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Abstract. We define an analogue of Schnyder’s tree decompositions for 3-connected
planar graphs. Based on this structure we obtain:

e Let G be a 3-connected planar graph with f faces, then G has a convex drawing
with its vertices embedded on the (f — 1) x (f — 1) grid.

e Let G be a 3-connected planar graph. The dimension of the incidence order of
vertices, edges and bounded faces of G is at most 3.

The second result is originally due to Brightwell and Trotter. Here we give a substan-
tially simpler proof.
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1 Introduction

Schnyder discovered that every plane triangulation admits a special decomposition of
its interior edges into three trees. Based on these Schnyder 3-tree decompositions he
proved two beautiful theorems about planar graphs. In [9] Schnyder characterized
planar graphs in terms of the order dimension of their incidence order:

e The dimension of the incidence order of vertices and edges of a graph G is at most 3
<= (@ is planar.

This striking result recently found applications even in algebra [6]. Schnyder’s Theorem
has found several extensions: Brightwell and Trotter proved in [2] that the incidence
order of vertices, edges and faces of a planar map has dimension at most 4. The proof
of this result is inductive and required them to first establish the following theorem.

Theorem 1. Let G be a 3-connected planar graph. The dimension of the incidence
order of vertices, edges and bounded faces of G is at most 3.

Felsner and Trotter [4] used Schnyder’s Theorem to give a characterization of out-
erplanar graphs in terms of order dimension. That paper should also give a good
overview of other results on the dimension of graphs.

The second application Schnyder had for his tree decompositions concerns straight
line drawings of planar graphs. The existence of straight line embeddings for planar
graphs was independently proven by Wagner [16], Féry [3] and Stein [11]. The question
whether every planar graph has a straight line embedding of reasonable resolution, i.e.,
on a grid of polynomial size, was raised by Rosenstiehl and Tarjan [8]. Schnyder [9]
shows how to construct a barycentric representation which yields an embedding on the
(2n — 5) x (2n — 5) grid. In [10] Schnyder improved on his first result and shows
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e Let G be a planar graph with n vertices, then G has a straight line drawing with
its vertices embedded on the (n — 2) x (n — 2) grid.

The proof is constructive and the embedding be computed in Q(n) time (see e.g. [1]).
The method of Schnyder’s still gives the strongest result regarding the size of a grid
embedding arbitrary planar graphs. Xin He [5] gives a comprehensive history of the
problem.

Tutte [14, 15] shows that every 3-connected planar graph G admits a strictly con-
vex drawing, i.e. a drawing such that the boundary of every face is a strictly convex
polygon. Actually this result can be obtained as an easy consequence of much older
theorems of Steinitz and of the Koebe circle packing theorem, a reviews of these con-
nections is given by Ziegler [17]. Again the early approaches to convex drawings give
no reasonable guarantee on resolution.

We define triorientations of the edges of 3-connected planar graphs so that they
resemble the 3-tree decompositions of Schnyder. Based on this structure we prove:

Theorem 2. Let G be a 3-connected planar graph with f faces, then G has a convez
drawing with its vertices embedded on the (f —1) x (f — 1) grid.

Straight line grid drawings with area Q(n?) are not strictly convex, in fact, every
strictly convex embedding of the n-cycle requires an area of Q(n?). The smallest grid
size known to admit convex drawings of 3-connected planar graphs is (n —2) x (n — 2).
This result has been announced by two groups of authors Schnyder and Trotter as well
as Chrobak and Kant, however, it has so far not appeared in print.

Based on the drawing result we give a new proof of the result of Brightwell and
Trotter (Theorem 1). This proof is much shorter than the original one. Theorem 1
immediately implies that face lattices of 3-polytopes are critical of order dimension 4.

2 Convex Embeddings of 3-Connected Plane Graphs

2.1 Schnyder labeling the angles of a plane graph

A plane graph is a planar graph with a particular planar embedding. Let G = (V, E)
be a 3-connected plane graph, specify three vertices a1, as, as in clockwise order on the
boundary cycle of the outer face. A Schnyder labeling with respect to ay,as,as is a
labeling of the angles of G with the labels 1, 2, 3 satisfying three rules. By convention
that there is a cyclic structure on the labels so that i + 1 and 7 — 1 is always defined.

e The outer angle at the special vertex a; has labels i+ 1 and i — 1 in clockwise order.
All the other angles of the graph have exactly one label.

e Rule of vertices: The labels of the angles at each vertex form, in clockwise order,
a nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty interval of
3’s.

e Rule of faces: The labels of the angles at each interior face form, in clockwise order,
a nonempty interval of 1’s, a nonempty interval of 2’s and a nonempty interval of
3’s; at the outer face the same is true in counterclockwise order.

Figure 2 shows a plane graph with a Schnyder labeling. We give the proof that every
3-connected plane graph admits a Schnyder labeling in Section 3 and continue with a
discussion of some consequences.

