
Points with Large Quadrant DepthRoel Apfelbaum� Itay Ben-Dany Stefan Felsnerz Tillmann MiltzowxRom Pinhasi{ Torsten Uekerdtk Ran Ziv��January 7, 2011AbstratGiven a set P of points in the plane we are interested in points that are `deep' inthe set in the sense that they have two opposite quadrants both ontaining many pointsof P . We deal with an extremal version of this problem. A pair (a; b) of numbers isadmissible if every point set P ontains a point p 2 P that determines a pair (Q;Qop)of opposite quadrants, suh that Q ontains at least an a-fration and Qop ontains atleast a b-fration of the points of P . We provide a omplete desription of the set F ofall admissible pairs (a; b). This amounts to identifying three line segments and a point onthe boundary of F .In higher dimensions we study the maximum a, suh that (a; a) is opposite-orthantadmissible. In dimension d we show that 1=(2) � a � 1= for  = 22d�12d�1.Finally we deal with a variant of the problem where the opposite pairs of orthantsneed not be determined by a point in P . Again we are interested in values a, suh thatall subsets P in Rd admit a pair (O;Oop) of opposite orthants both ontaining at leastan a-fration of the points. The maximum suh value is a = 1=2d. Generalizations of theproblem are also disussed.1 IntrodutionA point p = (p1; p2) in the plane de�nes four quadrants Q1(p); Q2(p); Q3(p), and Q4(p)entered at p, eah being the intersetion of two halfspaes de�ned by one horizontal andone vertial line through p. As usual the quadrants are numbered in ounterlokwise orderstarting from Q1 = f(x1; x2) 2 R2 : x1 � p1 and x2 � p2g. There are two pairs of oppositequadrants (Q1; Q3) and (Q2; Q4). We write Qop to denote the quadrant opposite to Q, e.g.,Qop3 = Q1. In the extended abstrat of this artile, whih appeared in the 2010 SOCGConferene Proeedings [ABF+℄, we have onsidered the quadrants to be open. However, our�This researh was supported by a Grant from the G.I.F., the German-Israeli Foundation for Sienti�Researh and Development and also by The Israeli Siene Foundation (grant No. 938/06) and DeutsheForshungsgemeinshaft (grant DFG Fe340/7-1).�Mathematis Dept., Tel-Aviv University, Tel-Aviv 69978, Israel. roel6�hotmail.om.yMathematis Dept., Tehnion|Israel Institute of Tehnology, Haifa 32000, Israel. itaybd�gmail.om.zInst. f. Mathematik TU Berlin, 10623 Berlin, Germany. felsner�math.tu-berlin.de.xInst. f. Mathematik TU Berlin, 10623 Berlin, Germany. t.miltzow�googlemail.om.{Math. Dept., Tehnion|Israel Inst. of Tehnology, Haifa 32000, Israel. room�math.tehnion.a.il.kInst. f. Mathematik TU Berlin, 10623 Berlin, Germany. uekerdt�math.tu-berlin.de.��Computer Siene Dept., Tel-Hai Aademi College, Upper Galilee 12210, Israel. ranziv�telhai.a.il.1



results hold for losed quadrants as well. The losed quadrants have the advantage that weneed no assumption about general position.For a given set P of points we ask for points p 2 P that are `deep' in the set in the sensethat p has two opposite quadrants both ontaining many points of P . A pair (Q;Qop) ofopposite quadrants entered at a point p 2 P is alled (a; b)-admissible if jQ \ P j � a(n� 1)and jQop \ P j � b(n � 1). Clearly, the admissibility of (a; b) depends on n, the number ofpoints in P . However, we are interested in the asymptoti behaviour for n ! 1. We all apair (a; b) admissible if every �nite point set P ontains a point with two opposite quadrantsthat are (a; b)-admissible. Thus, (a; b) is not admissible if there exists a number N , suh thatfor all n � N there is an n-element set P in whih no point has two opposite quadrants thatare (a; b)-admissible.Br�onnimann, Lenhner, and Pah [BLP℄ de�ne the notion of opposite-quadrant depth forpoint sets in the plane as the maximum a, suh that (a; a) is admissible. They prove thatevery set of points in the plane has opposite-quadrant depth at least 18 . We give a new andsimpler proof of this result below, Theorem 1.1.In Setion 2 we provide a omplete desription of the set F of all admissible pairs. Theshape of F turns out to be surprisingly ompliated (see Figure 3).In Setion 3 we ask for the maximum a, suh that (a; a) is admissible in higher dimensions.In dimension d we obtain upper and lower bounds that di�er by a fator of 2. In Setion 4we disuss further generalizations.The notion of opposite-quadrant depth, resp. opposite-orthant depth, is related to enter-points and some measures of statistial depth, suh as hyperplane depth. We refer to [Ede℄ forinformation on enterpoints and to [LPS℄ for statistial depth. Br�onnimann et al. [BLP℄ alsomention a onnetion with onit-free olorings. Related notions of depth have been studiede.g. in [BPZ1℄ and [BPZ2℄.As a warm up and for the purpose of introduing some onvenient notation we now reprovethe main result from [BLP℄.Theorem 1.1 ([BLP℄).(1) Any set P of n points in the plane has opposite-quadrant depth at least 18 .(2) If P is in onvex position, then it has opposite-quadrant depth at least 14 .Before starting with the proof let us introdue the following onvenient notation. Givena set P of n points, the weight of a subset A of the plane is !(A) = jA\P jn�1 . In terms ofweights, a pair (Q;Qop) of opposite quadrants at a point p 2 P is (a; b)-admissible if and onlyif !(Q) � a and !(Qop) � b.In many ases we will hoose a subset P 0 of P of some spei�ed weight. When we hoose aset P 0 � P of weight a we mean that P 0 ontains exatly ba(n�1) points from P . This way,the weight of P 0 may be less than a, but the addition of any point would result in a weightwhih is at least a. The additional point will orrespond to that point in P that determinesan admissible pair of quadrants.Theorem 1.1 is a trivial onsequene of the following lemma.Lemma 1.2. Every set P in the plane ontains a point p, suh thatmin �!(Q1(p)); !(Q3(p))�+min �!(Q2(p)); !(Q4(p))� � 14 :2



