adjacent to i+1 in N for all i > 1. For each vertex v in Hn, the
set of all integers i for which v ∈ Bi is a set of consecutive integers, and we denote the
least integer in this set as av and the greatest integer as bv. Abusing notation slightly,
we will denote this set as [av, bv], i.e., this interval notation identifies the integers i ∈ N
with av 6 i 6 bv. We point out the requirement that [av, bv]∩ [au, bu] 6= ∅ when v and u
are adjacent vertices in Hn.

We may assume that av < bv for every vertex v ∈ Hn. Furthermore, we may assume
that for each integer i, there is at most one vertex v ∈ Hn with i ∈ {av, bv}.
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Figure 3. Applying Ramsey with Seven Full Binary Trees

For each i ∈ N, we let Gn(i) respectively denote the induced subgraph of Gn determined
by those vertices v ∈ Gn with i ∈ [av, bv]. The graph Hn(i) is defined analogously.

We pause here to point out an essential detail for the remainder of the proof. Since
χ(Hn(i)) 6 r for all integers i, then for all q > 2r, there is no positive integer i for
which Hn(i) contains the shift graph Sq as a subgraph.

To begin to make the connection with Ramsey theory, we observe that there is a natural
1–1 correspondence between V ’s in Gn and strong copies of T1 in Tn. So in the discussion
to follow, we will interchangeably view a vertex V = (x, y, z) of Gn as a path in Tn and
as a 3-element subposet of Tn forming a strong copy of T1. Of course, we are abusing
notation slightly by referring to Tn as a graph and as a poset, but by now the notion
that as a graph, we are referring to the cover graph of the poset should be clear.

Now let (V1, V2) be an ordered pair of vertices in Gn. Referring to the binary trees in
Figure 3, we consider 7 different ways this pair can appear in Tn:

(i) V1 and V2 are adjacent with z1 = x2. In this case, we associate the pair (V1, V2)
with a strong copy of the poset Q1.

(ii) V1 and V2 are adjacent with y1 = x2. In this case, we associate the pair (V1, V2)
with a strong copy of the poset Q2.
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(iii) V1 and V2 are non-adjacent with x2 in the right tree above z1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q3.

(iv) V1 and V2 are non-adjacent with x2 in the left tree above y1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q4.

(v) V1 and V2 are non-adjacent with x2 in the left tree above z1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q5.

(vi) V1 and V2 are non-adjacent with x2 in the right tree above y1. In this case, we
associate the pair (V1, V2) with a strong copy of the poset Q6.

(vii) V1 and V2 are non-adjacent and there is a vertex w in Tn so that x1 is in the left
tree above w while x2 is in the right tree above w. In this case, we associate the
pair (V1, V2) with a strong copy of the poset Q7.

Now for the application of our Ramsey theoretic tools. Given a pair (V1, V2) of distinct
vertices in Gn, there are 6 ways the intervals [a1, b1] and [a2, b2] can appear in the
path-decomposition:

a1 < a2 < b1 < b2 Overlapping, moving right

a2 < a1 < b2 < b1 Overlapping, moving left

a1 < b1 < a2 < b2 Disjoint, moving right

a2 < b2 < a1 < b1 Disjoint, moving left

a1 < a2 < b2 < b1 Inclusion, second in first

a2 < a1 < b1 < b2 Inclusion, first in second

In the arguments to follow, we will abbreviate these 6 options as OMR, OML, DMR,
DML, ISF and IFS, respectively.

We then define for each i ∈ [7] a 6-coloring φi of the strong copies of Qi in Tn. The
colors will be the six labels {OMR,OML, . . . , IFS} listed above. When i ∈ [7] and Q
is a strong copy of Qi, then Q is associated with a pair (V1, V2) of vertices from Gn.
It is then natural to set φi(Q) as the label describing how the pair ([a1, b1], [b1, b2]) of
intervals are positioned in the path decomposition.

Now let p be a second large integer (p will be large relative to r but small relative
to n), with p > 3 · 2r. Using Corollary 2.3 seven times, we may then assume that n is
large enough to guarantee that there is a strong copy R of a complete binary tree Tp of
order p in Tn and a vector (α1, α2, . . . , α7) of colors such that for each i ∈ [7], φi assigns
color αi to all strong copies of Qi in R. In the remainder of the argument, we will abuse
notation slightly and simply consider that R = Tp.