Lemma 1. Let G be a plane graph with a Schnyder labeling, then the four angles of
each edge contain all three labels 1,2,3. Thus every edge has one of the two forms shown
in Figure 3.



Figure 1: Rule of vertices and rule of faces
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Figure 2: A plane graph with a Schnyder labeling

Proof. To make the statement true for all edges we distribute the two labels at the
outer angles of special vertices to the two edges of this angle.

The proof is based on double counting and Euler’s formula. Define the degree d(v)
of a vertex v as the number of edges incident with v whose angles at v have distinct
labels. By the rule of vertices d(v) = 3 for every non-special vertex v and d(v) = 2 for
each of the three special vertices. Similarly, the degree d(F) of a face F' as the number
of boundary edges of F' whose angles in F' have distinct labels. By the rules of faces
d(F) = 3 for every interior face, while the degree of the outer face is zero. Therefore,

S=>"d(v)+ Y d(F)=3n-3+3(f-1)=3|E|.
v F

Now consider the four angles ai,as,as,as of an edge in counterclockwise order as
shown in Figure 4.

Define €1, €2, €3, €4 so that s = a1 +€1, ag = as+e€a, g = az+e3 and vy = oy +€4.
Form the rules of vertices and faces €; € {0, 1}, for all j. The cyclic nature of the linear
system implies that 2?21 €j = 0 mod 3, hence, either 37, ¢; =0 or 3, ¢; = 3. The
contribution of an edge e to the degree sum Sis ), €;(e). Since S = 3|E| we conclude
>_j€j(e) = 3 for every edge e. Up to rotational symmetry this only leaves the two
cases shown in Figure 3. 0

Note that from the labels of the exterior angles at special vertices and the rule for
the outer face we know all the edge labels at outer angles. Every outer angle on the
clockwise outer path from a; to a;4; has label i — 1. With the lemma we know all four
labels of the two outer edges at a; and conclude:
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Corollary 1. In a Schnyder labeling all interior angles at the special vertex a; are
labeled i.

2.2 Three oriented trees

A triorientation of a set of edges is an assignment of one ore two opposite directions
to each of these edges, such that each edge is labeled with one of the labels 1,2,3 and
two opposite directions have distinct labels.

A Schnyder labeling of the angles of a plane graph induces a triorientation of the
edges. If an edge has different angular labels i and j at one of its ends, we orient the
edge from this end towards the other and give this orientation the third label k, see
Figure 5.

Figure 5: Orienting edges.

Henceforth, we write labeled graph to denote a 3-connected plane graph with a
Schnyder labeling and the induced labeling and orientation of the edges. With T; we
denote the digraph induced by the edges having a direction labeled i and oriented in
this direction. The three digraphs T4, T, T3 have notable properties following from the
rule of vertices and Corollary 1.

(1) Each non-special vertex v has outdegree one in each T; and the edges eq,es,e3
leaving v in labels 1,2,3 occur in clockwise order. Each edge entering v in label 4
enters v in the clockwise sector from e; 11 to e;_1. See Figure 7

(2) Every edge incident with the special vertex a; enters in label i and the two extremal
edges at a; are bidirectional, one leaves a; in label i — 1 the other in label ¢ + 1.

With the next lemma we show that each of the digraphs Ty, Ty, T3 is acyclic, actually
we show a little more.

Lemma 2. No cycle of a labeled plane graph can be traversed by following each of its
edges in a direction labeled © or in the reversal of a direction labeled i — 1 ori+1, i.e.,
no cycle of G is directed in T; UT;,_} UT .
Proof. Suppose there is a cycle in T; UT;_} UT;;} and choose such a cycle Z enclosing
the minimum number of faces. We first show that the interior region F' of Z is a face.

Suppose F' contains a vertex x. Starting at  and following edges in T; we construct
a path P; connecting z to Z. By minimality of Z path P; has no repeated vertex.
Similarly, there is a path P;_; directed in label i — 1 from z to Z. By the minimality of
Z the paths P; and P;_; have no common vertex other than z. Together with one of the
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Figure 7: Edge orientations at a vertex.

segments they determine on Z these two paths form a directed cycle in T; UT;_} UT, ;|
which encloses a smaller region than Z. This contradiction shows that Z contains no
vertex. An edge lying in F' and joining two nonconsecutive vertices of Z would similarly
determine a cycle enclosing a smaller region than Z.

Therefore, F' is a face and Z its boundary cycle. If the traversal of Z is clockwise
no angle of F' has label i + 1 and if this traversal is counterclockwise no angle has label

1 — 1. Both cases are excluded by the rule of faces. 0

The digraph T; includes all vertices and all vertices except a; have outdegree one
in T;, while a; has outdegree 0. Since T; is acyclic we obtain:

Corollary 2. T; is a directed tree rooted at a;, fori =1,2,3.