Proof. Given the point set P , hoose the sets PL; PR; PB , and PT of weight 14 eah onsistingof the �rst points in P from the left, right, bottom, and top, respetively (see Figure 1). Thatis, we hoose the b14(n� 1) points from P with the smallest x1-values, the largest x1-values,the smallest x2-values, and the largest x2-values, respetively.It follows that P 0 = P n (PL [ PR [ PB [ PT ) 6= ; and we laim that every point in P 0has the desired property. Let p be suh a point and assume that min �!(Q1(p)); !(Q3(p))� =s = !(Q1(p)). Sine PT is ontained in Q1(p) [ Q2(p) it follows that !(Q2(p)) � 14 � s.Considering PR we obtain !(Q4(p)) � 14 � s. Consequently min �!(Q1(p)); !(Q3(p))� = sand min �!(Q2(p)); !(Q4(p))� � 14 � s, whih proves the lemma.
pPL PR 14PT

PB 1414 14Figure 1: An illustration of the proof of Lemma 1.2.Proof of Theorem 1.1. For part one of the theorem it is enough to observe that either s or14 � s is at least 18 . For the seond part note that if P is in onvex position one of the fourquadrants of p is empty. Therefore, one of the two minima in the lemma is zero and the otherminimum is at least 14 .
Figure 2: Opposite-quadrant depth at most18 .

It is easy to see that the seond part of Theorem 1.1 is bestpossible by taking P to be the set of verties of a regular n-gon. In[BLP℄ it is shown that the �rst part of Theorem 1.1 is best possiblefor arbitrarily large values of n of the form n = 4 � 3k. The examplein Figure 2 shows a simple onstrution that proves that the �rstpart of Theorem 1.1 annot be improved, i.e., we show that forevery " > 0 there exists N("), suh that for all n � N(") there isan n-element set P with opposite-quadrant depth less than 18 + ".Fix " > 0 and n � 178" + 1. To desribe the example we identifya point set in the plane with the indued dominane order, that is,we say (x1; x2) � (y1; y2) if x1 � y1 and x2 � y2. Based on thisorder we an talk about hains and antihains of a point set. Theexample of Figure 2 onsists of eight hains eah of either bn8  ordn8 e points. In the �gure the hains are represented by gray segments.Now n � 178" + 1 is equivalent to (18 + ")(n � 1) � n8 + 2, whih is stritly more than onepoint together with the points in one hain. Therefore, if a quadrant at p ontains, besidesp, no more than one hain, then its weight is less than 18 + ".The eight hains ome in two groups of four hains eah. One group is the set of weight12 onsisting of the �rst points in P from the left (and the bottom) and the other group ofweight 12 onsists of the �rst points in P from the right (and the top).3



We onsider two ases: First for p 2 P look at the pair (Q2(p); Q4(p)). The hains ineah group are arranged in suh a way that Q2(p) and Q4(p) both ontain p and an integralnumber of hains. But there is no point p with Q2(p) and Q4(p) eah ontaining two hains.Finally, for every p 2 P either Q1(p) or Q3(p) ontains no more than one hain. Heneevery point has two adjaent quadrants with weight less than 18 + ".2 The Set of Admissible PairsReall that a pair (a; b) 2 [0; 1℄2 is alled admissible if every �nite point set P in the planeontains a point p 2 P , suh that there is a quadrant Q entered at p with !(Q) � a and!(Qop) � b. For pairs (a; b); (a0; b0) in [0; 1℄2 we write (a; b) � (a0; b0) if a � a0 and b � b0.In this setion we provide a full haraterization of the set F of all admissible pairs. Webegin with some easy observations.� F is symmetri in the sense that if (a; b) 2 F , then also (b; a) 2 F .� F is also monotone dereasing, that is, if (a; b) 2 F and (0; 0) � (a0; b0) � (a; b) then(a0; b0) 2 F .Figure 3 depits the half of the set F where a � b, the other half is obtained by reetionabout the diagonal line a = b. In our analysis, we will determine the part of the boundary ofF shown in the �gure. That is, we will always assume that a � b.
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Figure 3: The shape of the set F of admissible pairs. Referenes show where to �nd theproofs and onstrutions.Theorem 1.1 shows that (18 ; 18) 2 F and the example from Figure 2 implies that if both aand b are greater than 18 , then (a; b) =2 F .Though the next proposition does not really ontribute to the boundary of F it providesa good �rst approximation to the set.Proposition 2.1. Every pair (a; b) with 3a+ 5b � 1 is in F .
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A p2b2bS a+ bZ2a
Figure 4: An illustration of theproof of Proposition 2.1.