Claim 1. α1 is either OMR or OML.

Proof. A pair (V1, V2) of vertices in Gn associated with a strong copy of Q1 in Tp is
adjacent in Gn so that [a1, b1] and [a2, b2] intersect. So α1 cannot be DMR or DML.
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cp
dp

d3
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Figure 4. A Shift Graph Sp in Gn

We assume that α1 is ISF and argue to a contradiction. The argument when α1 is IFS
is symmetric. Consider the subtree of Tp consisting of all non-empty strings for which
each bit, except possibly the last, is a 1. We suggest how this subtree appears (at least
for a modest value of p) in Figure 4.

For each interval [i, j] with 1 6 i < j 6 p, we consider the vertex V [i, j] = (ci, di, cj).
Clearly, V [i, j] is adjacent to V [j, k] when 1 6 i < j < k 6 p, i.e., these vertices form
the shift graph Sp.

Let [a, b] = [aV [p−1,p], bV [p−1,p]] be the interval for the vertex V [p− 1, p]. We claim that
a ∈ [aV [i,j], bV [i,j]] for each V [i, j] with 1 6 i < j 6 p− 1 This is immediate if j = p− 1,
since φ1(V [i, p − 1], V [p − 1, p]) = ISF, so [aV [i,p−1], bV [i,p−1]] ⊇ [a, b]. Now suppose
j < p − 1. Then again φ(V [i, j], V [j, p − 1]) = ISF, so that in the path-decomposition
we have [aV [i,j], bV [i,j]] ⊇ [aV [j,p−1], bV [j,p−1]] ⊇ [a, b].

Now the induced subgraph Gn(a) contains the shift graph Sp, and therefore χ(Gn(a)) >
χ(Sp) > log(p) > r. This is a contradiction. �

Without loss of generality, we take α1 to be OMR, since if α1 is OML, we may simply re-
verse the entire path-decomposition. To help keep track of the configuration information
as it is discovered, we list this statement as a property.

Property 1. α1 = OMR, i.e., φ1 assigns color OMR to a pair (V1, V2) of adjacent
vertices in Gn when z1 = x2.

Although it may not be a surprise, once the color α1 is set, colors α2, α3, . . . , α7 are
determined. In the discussion to follow, when we discuss a family {Vj : j ∈ [t]} of
V ’s in Gn, we will let Vj = (xj, yj, zj), and we will let [aj, bj] be the interval in the
path-decomposition corresponding to Vj, for each j ∈ [t].
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Figure 5. Two Useful Small Examples

Property 2. α3 = DMR, i.e., φ3 assigns color DMR to a pair (V1, V2) of non-adjacent
vertices in Gn when x2 is in the right tree above z1.

Proof. Let (V1, V2) be a pair of non-adjacent vertices in Gn with x2 in the right tree
above z1. Then let w3 be the string formed by attaching a 0 at the end of z1, and set
V3 = (z1, w3, x2). Then V3 is adjacent to both V1 and V2. Furthermore, φ1(V1, V3) =
OMR and φ1(V3, V2) = OMR. Accordingly, α3 is either OMR or DMR. We assume that
α3 = OMR and argue to a contradiction.

Consider the shift graph used in the proof of Claim 1. Let a = aV [p−1,p] be the left
endpoint of the interval for V [p − 1, p] in the path-decomposition. We claim that a
is in the interval for V [i, j] in the path-decomposition whenever 1 6 i < j 6 p − 1.
Again, this holds when j = p− 1 since φ1(V [i, p− 1], V [p− 1, p]) = OMR. Also, when
j < p− 1, we have φ3(V [i, j], V [p− 1, p]) = OMR, so that the interval for V [i, j] in the
path-decomposition also contains a. This again implies that Gn(a) contains the shift
graph Sp. The contradiction completes the proof. �

Property 3. α2 = OML, i.e., φ2 assigns color OML to a pair (V1, V2) of adjacent
vertices in Gn when y1 = x2. Also, α4 = DML, i.e., φ4 assigns color DML to a pair
(V1, V2) of non-adjacent vertices in Gn when x2 is in the left tree above y1.