Let G be a labeled graph, for a vertex v we define the i-path P;(v) as the path in
T; from v to the root a; of T;. Lemma 2 implies that for 7 # j the paths P;(v) and
P;(v) have v as the only common vertex. Therefore, P; (v), P»(v), Ps(v) divide G into
three regions Ry (v), R2(v) and R3(v), where R;(v) denotes the region bounded by and
including the two paths P;_1(v) and P;y1(v), see Fig. 8. The open interior of region
Rz’ (U), denoted R?(U), is RZ(U) \ (Pi_l(v) U PZ’+1(1})).

Lemma 3. If u and v are vertices of a labeled graph with u € R;(v), then R;(u) C
R;(v). If u € RY(v), then the inclusion is proper: R;(u) C R;(v).



Figure 8: The three regions of a vertex

Proof. By symmetry it suffices to consider the case i = 1. Suppose u € R{(v) and let x
be the first vertex of P,(u) that belongs to Py(v) U P3(v). From the edge orientations
at z (Figure 7) it follows that x ¢ P3(v). By the same reason x # v, hence z € P (v).
Similarly the first vertex y of P3(u) that belongs to Py(v)UPs(v) is on P3(v) and y # v.
Hence, Ri(u) C Ry (v), see Figure 9, the inclusion is proper as v ¢ Ry (u).
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Figure 9: If u € R}(v) then R;(u) is a proper subset of Ry(v).

Now let u € Ry(v) \ RY(v), by symmetry we only consider the case u € Ps(v). If
at u the outgoing edge in label 2 is different from the incoming edge on P3(v) then a
reasoning as in the previous case shows that the inclusion is proper, Ry (u) C Ri(v).
Otherwise, if u’ is the other endvertex of the bidirected edge leaving u in label 2 and
entering in label 3, then R;(u') = Ry(u). However, Ry (u') C Ry (v) by induction on
the number of vertices between u and v on Ps(v). 0

1+ 1

Figure 10:



Let vertices u, v be neighbors such that the edge e = (u,v) is directed from u to v
in label 4, see Figure 10. Since v € P;(u) vertex v is contained in R;—1 (u) and R;y1(u).
The orientations of edges at v imply u € R;(v). Therefore the following inclusions of
regions hold:

e If e = (u,v) is an unidirectional edge in label i then R;(u) C R;(v) and R;_1(u) D
Ri_l(’l)) and Ri+1 (u) D Ri—H (’U)

e If e = (u,v) is bidirectional with label ¢ from u to v and label i — 1 from v to u,
then Ri+1(u) = Ri+1 (’U) and RZ(U) C RZ(U) and Ri_l(u) D Ri_l(’l)).

2.3 Coordinates and embeddings

Let G be a labeled graph a coordinate-mapping associates a triple (vq,v2,v3) of real
numbers with every vertex v such that:

(1) vy 4+ vy + v3 = 1 for all vertices v of G.
(2) If Ri(u) C R;(v) then u; < v; and if R;(u) = R;(v) then u; = v;.

From the previous discussion we already know some further properties of coordinate
mappings

(3) If u € Ri(v) then u; < v; and if u € RY(v) then u; < v;.

(4) If an edge of G is directed from w to v in label i then u; < v;, w41 > v;41 and
Uj—1 2> Vi—1-

(5) For every edge (u,v) of a labeled graph then there are indices ¢, j such that u; < v;
and u; > vj.

Given three non-collinear points a1, as and a3 in the plane. These points and a

coordinate-mapping of G can be used to define an embedding of G in the plane. A

vertex of G is mapped to the point

H:v— v + V20 + v3Qs,

an edge (u,v) is represented by the line segment (u(u),u(v)). Note that any two
drawings based on the same coordinate mapping but on different points a;, as and
a3 and B, B2 and (3 can be mapped onto each other by an affine map, therefore, we
ignore the base points and denote the resulting drawing with u(G).

The main result of this section is that coordinate mappings yield convex drawings
of plane graphs.

Theorem 3. If v — (v1,v2,v3) is a coordinate-mapping of a labeled graph G, then the
drawing 1(G) is a convex drawing of G.

Let v be a vertex with coordinates (vy,ve,v3). The three lines x; = vy, 2 = vy
and x3 = vz cross in pu(v) and partition the triangle with vertices a;, as and ag into six
regions, see Figure 11. Each of the three closed shaded parallelograms contains exactly
one neighbor of v. This is because if (u,v) is directed towards v then by property (4)
vertex u is contained in one of the three white triangles. Iterating this observation we
obtain:

Lemma 4. In the embedding u(G) every vertexz v of G has a path from v to each ex-
terior vertex a; which is completely contained in the shaded parallelogram with corners
v and o;.
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Figure 11: Each of the three shaded parallelograms contains exactly one neigh-
bor of v, these are the outgoing edges at v of the three Schnyder trees.

