
Convex drawings of Planar Graphs andthe Order Dimension of 3-PolytopesStefan FelsnerFreie Universit�at Berlin, Fahbereih Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner�inf.fu-berlin.deAbstrat. We de�ne an analogue of Shnyder's tree deompositions for 3-onnetedplanar graphs. Based on this struture we obtain:� Let G be a 3-onneted planar graph with f faes, then G has a onvex drawingwith its verties embedded on the (f � 1)� (f � 1) grid.� Let G be a 3-onneted planar graph. The dimension of the inidene order ofverties, edges and bounded faes of G is at most 3.The seond result is originally due to Brightwell and Trotter. Here we give a substan-tially simpler proof.Mathematis Subjet Classi�ations (1991). 05C10, 68R10, 06A07, 52B10Key Words. graph drawing, order dimension, Shnyder labeling.1 IntrodutionShnyder disovered that every plane triangulation admits a speial deomposition ofits interior edges into three trees. Based on these Shnyder 3-tree deompositions heproved two beautiful theorems about planar graphs. In [9℄ Shnyder haraterizedplanar graphs in terms of the order dimension of their inidene order:� The dimension of the inidene order of verties and edges of a graph G is at most 3() G is planar.This striking result reently found appliations even in algebra [6℄. Shnyder's Theoremhas found several extensions: Brightwell and Trotter proved in [2℄ that the inideneorder of verties, edges and faes of a planar map has dimension at most 4. The proofof this result is indutive and required them to �rst establish the following theorem.Theorem 1. Let G be a 3-onneted planar graph. The dimension of the inideneorder of verties, edges and bounded faes of G is at most 3.Felsner and Trotter [4℄ used Shnyder's Theorem to give a haraterization of out-erplanar graphs in terms of order dimension. That paper should also give a goodoverview of other results on the dimension of graphs.The seond appliation Shnyder had for his tree deompositions onerns straightline drawings of planar graphs. The existene of straight line embeddings for planargraphs was independently proven by Wagner [16℄, F�ary [3℄ and Stein [11℄. The questionwhether every planar graph has a straight line embedding of reasonable resolution, i.e.,on a grid of polynomial size, was raised by Rosenstiehl and Tarjan [8℄. Shnyder [9℄shows how to onstrut a baryentri representation whih yields an embedding on the(2n� 5)� (2n� 5) grid. In [10℄ Shnyder improved on his �rst result and shows4 September 2000 1