Proof. We can repeat the arguments given previously to conclude that one of two cases
must hold: Either (1) α2 = OMR and α4 = DMR, or (2) α2 = OML and α4 = DML.
We assume that α2 = OMR and α4 = DMR and argue to a contradiction. Consider
the binary tree contained in Tp as shown on the left side of Figure 5. Let V1 = (f, g, h),
V2 = (i, j, k), V3 = (c, f, e) and V4 = (c, d, i).

Since φ4(V4, V1) = DMR, we know b4 < a1. Since φ1(V4, V2) = OMR, we know a2 < b4,
so a2 < a1. Since φ3(V3, V2) = DMR, we know b3 < a2 so b3 < a1. But φ2(V3, V1) =
OMR, which requires a1 < b3. The contradiction completes the proof of Property 3. �

Property 4. α7 = DMR, i.e., φ7 assigns color DMR to a pair (V1, V2) of non-adjacent
vertices in Gn when there is a vertex w in Tn such that x1 is in the left tree above w
while x2 is in the right tree above w.
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Figure 6. The Final Counter-Example

Proof. We again consider the binary tree shown on the left side of Figure 5. Again, we
take V1 = (f, g, h) and V2 = (i, j, k). Noting that f is in the left tree above c and i is in
the right tree above a, φ7(V1, V2) = α7.

Now let V5 = (c, d, e). Then φ4(V5, V1) = DML and φ3(V5, V2) = DMR. These state-
ments imply α7 = DMR. �

Property 5. α5 = α6 = ISF, i.e., φ5 assigns color ISF to a pair (V1, V2) of non-
adjacent vertices in Gn when x2 is in the left tree above z1 and φ6 assigns this pair color
IFS when x2 is in the right tree above y1.

Proof. We prove that α5 = ISF. The argument to show that α6 = ISF is symmetric.
Consider the binary tree shown on the right side of Figure 5. Let V1 = (c, d, e) and
V2 = (j, k, l). Then j is in the left tree above e, so φ5(V1, V2) = α5.

Now set V3 = (d, f, g) and V4 = (e, h, i). We observe that φ2(V1, V3) = OML,
φ7(V3, V2) = DMR, φ1(V1, V4) = OMR and φ4(V4, V2) = DML. Together, these state-
ments imply α5 = ISF. �

Up to this point in the proof, our entire focus has been on the V ’s in Gn. We now turn
our attention to properties that the Y ’s in Hn must satisfy.

Consider the binary tree shown in Figure 6. Of course, we intend that this tree appear
inside Tp. In our figure, the “size” of this construction is m = 6, but since p > 3 · 2r, we
know m > 2r. For each interval [i, j] with 1 6 i < j 6 m, we let Y [i, j] be the Y whose
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three leaves are xi, xj and wj. Clearly, the family {Y [i, j] : 1 6 i < j 6 m} forms a
copy of the shift graph Sm. To reach a final contradiction, it remains only to show that
there is some integer i ∈ N for which all vertices in {Y [i, j] : 1 6 i < j 6 m} belong
to Hn(i).

For each j ∈ [m], we let Vj = (xj, yj, zj), and as usual, we let [aj, bj] be the corresponding
interval for Vj in the path decomposition. By Property 2, we have α3 = DMR, so that:

a1 < b1 < a2 < b2 < · · · < am−1 < bm−1 < am < bm.

For each j = 2, 3, . . . ,m, let V ′j = (wj, wj0, wj1), and we let [a′j, b
′
j] be the corresponding

interval in the path-decomposition. By Property 4, α7 = DMR so that:

a′m < b′m < a′m−1 < b′m−1 < · · · < a′3 < b′3 < a′2 < b′2.

Again, since α7 = DMR, we know that am < bm < a′m < b′m.

Now consider a pair i, j with 1 6 i < j 6 m. The vertex Y [i, j] is adjacent in Hn

to both Vj and V ′j . This implies that the interval for Y [i, j] must overlap both [aj, bj]
and [a′j, b

′
j]. However, this forces the interval for Y [i, j] to contain [bm, a

′
m]. Therefore,

Gn(bm) contains the shift graph Sm. With this observation, the proof of Theorem 3.2
is complete.