A first step towards a proof of the theorem is to show that u(G) is a plane embed-
ding of G, i.e., if two segments representing edges intersect, then they have a common
endpoint. The next lemma deals with a special case of intersection.

Lemma 5. In the drawing u(G) of a labeled graph G there is no vertex w which is
placed on an edge (u,v).

Proof. Assume that p(w) is contained in the segment (u(u), u(v)). The edge (u,v) is
contained in one of the regions of w, say in R;(w). Therefore, u; < w; and v; < wy
and due to the assumption w; = u; = v;. Since u,v € R;(w) this is only possible if
Ri(u) = R1(v) = Ry (w), by Lemma 3.

If v and v are both on P(w) then us > ws and ve > wo, by property (3). This
contradicts the assumption p(w) € (u(u), u(v)). Similarly not both of u and v are on
P3 (U))

For the remaining case suppose u € Ps(w) and v € Py(w). Since R (u) = Ry (v) =
Ri(w) we find u,w,v in this order on Py(u). Label 2 and orientation v — v for edge
(u,v) would lead to two outgoing edges in label 2 at u. Together with Py(u) every
other label and orientation for (u,v) would generate a cycle in T;UT;", UT;} fori =1

+1
or 3 in contradiction to Lemma 2. 0

Corollary 3. The mapping i is injective from V to the plane.
Lemma 6. In the drawing u(G) of a labeled graph G there is no pair of crossing edges.

Proof. Consider two edges (u,v) and (z,y) sharing no vertex. Let 7, j, k, | be such that
(u,v) € Ri(z), (u,v) € Rj(y), (z,y) € Ri(w), (z,y)€ Ri(v).

If i = j or k = [ then the two edges are separated by a coordinate in u(G), hence,
disjoint.

By symmetry we may assume that i = k = 1. From z € R;(u) and u € R;(x) we
infer with Lemma 3 that Ry (u) = Ry(z). Let P* be the bidirectional path in labels 2
and 3 between u and z, w.l.o.g. P* is directed from u to z in label 2, see Figure 12. In
terms of coordinates we have

r1 =uy, Uz > Ty, and wuz < x3.

Lemma 3 implies y; < u; and v; < zq, if one of the two inequalities is an equality we
are done by Lemma 5. Therefore let y; < u; and vy < 1.
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We claim that with these assumptions v is the vertex with the maximal third
coordinate and y is the vertex with the maximal second coordinate. This implies that
the position of the two edges in u(G) is as shown Figure 13. Clearly the edges do not
intersect.

To prove the claim we first show that z € R3(v). Recall that v € Ri(x) = Ry (u)
and (u,v) is an edge. If v is the neighbor of u on Ps;(u) then the first edge of Py(v
is in the interior of region R;(x) (otherwise we would have the contradiction Ry (v) =
Ri(z) = Ry(u)). If v € RY(u) then edge (v,u) is unidirectional in label 1. In either
case let s be the first vertex of Py(u) N Py(v). If s € P* then there is a cycle in
Ty UT; " UT; !, hence s € Py(x) and s # 2. This proves € R4(v) and since (z,y)
is an edge also y € R3(v). Expressed in terms of coordinates this yields v3 > x3 and
vg > ¥s3, i.e., the claim. A symmetric argument shows that yo > vy and ya > 5. 0

To complete the proof of Theorem 3 it remains to shown that the embedding of
every face in the drawing u(G) is convex.

Lemma 7. In the drawing u(G) of a labeled graph G every interiour face is a convex
polygon.

Proof. Let F' be an interiour face and let my, my and ms3 denote the maximum first,
second and third coordinate of the boundary vertices of F'. The three lines with equa-
tions £1 = my, T2 = mo and x3 = mg3 define a triangle V. The claim is that every
vertex of F' is placed on an edge of V, i.e. every vertex is maximal in one of the three
coordinates, see Figure 14. From this claim it is immediate that the embedding of F
is convex.

Let v be a boundary vertex of F with coordinates (vi,vs,v3). If FF C R;(v) then
u; < v; for every vertex u € F. So F and also V is completely contained in the
halfspace z; < v;. By definition V intersects the line z; = v; hence this line supports
an edge of V. 0

This completes the proof of Theorem 3.