Proof. First note that we only have to prove that every pair(a; b) with 3a+5b = 1 is in F . The proposition then followsfor all pairs (0; 0) � (a0; b0) � (a; b).So given a set P of points and a pair (a; b) with 3a +5b = 1, hoose the set A of weight 2a onsisting of the �rstpoints in P from the left and the set Z of weight a + bonsisting of the �rst points in P from the right. Considerthe horizontal median point p in the strip S between the setsA and Z. From the assumption it follows that !(S) � 4b(see Figure 4).From !(A) � 2a it follows that one of the left quadrantsof p has weight at least a (w.l.o.g. the upper one Q2(p)). If!(Q4(p)) � b we are done. Hene, we may assume that !(Q4(p)) < b. From the weight of Zit then follows that !(Q1(p)) � a. The weight of points below p in S is at least 2b, therefore,!(Q4(p)) < b implies that !(Q3(p)) � b. We have thus found an appropriate pair of oppositequadrants.Setting a = 13 and b = 0 in the above proposition implies that (13 ; 0) is admissable. To seethat (13 + "; 0 + ") is not admissible for any " > 0 it is enough to onsider three independenthains eah of weight 13 (The top right of Figure 2 depits four independent hains.). In thisexample !(Q(p)) > 13 implies !(Qop(p)) = 0. Therefore:Observation 2.2. Pairs (a; b) with a > 13 and b > 0 are not admissible, i.e., they are notin F .The next observation implies that (12 ; 0) belongs to the boundary of F .Observation 2.3. The pair (12 ; 0) belongs to F . Moreover, for every a > 12 the pair (a; 0)does not belong to F .Proof. Let P be a set of n points in the plane and let p 2 P be the point of P with the largestx1-oordinate. All points of P n fpg are ontained in the seond and third quadrant of p.Hene, one of these two quadrants has weight at least 12 . This shows that (12 ; 0) belongs to F .To see that (a; 0) does not belong to F for any a > 12 , onsider a set P of n points evenlydistributed on a irle, or equivalently the verties of a regular n-gon. It is left to the readerto verify that no point in P has a quadrant of weight greater than 12 .We now get to the onavity at (15 ; 110) on the boundary of F and the two segmentsbounding F that meet in this point.Theorem 2.4. Every pair (a; b) with 2a+ 6b = 1 and a � 14 is in F .Proof. Given a set P of points and a pair (a; b), hoose two vertial lines, suh that the setA of points to the left of both lines has weight a+ b, the set S in the strip between the lineshas weight 4b and the set Z of points to the right of the two lines has the remaining weighta+ b. Consider the horizontal median point p of the middle set S (see Figure 5).One of the quadrants of p has weight at least 14 . Without loss of generality we assume thatthis is true for Q1(p). The restrition 14 � a implies !(Q1(p)) � a. If !(Q3(p)) � b we aredone. Hene, we may assume that !(Q3(p)) < b. From the weight of A it then follows that5



A p ZSa+ b a+ b2b2bFigure 5: An illustration of the proof of Theorem 2.4.!(Q2(p)) � a. Similarly from the weight of points below p in S it follows that !(Q4(p)) � b.Hene, (Q2; Q4) is an appropriate pair of opposite quadrants.Theorem 2.5. Every pair (a; b) with 4a+ 2b = 1 and 316 � a is in F .
2a� bZp2a� bA S2b2bFigure 6: An illustration of theproof of Theorem 2.5.

Proof. In the proof we will need that 2a � 3b, whih followsfrom 4a+ 2b = 1 and 316 � a.Given a set P of points and a pair (a; b), hoose twovertial lines, suh that the set A of points to the left ofboth lines has weight 2a� b, the set S in the strip betweenthe lines has weight 4b and the set Z of points to the right ofthe two lines has the remaining weight 2a� b. Consider thehorizontal median point p of the middle set S (see Figure 6).One of the quadrants of p has weight at least 14 . Withoutloss of generality we assume that this is true for Q1(p), i.e.,!(Q1(p)) � 14 � a. If !(Q3(p)) � b we are done. Hene, wemay assume that !(Q3(p)) < b. From the weight of pointsbelow p it then follows that !(Q4) � b. Sine the weight ofA is at least 2a � b � 2b it follows that !(Q2(p)) � b. If one of the quadrants Q2(p) andQ4(p) has weight at least a we are done. But if !(Q2(p)) < a and !(Q4(p)) < a the pointsin the union of the seond, third and fourth quadrant of p would have total weight less than2a+ b whih ontradits the hoie of p.It remains to show that for 14 � a � 13 the boundary of F is a segment supported bythe line 3a + 3b = 1. The following theorem shows that all pairs (a; b) on this segment areadmissible. In Figure 9 we present a point set P with no point having opposite quadrantsthat are (a + "; b + ")-admissible for 3a+ 3b = 1, a � 14 , and any " > 0. The analysis of theexample is given in Proposition 2.7.Theorem 2.6. Every pair (a; b) with 3a+ 3b = 1 and 14 � a � 13 is in F .Proof. Given a set P of points and a pair (a; b), hoose a vertial line, suh that the set A ofpoints to the left of the line has weight a+ b. Choose another vertial line, suh that the setZ of points to the right of this line has weight a+ b. The set S in the strip between the linesalso has weight a+ b. This set S is divided vertially into a top part T , a middle part M and6