� Let G be a planar graph with n verties, then G has a straight line drawing withits verties embedded on the (n� 2)� (n� 2) grid.The proof is onstrutive and the embedding be omputed in O(n) time (see e.g. [1℄).The method of Shnyder's still gives the strongest result regarding the size of a gridembedding arbitrary planar graphs. Xin He [5℄ gives a omprehensive history of theproblem.Tutte [14, 15℄ shows that every 3-onneted planar graph G admits a stritly on-vex drawing, i.e. a drawing suh that the boundary of every fae is a stritly onvexpolygon. Atually this result an be obtained as an easy onsequene of muh oldertheorems of Steinitz and of the Koebe irle paking theorem, a reviews of these on-netions is given by Ziegler [17℄. Again the early approahes to onvex drawings giveno reasonable guarantee on resolution.We de�ne triorientations of the edges of 3-onneted planar graphs so that theyresemble the 3-tree deompositions of Shnyder. Based on this struture we prove:Theorem 2. Let G be a 3-onneted planar graph with f faes, then G has a onvexdrawing with its verties embedded on the (f � 1)� (f � 1) grid.Straight line grid drawings with area O(n2) are not stritly onvex, in fat, everystritly onvex embedding of the n-yle requires an area of 
(n3). The smallest gridsize known to admit onvex drawings of 3-onneted planar graphs is (n� 2)� (n� 2).This result has been announed by two groups of authors Shnyder and Trotter as wellas Chrobak and Kant, however, it has so far not appeared in print.Based on the drawing result we give a new proof of the result of Brightwell andTrotter (Theorem 1). This proof is muh shorter than the original one. Theorem 1immediately implies that fae latties of 3-polytopes are ritial of order dimension 4.2 Convex Embeddings of 3-Conneted Plane Graphs2.1 Shnyder labeling the angles of a plane graphA plane graph is a planar graph with a partiular planar embedding. Let G = (V;E)be a 3-onneted plane graph, speify three verties a1; a2; a3 in lokwise order on theboundary yle of the outer fae. A Shnyder labeling with respet to a1; a2; a3 is alabeling of the angles of G with the labels 1; 2; 3 satisfying three rules. By onventionthat there is a yli struture on the labels so that i+ 1 and i� 1 is always de�ned.� The outer angle at the speial vertex ai has labels i+1 and i�1 in lokwise order.All the other angles of the graph have exatly one label.� Rule of verties: The labels of the angles at eah vertex form, in lokwise order,a nonempty interval of 1's, a nonempty interval of 2's and a nonempty interval of3's.� Rule of faes: The labels of the angles at eah interior fae form, in lokwise order,a nonempty interval of 1's, a nonempty interval of 2's and a nonempty interval of3's; at the outer fae the same is true in ounterlokwise order.Figure 2 shows a plane graph with a Shnyder labeling. We give the proof that every3-onneted plane graph admits a Shnyder labeling in Setion 3 and ontinue with adisussion of some onsequenes.Lemma 1. Let G be a plane graph with a Shnyder labeling, then the four angles ofeah edge ontain all three labels 1,2,3. Thus every edge has one of the two forms shownin Figure 3. 2
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Figure 2: A plane graph with a Shnyder labelingProof. To make the statement true for all edges we distribute the two labels at theouter angles of speial verties to the two edges of this angle.The proof is based on double ounting and Euler's formula. De�ne the degree d(v)of a vertex v as the number of edges inident with v whose angles at v have distintlabels. By the rule of verties d(v) = 3 for every non-speial vertex v and d(v) = 2 foreah of the three speial verties. Similarly, the degree d(F ) of a fae F as the numberof boundary edges of F whose angles in F have distint labels. By the rules of faesd(F ) = 3 for every interior fae, while the degree of the outer fae is zero. Therefore,S =Xv d(v) +XF d(F ) = 3n� 3 + 3(f � 1) = 3jEj:Now onsider the four angles �1; �2; �3; �4 of an edge in ounterlokwise order asshown in Figure 4.De�ne �1; �2; �3; �4 so that �2 = �1+�1, �3 = �2+�2, �4 = �3+�3 and �1 = �4+�4.Form the rules of verties and faes �j 2 f0; 1g, for all j. The yli nature of the linearsystem implies that P4j=1 �j = 0 mod 3, hene, either Pj �j = 0 or Pj �j = 3. Theontribution of an edge e to the degree sum S isPj �j(e). Sine S = 3jEj we onludePj �j(e) = 3 for every edge e. Up to rotational symmetry this only leaves the twoases shown in Figure 3.Note that from the labels of the exterior angles at speial verties and the rule forthe outer fae we know all the edge labels at outer angles. Every outer angle on thelokwise outer path from ai to ai+1 has label i� 1. With the lemma we know all fourlabels of the two outer edges at ai and onlude:3