Figure 14:

2.4 Counting faces

Let G be a labeled graph with f faces. With vertex v associate the triple (vq,v2,v3):

number of faces of G in the region R;(v)

v = f—l

Since every bounded face of G belongs to exactly one of the regions of v the three
coordinates of v sum up to 1. The second defining property of coordinate-mappings
is just as obvious. Hence we can apply Theorem 3 to obtain convex drawings of G.
With the choice of the special vertices a; = (0, f — 1), as = (f — 1,0) and a3 = (0,0)
every vertex v of G is mapped by p to an integral point in the (f — 1) x (f — 1) grid.
Hence, Theorem 2 is obtained as a special instance of Theorem 3. Actually, the proof
is not complete yet, it remains to prove the existence of Schnyder labelings. This will
be fetched in the next section.

o a1 = (0,13)

az = (0,0) as = (13,0)

Figure 15: A convex grid drawing obtained by face-counting. Graph and label-
ing are taken from Figure 6

3 Existence of Schnyder Labelings

The first idea for the construction of a Schnyder labeling of a 3-connected planar graph
is as follows:

(1) Choose an edge e of G and let G/e be the graph obtained by contraction of e.
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(2) Recursively construct a Schnyder labeling of G/e.
(3) Expand the labeling of G//e to a Schnyder labeling of G.

The first detail that deserves some cautiousness is the choice of edge e. For the induction
it is required that G/e is again 3-connected. We call an edge e of a 3-connected graph G
such that G/e is again 3-connected a contractible edge. The existence of a contractible
edge is warranted by a lemma of Thomassen. If we let e be an arbitrary contractible
edge, however, the proof that the expansion of the labeling can be carried out may
involve excessive case distinctions. To reduce the case analysis it would be desirable
to have a contractible edge of a special form. But the existence of such an edge will
likewise not come for free. Here we take a different approach.

Let G be a 3-connected planar graph with three special vertices aq, as, ag in clock-
wise order on the boundary cycle C' of the outer face. Let 2 ¢ C be a neighbor of
ai.

Suppose that e = (a1, ) is contractible and let aq, 1,2, ...z be the neighbors
of = in clockwise order. Note that only z; and z; may be common neighbors of a; and
z. Figure 16 shows a generic contraction of an edge (a;, ) into a;.

al a1
T
T T Tk Z1
) z3

Figure 16: Contraction of edge (ai,z) into a;.

By the rule for the labels at special vertices all inner angles at a; are labeled 1.
The angles of edge (a;,z;) at z; have to to be labeled 2 and 3 as shown in the left
part of Figure 17. The right part of Figure 17 shows that the labeling of G//e can be
expanded to a Schnyder labeling of G. Note that the expansion leaves the labels in all
faces that do not have (a1, ) as boundary edge unchanged.

Figure 17: Expansion of edge and labels.

Next suppose that e = (a1,z) is not contractible, i.e., G/e is only 2-connected.
Clearly, every cutset of size two in G//e has to contain ay, let y be the second vertex
of such a cutset. The set S = {a;,z,y} is a cutset of in G, denote the components of
G\ S by Hand K. Let H be G\ K and K' = G\ H. The idea is to take Schnyder
labelings of the two smaller graphs H' and K' and to show that they can be paste
together.

The first problem is that H' and K' need not be 3-connected, resolve this by
augmenting both graphs with the edges (a1, y) and (z,y), provided these edges are not
existent, this yields H"” and K".

We have to consider two cases. First suppose that one of the graphs, say H",
contains all special vertices a1, as and az. A Schnyder labeling of H" contains all three
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labels in the triangle T' = (a1, z,y). The label at a4 is 1, let the second special vertex for
K" be the vertex with label 2 in T and the third special vertex be the vertex with label
3 in T. Construct a Schnyder labeling for K" with this assignment of special vertices.
If all three edges of T have been present in G, then the pasting of the labelings makes
no problem: the rules of vertices and faces can be verified in the labelings of H" and
K".

It remains to consider a face that was cut by a new edge. We treat this case with
the edge (z,y) with the assumption that the angle of z in T has label 2 in the labeling
of H". Let F be the face of G containing z and y and let Fg and Fi be the parts of
this face after insertion of the edge (z,y) such that Fiy belongs to H" and Fk to K".
Figure 18 shows the situation.

a

LT

Figure 18: Separating triple, first case.

Since in labeling of H" the angles of  and y at T are 2 and 3 the label of = at
Fp is 1 or 2 and the label of y at Fy is 1 or 3. The claim is that we can use the same
labels in G. Now consider the labeling of K. Both labels of = at the edge (z,z') are 2
and both labels of y at the edge (y,y') are 3 by the rule for special vertices. Therefore,
the labels of ' and ' at Fi are both 1, see Figure 3, and all vertices between z' and
y' in K" also have label 1 at Fx by the rule for the face. This proves that using the
labels of H" leads to a consistent labeling.