2a+ 6b = 1 anda� 2b � 0 ()a � 15
� 2 antihains ofweight a� 2b� 10 hains ofweight b� 8 short hainseah of weight a2� 2 long hainseah of weight b

4a+ 2b = 1 anda2 � b ()a � 15Figure 7: Two examples showing that the pairs (a; b) from Theorem 2.5 and Theorem 2.4 areon the boundary of F . The analysis is again based on a simple ase distintion. Za+ bp2b2ba� 3bTMBqa+ bA
Figure 8: An illustration of theproof of Theorem 2.6.

a bottom part B, suh that eah of T and B has weight 2b(see Figure 8). The vertial lines are hosen, suh that theweight of M is (a + b) � 4b = a � 3b. From a � 14 and3a+ 3b = 1 it follows that this weight is non-negative.Suppose one of the quadrants of p or q has weight at leasta. In this ase we an simply disregard the middle part Mand follow the very same argumentation as in Theorem 2.4to �nd an appropriate pair of opposite quadrants.To see that at least one of the quadrants of p or q hasweight at least a we sum up the weights of the �rst andseond quadrant of p and the third and fourth quadrant ofq: !(Q1(p)) + !(Q2(p)) + !(Q3(q)) + !(Q4(q)) � 4a.Proposition 2.7. None of the pairs (a+ "; b+ ") with a � 14 , " > 0, and 3a+3b = 1 is in F .Proof. As in the previous proof we will need that a � 3b � 0, whih follows from a � 14 and3a+ 3b = 1.The example onsists of four hains/antihains eah of weight 12(a� 3b), a irle of weighta � 3b and 12 hains/antihains eah of weight b (see Figure 9). The total weight of the setS1 onsisting of an antihain and three hains is 12(a� 3b) + 3b = 12 (a+3b). Sine a� 3b � 0this is at most a.Sine the example is invariant under rotations of 90 degrees it is enough to show thatthere is no point p, suh that (Q1(p); Q3(p)) is (a + "; b + ")-admissible for " > 0. Sine weneed !(Q1(p)) > a we an't take p from S1 or S2. When onsidering p 2 S4 we get strongrestritions from the requirement !(Q3(p)) > b. To math this we need to have two of theantihains of size b of S4 in Q3(p). Therefore Q1(p) an only ontain the hain of size 12 (a�3b)from S4, whih yields !(Q1(p)) � 12(a� 3b) + 12 (a+ 3b) = a, whih is not enough.7



Any point p from the irle C has !(Q1(p) \ C) � 12!(C) = 12(a � 3b). This rules outpoints from the irle beause for suh points !(Q1(p)) � 12 (a� 3b) + 12(a+ 3b) = a whih isnot enough.The last possibility is to take p 2 S3. Suh a point, however, does not math the require-ment !(Q3(p)) > b.Altogether this shows that there is no point with an (a+"; b+")-admissible pair of oppositequadrants.
� a irle with equidistributed points of weight a� 3b� 4 hains/antihains of weight 12 (a� 3b)� 12 hains/antihains of weight b
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Figure 9: An example showing that there are no admissible pairs (a + "; b + ") beyond thesegment 3a+ 3b = 1. The analysis is in Proposition 2.73 Higher DimensionsA point p in Rd de�nes 2d orthants entered at p. Again there is an obvious notion of anorthant Oop opposite to a given orthant O. The weight !(O) of an orthant O with respet toa point set P is the fration of points of P ontained in O. For a more formal de�nition ofthe weight we refer to the introdution. 8