ii+ 1 ii+ 1 i� 1i � 1ii Figure 3:�1�2 �4�3Figure 4:Corollary 1. In a Shnyder labeling all interior angles at the speial vertex ai arelabeled i.2.2 Three oriented treesA triorientation of a set of edges is an assignment of one ore two opposite diretionsto eah of these edges, suh that eah edge is labeled with one of the labels 1,2,3 andtwo opposite diretions have distint labels.A Shnyder labeling of the angles of a plane graph indues a triorientation of theedges. If an edge has di�erent angular labels i and j at one of its ends, we orient theedge from this end towards the other and give this orientation the third label k, seeFigure 5. i i� 1 i+ 1i� 1i+ 1 ii+ 1 i � 1iii Figure 5: Orienting edges.Heneforth, we write labeled graph to denote a 3-onneted plane graph with aShnyder labeling and the indued labeling and orientation of the edges. With Ti wedenote the digraph indued by the edges having a diretion labeled i and oriented inthis diretion. The three digraphs T1; T2; T3 have notable properties following from therule of verties and Corollary 1.(1) Eah non-speial vertex v has outdegree one in eah Ti and the edges e1; e2; e3leaving v in labels 1,2,3 our in lokwise order. Eah edge entering v in label ienters v in the lokwise setor from ei+1 to ei�1. See Figure 7(2) Every edge inident with the speial vertex ai enters in label i and the two extremaledges at ai are bidiretional, one leaves ai in label i� 1 the other in label i+ 1.With the next lemma we show that eah of the digraphs T1, T2, T3 is ayli, atuallywe show a little more.Lemma 2. No yle of a labeled plane graph an be traversed by following eah of itsedges in a diretion labeled i or in the reversal of a diretion labeled i� 1 or i+1, i.e.,no yle of G is direted in Ti [ T�1i�1 [ T�1i+1.Proof. Suppose there is a yle in Ti [ T�1i�1 [ T�1i+1 and hoose suh a yle Z enlosingthe minimum number of faes. We �rst show that the interior region F of Z is a fae.Suppose F ontains a vertex x. Starting at x and following edges in Ti we onstruta path Pi onneting x to Z. By minimality of Z path Pi has no repeated vertex.Similarly, there is a path Pi�1 direted in label i�1 from x to Z. By the minimality ofZ the paths Pi and Pi�1 have no ommon vertex other than x. Together with one of the4
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Figure 6: Edge orientations for the graph of Figure 2
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Figure 7: Edge orientations at a vertex.segments they determine on Z these two paths form a direted yle in Ti[T�1i�1[T�1i+1whih enloses a smaller region than Z. This ontradition shows that Z ontains novertex. An edge lying in F and joining two nononseutive verties of Z would similarlydetermine a yle enlosing a smaller region than Z.Therefore, F is a fae and Z its boundary yle. If the traversal of Z is lokwiseno angle of F has label i+1 and if this traversal is ounterlokwise no angle has labeli� 1. Both ases are exluded by the rule of faes.The digraph Ti inludes all verties and all verties exept ai have outdegree onein Ti, while ai has outdegree 0. Sine Ti is ayli we obtain:Corollary 2. Ti is a direted tree rooted at ai, for i = 1; 2; 3.Let G be a labeled graph, for a vertex v we de�ne the i-path Pi(v) as the path inTi from v to the root ai of Ti. Lemma 2 implies that for i 6= j the paths Pi(v) andPj(v) have v as the only ommon vertex. Therefore, P1(v); P2(v); P3(v) divide G intothree regions R1(v), R2(v) and R3(v), where Ri(v) denotes the region bounded by andinluding the two paths Pi�1(v) and Pi+1(v), see Fig. 8. The open interior of regionRi(v), denoted Roi (v), is Ri(v) n (Pi�1(v) [ Pi+1(v)).Lemma 3. If u and v are verties of a labeled graph with u 2 Ri(v), then Ri(u) �Ri(v). If u 2 Roi (v), then the inlusion is proper: Ri(u) � Ri(v).5
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Figure 8: The three regions of a vertexProof. By symmetry it suÆes to onsider the ase i = 1. Suppose u 2 Ro1(v) and let xbe the �rst vertex of P2(u) that belongs to P2(v) [ P3(v). From the edge orientationsat x (Figure 7) it follows that x 62 P3(v). By the same reason x 6= v, hene x 2 P2(v).Similarly the �rst vertex y of P3(u) that belongs to P2(v)[P3(v) is on P3(v) and y 6= v.Hene, R1(u) � R1(v), see Figure 9, the inlusion is proper as v 62 R1(u).P1(v) xP3(u)u P2(u)�3 y vP3(v) P2(v)
�1