It remains to consider the case where the two special vertices as and a3 are sepa-
rated by {a1,z,y}. Assume a3 € H"” and ay; € K" vertex y has to play the role of the
missing special vertex in both graphs, i.e., the role of as in H"” and the role of a3 in
K". Figure 19 shows some of the labels in the Schnyder labelings of H" and K", we
have to prove that they can be pasted together to yield a Schnyder labeling of G.

ay a1
4 e
1 L
3 2
as 5 s as
4 L
Y Y

Figure 19: Separating triple, second case.
The edge a;,y was not present in (G, so we remove it from both graphs and identify

the two copies of a1, z and y. Since the edges (a1,z) and (z,y) from the two graphs
are also identified the labels in the triangles formed by a;,z,y in H” and K" vanish.
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However, if we assign label 1 to the outer angle at y the rule of vertices is satisfied at
z and y. If the edge (x,y) is in G then the rules of all the other vertices and faces can
be verified in the labelings of H" and K". If (x,y) has to be removed assign label 1 to
the angle at 2 and one of the labels 2 or 3 to the angle at y. Again all the conditions
for a Schnyder labeling are easily verified.

4 Order Dimension of 3-Polytopes

Let G = (V, E) be a finite simple graph. A nonempty family R of linear orders on the
vertex set V of graph G is called a realizer of G provided

(¥) For every edge e € E and every vertex € V \ e, there is some L € R so that
x >y in L for every y € e.

The dimension of G, denoted dim(G), is then defined as the least positive integer ¢ for
which G has a realizer of cardinality ¢. An intuitive formulation for condition (x) is as
follows: For every vertex v and edge e with v € e the vertex has to get over the edge
in at least one of the orders of a realizer.

The definition we gave is not the traditional definition for the dimension of graphs.
In most older paper the dimension of graphs is understood to be the dimension of the
incidence order. We briefly explain the connections: With a finite graph G = (V, E),
associate a height two order Ps whose ground set is V U E. The order relation is
defined by setting z < ein Pg if z € V, e € E and x € e. Pg is the incidence order of
G.

When P = (X, <) is an order, and R = {Ly, Lo, ..., L} is a family of linear orders
on X, we call R a realizer of P if P = NR, i.e.,, x < y in P if and only if z < y in
L; for all i = 1,2,...,t. The dimension of an order is then defined as the minimum
cardinality of a realizer.

G is a graph with minimum degree at least 2, then the dimension of G and the
dimension of its incidence order agree. The order theoretic facts that sit in the back-
ground of the phenomenon are:

e All critical pairs of incidence orders of graphs with minimum degree at lest 2 are
min-max pairs.

e If all critical pairs of an order are min-max pairs then its interval dimension equals
its order dimension.

e The dimension of a graph is just the interval dimension of its incidence order.

For additional information on this background we suggest looking at Trotter’s mono-
graph [12].

If G is a graph containing a cycle then dim(G) > 3. It is also easy to construct
a realizer consisting of 3 linear orders for the cycle C;,, n > 3. The dimension of
the complete graph Kj is 4, but the removal of any edge reduces the dimension to 3.
Similarly, the dimension of the complete bipartite graph K3 3 is 4 and again the removal
of any edge reduces the dimension to 3. These examples motivate the now classic,
theorem of Schnyder.

Theorem 4. A graph G is planar if and only if its dimension is at most 3.

Proof. The easier part of the theorem is to show that dim(G) < 3 implies that G is
planar. The proof of this implication is actually due to Babai and Duffus, the argument
can be found in [12] and [13].

We show that every planar graph G admits a realizer {L;, Lo, L3}. By monotonicity
we may assume that G is a maximal planar graph, i.e., a triangulation. The Schnyder
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labeling of G induces three trees. Since each of the trees has n — 1 edges and the graph
has 3n — 6 edges the only bidirected edges are the three edges of the exterior triangle.
Therefore, R;(u) C R;(v) whenever u € R;(v). For i = 1,2, 3 let the inclusion order on
the i—regions induce an order @; on the vertices, i.e., u < v in Q; iff R;(u) C R;(v).
For any edge (u,v) and vertex w # u, v the edge is in one of the regions R;(w) of w,
hence, © < w and v < w in @;. This shows that any choice of three linear extensions
L; of Q;,1=1,2,3, will produce a realizer for G. 0

In complete analogy to the definition of the dimension of a graph the dimension of
a hypergraph can be defined. A particularly interesting instance is related to polytopes
and hence, by Steinitz’s theorem also to planar graphs.

Let P be a polytope with vertex set V(P) and facets F(P). Given a subset G of
F(P) a realizer for (P,G) is a nonempty family R of linear orders on V(P) provided

(xx) For every facet F' € G and every vertex x € V(P) \ V(F), there is some L € R so
that z >y in L for every y € V(F).

The dimension of (P,G), denoted dim(P,G), is then defined as the least positive inte-
ger t for which (P, G) has a realizer of cardinality ¢. In the case G = F(P) we simply
write dim(P) and call this the dimension of the polytope P. Traditionally people would
be interested in the order dimension of the face lattice £L(P) of a polytope P. However,
it is not hard to see that all critical pairs of £(P) are min-max pairs, so that by the
above remarks the two concepts of dimension coincide.

The next theorem is a lower bound which was proved by Reuter [7] in the context
of Ferrer’s dimension.