De�ne the opposite-orthant depth �d for point sets in Rd as the maximum a, suh thatevery point set P � Rd ontains a point p that determines a pair (O;Oop) of opposite orthantswith !(O) � a and !(Oop) � a. Br�onnimann et al. [BLP℄ have onsidered �3. They laimthat �3 � 1=2016, this however is based on the false assumption that every set of 9 points inR3 has a point p with two opposite orthants eah ontaining a point from P n fpg. Indeed,the least n suh that this holds is n = 17. With this orretion their proof only yields�3 � 1=16320. The ase d = 3 of the theorem below gives �3 � 1=32.For a point x 2 Rd and i = 1; : : : ; d de�ne the losed halfspaes H+i (x) = fy : yi � xigand H�i (x) = fy : yi � xig. A sign vetor is a d-tuple � = (�1; : : : ; �d) with �i 2 f+;�g. Forevery point x and sign vetor � we de�ne the orthant O�(x) = TiH�ii (x).Theorem 3.1 (Lower Bound). In Rd , the opposite-orthant depth �d is at least 2�(2d�1+d).Proof. A set of points is t-good if it ontains no point determining a pair of opposite orthantseah ontaining t + 2 or more points from P . We will prove that jP j > 22d�1(t 2d) impliesthat P is not t-good. Hene �d(t22d�1+d + 1) � t + 2, whih yields the bound stated in thetheorem.Let P be a t-good set. One of the orthants from eah pair of opposite orthants determinedby p 2 P is small in the sense that it ontains at most t points from P n fpg. The patternassigned to p is a olletion �(p) of 2d�1 sign vetors, suh that� O�(p) is small for eah � 2 �(p) and for eah pair (O�; O��) of opposite orthants deter-mined by p either � or �� is in �(p).For a given pattern � we ollet all points p 2 P with �(p) = � in a set P�. Figure 10 showsan example. x2
x1Figure 10: A 2-good set of 9 points in the plane. Small quadrants of points are indiated bygray angles. The white points may get the pattern � = f(+;+); (+;�)g assigned.We have partitioned the points of P aording to their pattern. The upper bound on thesize of any t-good set P follows from ounting the possible patterns and bounding the numberof points in eah lass P�.There are 2d sign vetors paired up in 2d�1 pairs �; �� belonging to pairs of oppositeorthants. A pattern is a seletion of one sign vetor from eah suh pair, therefore:� There are at most 22d�1 di�erent patterns.9



For any p and � let v�(p) = jO�(p)\ (P nfpg)j. De�ne the sore of p as s(p) =P�2�(p) v�(p).From the de�nition of �(p) it follows that v�(p) � t for all � 2 �(p), hene, s(p) � t 2d�1.Note that the sore of p is the number of points in the small orthants O�(p) with � 2 �(p).Consider two points p; q and note that q 2 O�(p) if and only if p 2 O��(q). Suppose pand q both belong to P�, sine one of � and �� is in � we note that either p is ounted in thesore of q or q is ounted in the sore of p. From this we obtain:jP�j(jP�j � 1)2 = �jP�j2 � � Xp2P� s(p) � Xp2P� t 2d�1 = jP�j t 2d�1:To redue the upper bound on P s(p) by one observe that for eah � 2 � there are points inP� with v�(p) < t. This yields the following bound on jP�j:� For eah lass P� we have jP�j � 2 t 2d�1.Combining the bounds for the number of patterns and the size of the lasses we �nd that at-good set P has at most 22d�1(t 2d) points.The upper bound on the opposite-orthant depth �d presented in the following theorem isonly a fator of two apart from the lower bound of Theorem 3.1. It is evident that the lowerbound is not tight. In dimension 2 the upper and lower bounds yield 116 � �2 � 18 . FromTheorem 1.1 and the example of Figure 2 we know that �2 = 18 . Indeed we suspet that inall dimensions the upper bound gives the true value of �d.Theorem 3.2 (Upper Bound). In Rd , the opposite-orthant depth �d is at most 2�(2d�1+d�1).Proof. We have to onstrut large point sets with small opposite-orthant depth. The on-strution is in two steps. In the �rst step we build a set P0 of 22d�1 points, suh that forany point p 2 P0 and any pair (O;Oop) of opposite orthants at p either O \ P0 or Oop \ P0equals fpg. In the seond step we replae eah point of P0 with a arefully hosen set of t 2d�1points, suh that the depth remains bounded by t+ 1. Hene t+ 2 � �d(22d�1 t 2d�1), whihyields the bound stated in the theorem.Let � be a sign vetor and �� be the sign vetor of the orthant opposite to O�. Based on� we de�ne a binary relation on P , let p �� q if p 2 O�(q) or p 2 O��(q), i.e., q 2 O�(p).A set M of points in Rd is monotone if there is a sign vetor �, suh that p �� q forall p; q 2 M . Equivalently, M is monotone if there is an ordering of the points so thateah oordinate is inreasing or dereasing in this order. Repeated appliation of the Erd}os-Szekeres lemma implies that any n points in Rd ontain a monotone subset of size at leastn 12d�1 . It is a widely known fat that this bound is best possible. A detailed onstrution oftight examples an be found e.g. in [Lit℄. Due to this result there is a set P0 of 22d�1 pointsthat does not ontain a monotone subset of size three. Hene, for every p 2 P0 and every pairof opposite orthants (O;Oop) determined by p at least one of the orthants ontains no pointof P0 n fpg.An orthant O�(p) de�ned by p 2 P0 is small if O�(p) \ P0 = fpg. As in the proof of theprevious theorem we ollet sign vetors of small orthants of p 2 P0 in a pattern �(p). Reallthat �(p) ontains the sign vetor of one of eah pair of opposite orthants. We onstrut theset P by replaing eah point p 2 P0 by a set Q(p) of t 2d�1 points, suh that q 2 Q(p) and� 2 �(p) implies jO�(q) \ P j = jO�(q) \ Q(p)j � t + 1, i.e., the orthant O�(q) is t-small forall � 2 �(p). 10