�2Figure 9: If u 2 Ro1(v) then R1(u) is a proper subset of R1(v).Now let u 2 R1(v) n Ro1(v), by symmetry we only onsider the ase u 2 P3(v). Ifat u the outgoing edge in label 2 is di�erent from the inoming edge on P3(v) then areasoning as in the previous ase shows that the inlusion is proper, R1(u) � R1(v).Otherwise, if u0 is the other endvertex of the bidireted edge leaving u in label 2 andentering in label 3, then R1(u0) = R1(u). However, R1(u0) � R1(v) by indution onthe number of verties between u and v on P3(v).
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Figure 10:6



Let verties u; v be neighbors suh that the edge e = (u; v) is direted from u to vin label i, see Figure 10. Sine v 2 Pi(u) vertex v is ontained in Ri�1(u) and Ri+1(u).The orientations of edges at v imply u 2 Ri(v). Therefore the following inlusions ofregions hold:� If e = (u; v) is an unidiretional edge in label i then Ri(u) � Ri(v) and Ri�1(u) �Ri�1(v) and Ri+1(u) � Ri+1(v).� If e = (u; v) is bidiretional with label i from u to v and label i � 1 from v to u,then Ri+1(u) = Ri+1(v) and Ri(u) � Ri(v) and Ri�1(u) � Ri�1(v).2.3 Coordinates and embeddingsLet G be a labeled graph a oordinate-mapping assoiates a triple (v1; v2; v3) of realnumbers with every vertex v suh that:(1) v1 + v2 + v3 = 1 for all verties v of G.(2) If Ri(u) � Ri(v) then ui < vi and if Ri(u) = Ri(v) then ui = vi.From the previous disussion we already know some further properties of oordinatemappings(3) If u 2 Ri(v) then ui � vi and if u 2 Roi (v) then ui < vi.(4) If an edge of G is direted from u to v in label i then ui < vi, ui+1 � vi+1 andui�1 � vi�1.(5) For every edge (u; v) of a labeled graph then there are indies i; j suh that ui < viand uj > vj .Given three non-ollinear points �1, �2 and �3 in the plane. These points and aoordinate-mapping of G an be used to de�ne an embedding of G in the plane. Avertex of G is mapped to the point� : v ! v1�1 + v2�2 + v3�3;an edge (u; v) is represented by the line segment (�(u); �(v)). Note that any twodrawings based on the same oordinate mapping but on di�erent points �1, �2 and�3 and �1, �2 and �3 an be mapped onto eah other by an aÆne map, therefore, weignore the base points and denote the resulting drawing with �(G).The main result of this setion is that oordinate mappings yield onvex drawingsof plane graphs.Theorem 3. If v ! (v1; v2; v3) is a oordinate-mapping of a labeled graph G, then thedrawing �(G) is a onvex drawing of G.Let v be a vertex with oordinates (v1; v2; v3). The three lines x1 = v1, x2 = v2and x3 = v3 ross in �(v) and partition the triangle with verties �1, �2 and �3 into sixregions, see Figure 11. Eah of the three losed shaded parallelograms ontains exatlyone neighbor of v. This is beause if (u; v) is direted towards v then by property (4)vertex u is ontained in one of the three white triangles. Iterating this observation weobtain:Lemma 4. In the embedding �(G) every vertex v of G has a path from v to eah ex-terior vertex �i whih is ompletely ontained in the shaded parallelogram with ornersv and �i. 7
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Figure 11: Eah of the three shaded parallelograms ontains exatly one neigh-bor of v, these are the outgoing edges at v of the three Shnyder trees.A �rst step towards a proof of the theorem is to show that �(G) is a plane embed-ding of G, i.e., if two segments representing edges interset, then they have a ommonendpoint. The next lemma deals with a speial ase of intersetion.Lemma 5. In the drawing �(G) of a labeled graph G there is no vertex w whih isplaed on an edge (u; v).Proof. Assume that �(w) is ontained in the segment (�(u); �(v)). The edge (u; v) isontained in one of the regions of w, say in R1(w). Therefore, u1 � w1 and v1 � w1and due to the assumption w1 = u1 = v1. Sine u; v 2 R1(w) this is only possible ifR1(u) = R1(v) = R1(w), by Lemma 3.If u and v are both on P2(w) then u2 > w2 and v2 > w2, by property (3). Thisontradits the assumption �(w) 2 (�(u); �(v)). Similarly not both of u and v are onP3(w).For the remaining ase suppose u 2 P3(w) and v 2 P2(w). Sine R1(u) = R1(v) =R1(w) we �nd u;w; v in this order on P2(u). Label 2 and orientation u ! v for edge(u; v) would lead to two outgoing edges in label 2 at u. Together with P2(u) everyother label and orientation for (u; v) would generate a yle in Ti[T�1i�1[T�1i+1 for i = 1or 3 in ontradition to Lemma 2.Corollary 3. The mapping � is injetive from V to the plane.Lemma 6. In the drawing �(G) of a labeled graph G there is no pair of rossing edges.Proof. Consider two edges (u; v) and (x; y) sharing no vertex. Let i; j; k; l be suh that(u; v) 2 Ri(x); (u; v) 2 Rj(y); (x; y) 2 Rk(u); (x; y) 2 Rl(v):If i = j or k = l then the two edges are separated by a oordinate in �(G), hene,disjoint.By symmetry we may assume that i = k = 1. From x 2 R1(u) and u 2 R1(x) weinfer with Lemma 3 that R1(u) = R1(x). Let P � be the bidiretional path in labels 2and 3 between u and x, w.l.o.g. P � is direted from u to x in label 2, see Figure 12. Interms of oordinates we havex1 = u1; u2 > x2; and u3 < x3:Lemma 3 implies y1 � u1 and v1 � x1, if one of the two inequalities is an equality weare done by Lemma 5. Therefore let y1 < u1 and v1 < x1.8