We now return to the task of proving Theorem 3.1, i.e., to the assertion that
path-χ(Gn) 6 2 for all n > 1. Our proof for Theorem 3.2 suggests a natural way
to define a path-decomposition of the graph Gn of V ’s in the binary tree Tn, one that
satisfies all five properties we have developed to this point. We simply take a drawing
in the plane of Tn using a geometric series approach. Taking a standard cartesian co-
ordinate system in the plane, we place the root of Tn at the origin. If m > 0 and we
have placed a string x of length m at (h, v), we set δ = 2−m and place x1 and x0 at
(h+ δ, v + δ) and (h− δ, v + δ), respectively.

For each x in Tn, let π(x) denote the vertical projection of x down onto the horizontal
axis. In turn, for each V = (x, y, z), we take aV = π(y) and bV = π(z). To illustrate
this construction, we show in Figure 7 the interval [aV , bV ] corresponding to the vertex
V = (0, 00110, 010) in Gn.

Clearly, we may consider the host path P for the decomposition as consisting of all
points on the horizontal axis of the form π(x) where x ∈ Tn. Also, in the natural
manner, π(x) is adjacent to π(x′) in P when there is no string x′′ ∈ Tn with π(x′′)
between π(x) and π(x′).

So let x0 ∈ Tn and consider the bag B0 = Bπ(x0) consisting of all vertices V = (x, y, z)
in Gn with π(y) 6 π(x0) 6 π(z). We partition B0 as C1 ∪ C2 ∪ C3 where:
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V = (x, y, z)
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Figure 7. A Path-Decomposition of Gn

(i) A vertex V = (x, y, z) of B0 belongs to C1 if π(x) < π(x0).
(ii) A vertex V = (x, y, z) of B0 belongs to C2 if π(x) > π(x0).

(iii) A vertex V = (x, y, z) of B0 belongs to C3 if π(x) = π(x0). In this case, x = x0.

We now explain why C1, C2 and C3 are independent sets in Gn. This is trivial for C3.
We give the argument for C1, noting that the argument for C2 is symmetric.

Suppose that V1 and V2 are adjacent vertices in C1. If the pair (V1, V2) determines
a strong copy of Q1, then π(z1) = π(x2) < π(x0), which is a contradiction. On the
other hand, if the pair (V1, V2) determines a strong copy of Q2, then y1 = x2 so that
π(y1) = π(x2) < π(x1) < π(x0). Now the geometric series nature of the construction
implies that π(z2) < π(x0) which is again a contradiction.

With these observations, we have now proved that path-χ(Gn) 6 3 for all n > 1. This
inequality is tight as evidenced by the following five elements of Gn which form a 5-
cycle: V1 = (∅, 0, 1), V2 = (1, 10, 11), V3 = (10, 100, 101), V4 = (101, 1010, 1011) and
V5 = (1, 101, 11). Note that π(101) is in [ai, bi] for each i ∈ [5].

Nevertheless, we are able to make a small but important change in the path-
decomposition to obtain a decomposition witnessing that path-χ(Gn) 6 2. For the
integer n, let ε = 2−2n. Then for each vertex V = (x, y, z) of Gn, we change the interval
in the path decomposition for V from [π(y), π(z)] to [π(y) + ε, π(z)− ε]. Our choice of ε
guarantees that we still have a path-decomposition of Gn.

Again, we consider an element x0 of Tn and the bag B0 consisting of all V = (x, y, z)
with π(y) 6 π(x0) 6 π(z). As before, B1, B2 and B3 are independent sets, although
membership in these three sets has been affected by the revised path-decomposition. We
claim that B1∪B3) is also an independent set, so that the partition B0 = (B1∪B3)∪B2

witnesses that path-χ(Gn) 6 2.
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Suppose to the contrary that V1 ∈ C1 and V3 ∈ C3 with V1 adjacent to V3 in Gn.
Clearly, this requires that (V1, V3) is associated with a strong copy of the binary tree
Q1 as shown in Figure 3. This implies that z1 = x0 so that a1 < π(x1) < π(z1) =
π(x0)− ε = b1. However, the assumption that V1 ∈ B0 which requires a1 6 π(x0) 6 b1.
The contradiction completes the proof of Theorem 3.1.
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