For eah p 2 P0 �x a `small' box B(p) ontaining p, suh that every hoie of one pointfrom eah of these boxes yields a set with the same property as P0. Formally, for p; q 2 P0with p �� q we require that p0 �� q0 for all p0 2 B(p) and q0 2 B(q). For the onstrutionof Q(p) in the box B(p) it is onvenient to think of B(p) as an open set. To begin withlet �0; �1; �2; : : : be an ordering of the 2d�1 sign vetors in �(p). Starting with S0 = ; weindutively de�ne subboxes Si for i = 1; : : : ; 2d�1 � 1 of B0 = B(p) as follows: If Si�1 andBi�1 are de�ned hoose a point si in Bi�1 and let Si = O�i(si)\Bi�1 and Bi = O ��i(si)\Bi�1.Finally, let S2d�1 = B2d�1�1. An example is given in Figure 11.

S2
S4 S3 x2 x1x3

S1

Figure 11: A point set Q(p). The points of Q(p) are aligned along diagonals of the subboxesSi as indiated by the blak bars. The pattern �(p) of the point replaed by Q(p) is �0 =(�;+;�), �1 = (�;+;+), �2 = (�;�;�) and �3 = (+;+;�).From the onstrution rules it follows that for i < j and any points pi 2 Si and pj 2 Sjwe have pj = O ��i(pi) and onsequently pi = O�i(pj). This shows that inserting t points intoeah Si suh that any two of these points are in relation �0 yields a set Q(p) with the desiredproperties.� jQ(p)j = t 2d�1� jO�(q) \ P j = jO�(q) \Q(p)j � t+ 1 for all q 2 Q(p) and � 2 �(p).This ompletes the onstrution of a t-good set P and the proof of the upper bound on �d.4 Further GeneralizationsThe set F of all admissible pairs was de�ned as the set of all pairs (a; b) suh that every set Pof n points in the plane ontains a point p 2 P that determines two opposite quadrants withweights at least a and b. What if we do not require the point p to belong to the set P , and onlylook for a point z in the plane with the same property of two opposite quadrants determinedby it. It is not hard to see that (a; b) is admissible in this model whenever, a + b � 1=2. Inaddition we have the admissible pairs (a; 0) for all a � 1. A set of points uniformly distributedon a irle C shows that this is the omplete desription of the set of admissible pairs. Indeed,it is not hard to hek that for any point z in the plane, surrounded by C, the horizontal andvertial lines through z determine four quadrants suh that the measure of the union of any11



two opposite ones is at exatly 12 . If the point z is not surrounded by C, then the measure ofone quadrant is equal to 0 while the opposite quadrant has measure at least 12 .One way to generalize the setting is by onsidering two opposite quadrants determinedby a vertial and a horizontal line as a diagonal in the 2-by-2 array of ells determined bythese two lines. Then it is natural to onsider n� 1 vertial lines and n� 1 horizontal linesand to �nd a generalized diagonal of ells in the n-by-n arrangement of ells, determined bythese lines, suh that eah of the ells ontains `many' points of P . By a generalized diagonalwe mean a set of n ells, suh that no two are in the same row or in the same olumn (seeFigure 12).

Figure 12: A ontinuous measure split into ells by four vertial and four horizontal lines. Ageneralized diagonal is illustrated in the dotted squares.Sine we do not require the vertial and horizontal lines to interset in points of the setin question, it is equivalent to onsider a ontinuous probability measure in the plane andto look for n � 1 vertial lines and n � 1 horizontal lines and a generalized diagonal in thearrangement of the n-by-n ells, determined by these lines, suh that eah of the ells has`large' measure (see Figure 12). This naturally generalizes to higher dimensions as well. Thefollowing theorem gives a partial answer to this problem in any dimension d:Theorem 4.1. Let � be a ontinuous probability measure in [0; 1℄d. Let n be a positive integerand let �1; : : : ; �n be a sequene of positive real numbers, suh that Pni=1 �i = 1nd�1 . Thenthere exist numbers xi;j, where 1 � i � d and 0 � j � n, and d permutations �1; : : : ; �d onf1; : : : ; ng with the following properties:1. For every 1 � i � d, xi;0 = 0 < xi;1 < : : : < xi;n�1 < xi;n = 1.2. For every 1 � j � n, we have �([x1;�1(j)�1; x1;�1(j)℄� : : :� [xd;�d(j)�1; xd;�d(j)℄) � �j.Remark. Intuitively, the numbers xi;j in Theorem 4.1 de�ne the d dimensional array of ndells generated by the hyper-planes Hi;j = f(x1; : : : ; xd) 2 Rd j xi = xi;jg, for all 1 � i � nand 1 � j � d. The theorem then says that there exists suh an array (while the measure �is given) that ontains a generalized diagonal of n boxes with measures of at least �1; : : : ; �n,respetively. 12