P �P3(u) P2(x)xu v P2(v)Figure 12:
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Figure 13:We laim that with these assumptions v is the vertex with the maximal thirdoordinate and y is the vertex with the maximal seond oordinate. This implies thatthe position of the two edges in �(G) is as shown Figure 13. Clearly the edges do notinterset.To prove the laim we �rst show that x 2 Ro3(v). Reall that v 2 R1(x) = R1(u)and (u; v) is an edge. If v is the neighbor of u on P3(u) then the �rst edge of P2(v)is in the interior of region R1(x) (otherwise we would have the ontradition R1(v) =R1(x) = R1(u)). If v 2 Ro1(u) then edge (v; u) is unidiretional in label 1. In eitherase let s be the �rst vertex of P2(u) \ P2(v). If s 2 P � then there is a yle inT1 [ T�12 [ T�13 , hene s 2 P2(x) and s 6= x. This proves x 2 Ro3(v) and sine (x; y)is an edge also y 2 R3(v). Expressed in terms of oordinates this yields v3 > x3 andv3 � y3, i.e., the laim. A symmetri argument shows that y2 � v2 and y2 > x2.To omplete the proof of Theorem 3 it remains to shown that the embedding ofevery fae in the drawing �(G) is onvex.Lemma 7. In the drawing �(G) of a labeled graph G every interiour fae is a onvexpolygon.Proof. Let F be an interiour fae and let m1, m2 and m3 denote the maximum �rst,seond and third oordinate of the boundary verties of F . The three lines with equa-tions x1 = m1, x2 = m2 and x3 = m3 de�ne a triangle r. The laim is that everyvertex of F is plaed on an edge of r, i.e. every vertex is maximal in one of the threeoordinates, see Figure 14. From this laim it is immediate that the embedding of Fis onvex.Let v be a boundary vertex of F with oordinates (v1; v2; v3). If F � Ri(v) thenui � vi for every vertex u 2 F . So F and also r is ompletely ontained in thehalfspae xi � vi. By de�nition r intersets the line xi = vi hene this line supportsan edge of r.This ompletes the proof of Theorem 3.
9