Theorem 5. If P is a d-polytope with d > 2, i.e., a polytope whose affine hull is d
dimensional, then dim(P) > d + 1.

Proof. The proof is by induction on d. If d = 2 then the vertices and facets of P have
the structure of the cycle C), with n = |V(P)|. In that case dim(P) > 3.

Let P be a d-polytope embedded in R? for some d > 2 with realizer Ly, Lo, ... , L;.
Let v be the highest vertex in L; and consider a hyperplane H which separates v from
all the other vertices of P. The intersection P N H is a (d — 1)-polytope P/v, the so
called wvertex figure of P at v. The (k — 1)-dimensional faces of P/v are in bijection
with the k-dimensional faces of P that contain v. In particular an edge (u,v) of P
corresponds to a vertex u' = (u,v) N H of P/v and for every facet {u,...,ul,} of
P/v there is a facet {v,u1,... ,up,wy,... ,ws} of P. Let F, be the set of facets of P
containing v, the bijection shows that dim(P/v) < dim(P,F,). Since P/v is (d — 1)-
dimensional dim(P/v) > d by induction. Now let F' € F, and w ¢ V(F'), by the choice
of v the order L; can not bring w over F', therefore, Ly, Lo, ... ,L;—1 is a realizer for
(P, Fy), ie., dim(P, F,) <t — 1. Combining the inequalities we obtain t >d+1.

It is known that for d > 4 there is no bound depending only on d for the dimension
of d-polytopes. For d = 3, however, the situation is different. By Steinitz’s theorem
polytopes and 3-connected plane graphs are essentially the same. Making use of the
machinery of Schnyder labelings we formulate and prove a slightly stronger version of
Theorem 1.

Theorem 6. For every 3-polytope P the dimension satisfies dim(P) = 4. Moreover,
if I € F(P) and Fr = F(P)\ {I} then dim(P, Fr) = 3.

Proof. Let R be a realizer of (P, Fr). To obtain a realizer for P we only have to add a
single linear order with v < w for all v € V(I) and w € V(P) \ V(I) to R. Combined
with the lower bound from Theorem 5 this yields 4 < dim(P) < dim(P,Fr) + 1. To
prove the theorem it remains to show dim(P, Fr) < 3.
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Choose a planar embedding of the graph G of P with I as the exterior face, specify
three vertices a1, as, ag in clockwise order around I and consider a Schnyder labeling of
G. As in the proof of Theorem 4 we will use linear extensions L; of the inclusion order
Q; of regions i = 1,2,3, i.e., u < v in @Q; iff R;(u) C R;(v). To bring every vertex y
over every face F' € Fy with y € F, however, more care in the choice of L; is required.

Define @} such that v < v in @ if either

(a) u<wvin @; or
(b) ul|lvin @; and u < v in Q;11.
Lemma 8. Q} is acyclic fori=1,2,3.

Proof. Call (u,v) a type-a pair if u < v in @} by part (a) of the definition and call it a
type-b pair if u < v in @} by (b). A cycle in @} has to contain both a type-a pair and
a type-b pair. We claim that if u < v is a type-a pair and v < w is a type-b pair then
u < w is also in }. Since u < v and v < u can not be both in @] the claim yields a
contradiction to the assumption that @} contains a cycle.

Claim. If u < v is a type-a pair and v < w is a type-b pair then u < w is also in @}.
By symmetry we may assume that ¢ = 1. If Ry(v) = Ri(w) then with (u,v) the pair
(u,w) also is type-a. Therefore, we assume R;(v) € Ry (w), since (v, w) is type-b this
implies w ¢ Ry (v) and w € Ry(v). Therefore, w € R§(v) and R3(w) C Rs(v). Since
u € Ry (v) we either find w in Ry (w) orin Ro(w). If uwin Ry (w) then Ry (u) C Ry (w) but
equality is impossible since w & Ry (u), i.e., (u, w) is type-a pair in this case. Otherwise
u € R§(w), i.e., Ro(u) C Ra(w), and the i-regions of u and w are incomparable. This
shows that (u,w) is a type-b pair in this case. 0

Let L; be a linear extension of @}, the claim is that L;, Ls, L3 is a realizer. Consider
a pair (F,y), where F' is a face and y is some vertex not on F. Face F' is contained in
one of the regions of y, by symmetry we assume F € Ry (y). Hence, Ri(x) C Ry (y) for
all z € F. If Ry(z) C Ry(y) for all z € F then F is below y in @1 and in L.

Assume that thereis an = € F with Ry (z) = R;(y). It is impossible that F' contains
vertices z and 2’ with Ry(z) = Ri1(y) = R1(z') and = € P3(y) while 2’ € P5(y). This
would lead to the placement of y on some edge bounding F' in the drawing u(G)
contradicting Lemma 5.

If for all z € F either Ri(z) C Ri(y) or Ri(z) = Ri(y) and = € Ps(y), then
Rs>(x) C Ry(y) for all z € F with Ry(z) = Ri(y). By the definition of QF this shows
that F'is below y in L.