Proof. In fat, the proof is not muh more ompliated than the statement of the theorem.The proof goes by indution on d. For d = 1 simply de�ne x1;0 = 0 and for every 1 � j � nlet x1;j = x1;j�1+�j. In this ase �1 : [n℄! [n℄ an be hosen to be the identity permutation.For d > 1, let �0j = n�j for every 1 � j � n. Observe thatPnj=1 �0j = 1nd�2 . Let �0 denotethe measure � projeted along the last dimension. That is, �0 is a ontinuous probabilitymeasure on [0; 1℄d�1 de�ned by �0([a1; b1℄� : : :� [ad�1; bd�1℄) = �([a1; b1℄� : : :� [ad�1; bd�1℄�[0; 1℄).By the indution hypothesis there exist numbers xi;j, where 1 � i � d� 1 and 0 � j � n,and d�1 permutations �1; : : : ; �d�1 on the elements f1; : : : ; ng, with the following properties:1. For every 1 � i � d� 1 xi;0 = 0 < xi;1 < : : : < xi;n�1 < xi;n = 1.2. For every 1 � j � n we have �0([x1;�1(j)�1; x1;�1(j)℄�: : :�[xd�1;�d�1(j)�1; xd�1;�d�1(j)℄) ��0j .We now de�ne the sequene xd;0; xd;1 : : : ; xd;n and the permutation �d as follows. Weput xd;0 = 0. xd;1 is de�ned to be the minimum number greater than xd;0, suh that thereexists some j between 1 and n with �([x1;�1(j)�1; x1;�1(j)℄� : : :� [xd�1;�d�1(j)�1; xd�1;�d�1(j)℄�[xd;0; xd;1℄) = �j. We set �d(j) = 1. From the hoie of j and xd;1 it follows that for every1 � k � n we have �([x1;�1(k)�1; x1;�1(k)℄�: : :�[xd�1;�d�1(k)�1; xd�1;�d�1(k)℄�[xd;0; xd;1℄) � �k.For 1 < k � n we de�ne xd;k to be the minimum number greater than xd;k�1, suh thatthere exists some j between 1 and n, suh that j is di�erent from eah of ��1d (1); : : : ; ��1d (k�1)and �([x1;�1(j)�1; x1;�1(j)℄ � : : : � [xd�1;�d�1(j)�1; xd�1;�d�1(j)℄ � [xd;k�1; xd;k℄) = �j . We set�d(j) = k.Finally, we let xd;n = 1 and set �d(j) = n, where j is the only index between 1 and n thatis not one of ��1d (1); : : : ; ��1d (n� 1).It is straight forward to hek that the numbers xi;j where 1 � i � d and 0 � j � n and�1; : : : ; �d satisfy the requirements of the theorem.Reall that when d = 2 and n = 2, the example where the measure � is evenly distributedon a irle C shows that the result in Theorem 4.1 is best possible apart from the asewhere �i = 0 for some i. As we shall see later (Theorem 4.3) the result is not best possiblein dimension d > 2. However, when the values �i in Theorem 4.1 are all equal, then theresult is indeed best possible in any dimension. This is a onsequene of the following simpleproposition.Proposition 4.2. Let � be the standard Lebesgue measure on [0; 1℄d and let n be a positiveinteger. Then one annot �nd numbers xi;j, where 1 � i � d and 0 � j � n, suh that thearrangement of nd bounded ells determined by the hyperplanes Hi;j = fz : zi = xi;jg has ageneralized diagonal, suh that eah ell of the generalized diagonal has measure stritly largerthan 1=nd.Proof. Assume to the ontrary that there are numbers xi;j and permutations �i, suh thatfor eah j �([x1;�1(j)�1; x1;�1(j)℄� : : : � [xd;�d(j)�1; xd;�d(j)℄) > 1nd . We will use the arithmetiand geometri mean inequality, by whih, for every d positive numbers a1; : : : ; ad we havea1 + � � � + add � (a1a2 � � � ad) 1d :13