F
Figure 14:2.4 Counting faesLet G be a labeled graph with f faes. With vertex v assoiate the triple (v1; v2; v3):vi = number of faes of G in the region Ri(v)f � 1Sine every bounded fae of G belongs to exatly one of the regions of v the threeoordinates of v sum up to 1. The seond de�ning property of oordinate-mappingsis just as obvious. Hene we an apply Theorem 3 to obtain onvex drawings of G.With the hoie of the speial verties �1 = (0; f � 1), �2 = (f � 1; 0) and �3 = (0; 0)every vertex v of G is mapped by � to an integral point in the (f � 1)� (f � 1) grid.Hene, Theorem 2 is obtained as a speial instane of Theorem 3. Atually, the proofis not omplete yet, it remains to prove the existene of Shnyder labelings. This willbe fethed in the next setion.

�3 = (0; 0)

�1 = (0; 13)

�2 = (13; 0)Figure 15: A onvex grid drawing obtained by fae-ounting. Graph and label-ing are taken from Figure 63 Existene of Shnyder LabelingsThe �rst idea for the onstrution of a Shnyder labeling of a 3-onneted planar graphis as follows:(1) Choose an edge e of G and let G=e be the graph obtained by ontration of e.10



(2) Reursively onstrut a Shnyder labeling of G=e.(3) Expand the labeling of G=e to a Shnyder labeling of G.The �rst detail that deserves some autiousness is the hoie of edge e. For the indutionit is required that G=e is again 3-onneted. We all an edge e of a 3-onneted graph Gsuh that G=e is again 3-onneted a ontratible edge. The existene of a ontratibleedge is warranted by a lemma of Thomassen. If we let e be an arbitrary ontratibleedge, however, the proof that the expansion of the labeling an be arried out mayinvolve exessive ase distintions. To redue the ase analysis it would be desirableto have a ontratible edge of a speial form. But the existene of suh an edge willlikewise not ome for free. Here we take a di�erent approah.Let G be a 3-onneted planar graph with three speial verties a1; a2; a3 in lok-wise order on the boundary yle C of the outer fae. Let x 62 C be a neighbor ofa1. Suppose that e = (a1; x) is ontratible and let a1; x1; x2; : : : xk be the neighborsof x in lokwise order. Note that only x1 and xk may be ommon neighbors of a1 andx. Figure 16 shows a generi ontration of an edge (a1; x) into a1.
x2xk xk x2x1a1a1x x1Figure 16: Contration of edge (a1; x) into a1.By the rule for the labels at speial verties all inner angles at a1 are labeled 1.The angles of edge (a1; xi) at xi have to to be labeled 2 and 3 as shown in the leftpart of Figure 17. The right part of Figure 17 shows that the labeling of G=e an beexpanded to a Shnyder labeling of G. Note that the expansion leaves the labels in allfaes that do not have (a1; x) as boundary edge unhanged. a1a1 1111 1 22 2 221 31 323322 33 1 1 1 312 2 32 1 1 3333 Figure 17: Expansion of edge and labels.Next suppose that e = (a1; x) is not ontratible, i.e., G=e is only 2-onneted.Clearly, every utset of size two in G=e has to ontain a1, let y be the seond vertexof suh a utset. The set S = fa1; x; yg is a utset of in G, denote the omponents ofG n S by H and K. Let H 0 be G nK and K 0 = G nH . The idea is to take Shnyderlabelings of the two smaller graphs H 0 and K 0 and to show that they an be pastetogether.The �rst problem is that H 0 and K 0 need not be 3-onneted, resolve this byaugmenting both graphs with the edges (a1; y) and (x; y), provided these edges are notexistent, this yields H 00 and K 00.We have to onsider two ases. First suppose that one of the graphs, say H 00,ontains all speial verties a1; a2 and a3. A Shnyder labeling of H 00 ontains all three11