Finally, consider the situation that for all € F either Ry (z) C Ry1(y) or Ri(z) =
Ri(y) and x € Py(y). We claim that F is below y in L3 in this case. All z in F' with
Ri(x) = Ry (y) have R3(z) C Rs(y), hence, they are below y in L3. The other vertices
x of F have Ry (z) C Ry(y). The next lemma shows that z||y in @3 holds for all these
vertices which implies that they also also go below y in Ls.

)

Lemma 9. If Ri(x) = Ri(y), x € P3(y) and F is a face in Ri(x) with x € F and
y & F then R3(y) € Rs(v) for allv € F.

Proof. Consider the triangle V enclosing F' in the convex drawing u(G) (Lemma 7).
Vertex y is placed on the horizontal line ¢; bounding V and y is left of all vertices of
F on ¢, Figure 20 shows the situation.

Let xg be the leftmost vertex of F' on ¢; and u be the uppermost vertex of F' on
l3. Let 1 be the other neighbor of zy at F. Even so x1 need not be on ¢; the edge
(0, 1) is the outgoing edge of g in label 2, c.f. Figure 11. Also (zq,y) is the outgoing
edge of zq in label 3. The edge orientations at vertex xo imply that (u,zq) is oriented
from u to zo in label 1. This shows that zo is on P;(v) for all v € F N ¢5. The paths

15



2

3

Figure 20:

Py (v) for v € F N ¢y clearly cross #; to the right of zy. This shows that y ¢ R3(v) for
all v € F, hence R3(y) € R3(v). 0

Acknowledgment.

In 1993 Tom Trotter left to me a draft of a joint manuscript with Walter Schnyder,
entitled ‘Convex Embeddings of 3-Connected Plane Graphs’. Though the manuscript
was not completed it already contained most of the ideas of Section 2. Without the
inspiring insights of Schnyder and Trotter this paper would not exist, thanks to both
of them.

References

[1]

E. BREHM, S3-orientations and schnyder 3-tree—decompositions, Diplomarbeit,
Freie Universitidt Berlin, Germany, 2000.
http://www.inf.fu-berlin.de/~felsner /Diplomarbeiten/brehm.ps.gz.

G. R. BRIGHTWELL AND W. T. TROTTER, The order dimension of planar maps,
SIAM J. Discrete Math., 10 (1997), pp. 515-528.

1. FARY, On straight lines representation of planar graphs, Acta Sci. Math. Szeged,
11 (1948), pp. 229-233.

S. FELSNER AND W. TROTTER, Posets and planar graphs, Journal of Graph
Theory, (2000). Submitted.

X. HE, Grid embeddings of 4-connected plane graphs, Discrete Comput. Geom.,
17 (1997), pp. 339-358.

E. MILLER AND B. STURMFELS, Monomial ideals and planar graphs, in Proceed-
ings AAECC 99, M. Fossorier. et.al, eds., vol. 1719 of Lecture Notes Comput.
Sci., Springer-Verlag, 1999, pp. 19-28.

K. REUTER, On the order dimension of convez polytopes, Eur. J. Comb., 11 (1990)
pp. 97-63.

P. ROSENSTIEHL AND R. E. TARJAN, Rectilinear planar layouts and bipolar ori-
entations of planar graphs, Discrete Comput. Geom., 1 (1986), pp. 343-353.

W. SCHNYDER, Planar graphs and poset dimension, Order, 5 (1989), pp. 323-343.
W. SCHNYDER, Embedding planar graphs on the grid, in Proc. 1st ACM-SIAM
Sympos. Discrete Algorithms, 1990, pp. 138-148.

16



[11] S. K. STEIN, Convex maps, Proc. Amer. Math. Soc., 2 (1951), pp. 464-466.

[12] W. T. TROTTER, Combinatorics and Partially Ordered Sets: Dimension Theory,
Johns Hopkins Series in the Mathematical Sciences, The Johns Hopkins University
Press, 1992.

[13] W. T. TROTTER, Partially ordered sets, Handbook of Combinatorics, Vol I, Gra-
ham, Grotschel, Lovédsz (eds) (1995), pp. 433-480.

[14] W. T. TUTTE, Convex representations of graphs, Proceedings London Mathemat-
ical Society, 10 (1960), pp. 304-320.

[15] W. T. TUTTE, How to draw a graph, Proceedings London Mathematical Society,
13 (1963), pp. 743-768.

[16] K. WAGNER, Bemerkungen zum Vierfarbenproblem, Jahresbericht der Deutschen
Mathematiker-Vereinigung, 46 (1936), pp. 26-32.

[17] G. M. ZIEGLER, Lectures on Polytopes, vol. 152 of Graduate Texts in Mathemat-
ics, Springer-Verlag, 1994.

17