For every 1 � i � d and 1 � j � n put ai;j = xi;�i(j) � xi;�i(j)�1. For every 1 � i � dwe may assume that xi;0 = 0 and xi;n = 1, hene, Pnj=1 ai;j = 1. On the other hand, ourassumption on the measure and the ells of the generalized diagonal implyQdi=1 ai;j > 1nd forevery 1 � j � n. Therefore, by the means inequality, for every 1 � j � n we have:dXi=1 ai;j � d( dYi=1 ai;j) 1d > dn:This yields the desired ontradition:d = dXi=1 nXj=1 ai;j = nXj=1 dXi=1 ai;j > nXj=1 dn = d:The following theorem shows that when d = 3 and n = 2 one an obtain a better resultin Theorem 4.1 in the ase where �1 and �2 are di�erent. We inlude this theorem mostlyfor the method of proof and for showing that Theorem 4.1 is not tight in general. We statethe theorem in the disrete form.Theorem 4.3. Let P be a �nite set of points in R3 . We assume that no two points in Phave a oordinate in ommon. Let �1 � 112 and �2 = 13 � 3�1. Then there exists a pointz = (z1; z2; z3) 2 R3 , suh that the planes fxi = zig for i = 1; 2; 3 determine two oppositeorthants, one of weight at least �1 and the other of weight at least �2.Proof. Let 0 < � < 13 be given. De�ne numbers a�i and a+i for i = 1; 2; 3, suh that the weightof eah of the sets A�i = fp 2 P : pi � a�i g and A+i = fp 2 P : pi � a+i g is preisely (16 + �).For every i = 0; 1; 2; 3, let Pi denote the set of all points in P that belong to preisely iof the six sets A�i . Clearly, jP0j + jP1j + jP2j + jP3j = jP j. Moreover, jP1j + 2jP2j + 3jP3j =Pi;� jA�i j = (1 + 6�)jP j. Hene, jP2j+ 2jP3j � 6�jP j.For (i; �) 6= (j; �) de�ne A��ij = A�i \A�j and note that P(i;�)6=(j;�) jA��ij j = jP2j+ 3jP3j �6�jP j. Sine A�i \ A+i = ; there are only twelve potentially non-empty sets A��ij and thepigeonhole priniple implies that one of them has weight at least 1126� = 12�.Without loss of generality assume that the weight of A++1;2 is at least 12�. Observe thatjA+1 [A+2 j = jA+1 j+ jA+2 j � jA+1 \A+2 j � (16 + �)jP j+ (16 + �)jP j � 12�jP j = (13 + 32�)jP j:Therefore, P n (A+1 [A+2 ) has weight at least 23 � 32�.We are ready to de�ne the desired point z = (z1; z2; z3). We let z1 = a+1 and z2 = a+2 . Notethat the two hyperplanes fx1 = z1g and fx2 = z2g partition P into the four sets A+1 \ A+2 ,A+1 n A+2 , A+2 n A+1 and P n (A+1 [A+2 ).Let s be the median of all x3-oordinates of points in A+1 \ A+2 . Let t be the median ofall x3-oordinates of points in P n (A+1 [A+2 ). Let z3 be any number between s and t. Thenz3 separates between at least half of the x3-oordinates of points in A+1 \ A+2 and at leasthalf of the x3-oordinates of the points in P n (A+1 [ A+2 ). This means that z = (z1; z2; z3)determines two opposite orthants in R3 one of weight at least 14� and the other of weight atleast (13 � 34�). With � = 4�1 we have 13 � 34� = 13 � 3�1 = �2 and hene the desired result.14



We will now show that Theorem 4.3 is nearly tight when �1 is lose to 0 (and thus �2 islose to 13). The following onstrution of a set P � R3 of n = 3m points has the propertythat for any point z and any two opposite orthants, determined by z, suh that eah ontainsat least one point of P , there are at most m = 13n points of P in eah of these orthants.Let S be the following set of m vetors in R3 , very lose to the origin: S = f i100m (1; 1; 1) ji = 0; 1; : : : ;m�1g. We de�ne A, B, and C to be the set S translated by (�1; 0; 1), (0; 1;�1),and (1;�1; 0) respetively. Finally we let P = A [ B [ C. Note that P is a set of n = 3mpoints in R3 no two of whih share the same x1; x2, or x3 oordinates.Let z = (z1; z2; z3) be any point in R3 . Assume that R and T are two opposite orthantsdetermined by z, eah ontaining at least one point of P . We laim that R (and thereforealso T ) annot ontain more than m points of P . To see this assume that T ontains a pointpA = (a1; a2; a3) from A (the other two ases where T ontains a point from B or from C arevery similar). If z1 < a1, then T must lie in the half-spae fx1 > z1g and therefore R lies inthe half-spae fx1 < z1g and hene may ontain only points of A. In partiular it ontains atmost m points of P .Similarly, if z3 > a3, then R may ontain only points of A and we are done. Therefore,z1 > a1 and z3 < a3. This implies that no point of A belongs to R. Now, if z2 > a2, then nopoint of C may belong to R and hene R may ontain only points of B and in partiular atmost m points of P . On the other hand, if z2 < a2, then no point of B may belong to R andhene R may ontain only points of C and in partiular at most m points of P .5 ConlusionWe gave a omplete desription of the set F of all admissible pairs (a; b) in the plane. This wasdone by identifying three line segments and the points (18 ; 18 ) and (0; 12) from the boundaryof F .In higher dimensions we were interested in the maximum number �d, suh that (�d; �d)is admissible. We think that our upper bound on �d is tight, the lower bound leaves roomfor improvements. It would be interesting to get more information about the set Fd of alladmissible pairs (a; b) for Rd .In the relaxed setting, where the point determining a pair of opposite orthants neednot belong to the point set we ould determine the diagonal entry preisely, it is ( 12d ; 12d ).This follows from more general bounds on generalized diagonals. In this ase we have someadditional results onerning admissible pairs (a; b). There remain many questions to be askedand answered.Referenes[ABF+℄ R. Apfelbaum, I. Ben-Dan, S. Felsner, T. Miltzow, R. Pinhasi, T. Uekerdt andR. Ziv, Points with large quadrant-depth. Proeedings of the 2010 annual symposium onComputational geometry, (2010), 358{364.[BPZ1℄ I. Ben-Dan, R. Pinhasi and R. Ziv On a problem of Felsner about quadrant depth.submitted 15
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