labels in the triangle T = (a1; x; y). The label at a1 is 1, let the seond speial vertex forK 00 be the vertex with label 2 in T and the third speial vertex be the vertex with label3 in T . Construt a Shnyder labeling for K 00 with this assignment of speial verties.If all three edges of T have been present in G, then the pasting of the labelings makesno problem: the rules of verties and faes an be veri�ed in the labelings of H 00 andK 00.It remains to onsider a fae that was ut by a new edge. We treat this ase withthe edge (x; y) with the assumption that the angle of x in T has label 2 in the labelingof H 00. Let F be the fae of G ontaining x and y and let FH and FK be the parts ofthis fae after insertion of the edge (x; y) suh that FH belongs to H 00 and FK to K 00.Figure 18 shows the situation. a1y x0 xFHFKTy0
Figure 18: Separating triple, �rst ase.Sine in labeling of H 00 the angles of x and y at T are 2 and 3 the label of x atFH is 1 or 2 and the label of y at FH is 1 or 3. The laim is that we an use the samelabels in G. Now onsider the labeling of K 00. Both labels of x at the edge (x; x0) are 2and both labels of y at the edge (y; y0) are 3 by the rule for speial verties. Therefore,the labels of x0 and y0 at FK are both 1, see Figure 3, and all verties between x0 andy0 in K 00 also have label 1 at FK by the rule for the fae. This proves that using thelabels of H 00 leads to a onsistent labeling.It remains to onsider the ase where the two speial verties a2 and a3 are sepa-rated by fa1; x; yg. Assume a3 2 H 00 and a2 2 K 00 vertex y has to play the role of themissing speial vertex in both graphs, i.e., the role of a2 in H 00 and the role of a3 inK 00. Figure 19 shows some of the labels in the Shnyder labelings of H 00 and K 00, wehave to prove that they an be pasted together to yield a Shnyder labeling of G.

H 00 K 00xa1 a1
a2y

xa3 y
2

2
2 3 311

23 11 1 1
2 32 33Figure 19: Separating triple, seond ase.The edge a1; y was not present in G, so we remove it from both graphs and identifythe two opies of a1, x and y. Sine the edges (a1; x) and (x; y) from the two graphsare also identi�ed the labels in the triangles formed by a1; x; y in H 00 and K 00 vanish.12



However, if we assign label 1 to the outer angle at y the rule of verties is satis�ed atx and y. If the edge (x; y) is in G then the rules of all the other verties and faes anbe veri�ed in the labelings of H 00 and K 00. If (x; y) has to be removed assign label 1 tothe angle at x and one of the labels 2 or 3 to the angle at y. Again all the onditionsfor a Shnyder labeling are easily veri�ed.4 Order Dimension of 3-PolytopesLet G = (V;E) be a �nite simple graph. A nonempty family R of linear orders on thevertex set V of graph G is alled a realizer of G provided(�) For every edge e 2 E and every vertex x 2 V n e, there is some L 2 R so thatx > y in L for every y 2 e.The dimension of G, denoted dim(G), is then de�ned as the least positive integer t forwhih G has a realizer of ardinality t. An intuitive formulation for ondition (�) is asfollows: For every vertex v and edge e with v 62 e the vertex has to get over the edgein at least one of the orders of a realizer.The de�nition we gave is not the traditional de�nition for the dimension of graphs.In most older paper the dimension of graphs is understood to be the dimension of theinidene order. We briey explain the onnetions: With a �nite graph G = (V;E),assoiate a height two order PG whose ground set is V [ E. The order relation isde�ned by setting x < e in PG if x 2 V , e 2 E and x 2 e. PG is the inidene order ofG. When P = (X;<) is an order, and R = fL1; L2; : : : ; Ltg is a family of linear orderson X , we all R a realizer of P if P = \R, i.e., x < y in P if and only if x < y inLi for all i = 1; 2; : : : ; t. The dimension of an order is then de�ned as the minimumardinality of a realizer.G is a graph with minimum degree at least 2, then the dimension of G and thedimension of its inidene order agree. The order theoreti fats that sit in the bak-ground of the phenomenon are:� All ritial pairs of inidene orders of graphs with minimum degree at lest 2 aremin-max pairs.� If all ritial pairs of an order are min-max pairs then its interval dimension equalsits order dimension.� The dimension of a graph is just the interval dimension of its inidene order.For additional information on this bakground we suggest looking at Trotter's mono-graph [12℄.If G is a graph ontaining a yle then dim(G) � 3. It is also easy to onstruta realizer onsisting of 3 linear orders for the yle Cn, n � 3. The dimension ofthe omplete graph K5 is 4, but the removal of any edge redues the dimension to 3.Similarly, the dimension of the omplete bipartite graphK3;3 is 4 and again the removalof any edge redues the dimension to 3. These examples motivate the now lassi,theorem of Shnyder.Theorem 4. A graph G is planar if and only if its dimension is at most 3.Proof. The easier part of the theorem is to show that dim(G) � 3 implies that G isplanar. The proof of this impliation is atually due to Babai and Du�us, the argumentan be found in [12℄ and [13℄.We show that every planar graphG admits a realizer fL1; L2; L3g. By monotoniitywe may assume that G is a maximal planar graph, i.e., a triangulation. The Shnyder13



labeling of G indues three trees. Sine eah of the trees has n�1 edges and the graphhas 3n� 6 edges the only bidireted edges are the three edges of the exterior triangle.Therefore, Ri(u) � Ri(v) whenever u 2 Ri(v). For i = 1; 2; 3 let the inlusion order onthe i{regions indue an order Qi on the verties, i.e., u < v in Qi i� Ri(u) � Ri(v).For any edge (u; v) and vertex w 6= u; v the edge is in one of the regions Ri(w) of w,hene, u < w and v < w in Qi. This shows that any hoie of three linear extensionsLi of Qi, i = 1; 2; 3, will produe a realizer for G.In omplete analogy to the de�nition of the dimension of a graph the dimension ofa hypergraph an be de�ned. A partiularly interesting instane is related to polytopesand hene, by Steinitz's theorem also to planar graphs.Let P be a polytope with vertex set V(P ) and faets F(P ). Given a subset G ofF(P ) a realizer for (P;G) is a nonempty family R of linear orders on V(P ) provided(��) For every faet F 2 G and every vertex x 2 V(P ) n V(F ), there is some L 2 R sothat x > y in L for every y 2 V(F ).The dimension of (P;G), denoted dim(P;G), is then de�ned as the least positive inte-ger t for whih (P;G) has a realizer of ardinality t. In the ase G = F(P ) we simplywrite dim(P ) and all this the dimension of the polytope P . Traditionally people wouldbe interested in the order dimension of the fae lattie L(P ) of a polytope P . However,it is not hard to see that all ritial pairs of L(P ) are min-max pairs, so that by theabove remarks the two onepts of dimension oinide.The next theorem is a lower bound whih was proved by Reuter [7℄ in the ontextof Ferrer's dimension.Theorem 5. If P is a d-polytope with d � 2, i.e., a polytope whose aÆne hull is ddimensional, then dim(P ) � d+ 1.Proof. The proof is by indution on d. If d = 2 then the verties and faets of P havethe struture of the yle Cn with n = jV(P )j. In that ase dim(P ) � 3.Let P be a d-polytope embedded in Rd for some d > 2 with realizer L1; L2; : : : ; Lt.Let v be the highest vertex in Lt and onsider a hyperplane H whih separates v fromall the other verties of P . The intersetion P \ H is a (d � 1)-polytope P=v, the soalled vertex �gure of P at v. The (k � 1)-dimensional faes of P=v are in bijetionwith the k-dimensional faes of P that ontain v. In partiular an edge (u; v) of Porresponds to a vertex u0 = (u; v) \ H of P=v and for every faet fu01; : : : ; u0rg ofP=v there is a faet fv; u1; : : : ; ur; w1; : : : ; wsg of P . Let Fv be the set of faets of Pontaining v, the bijetion shows that dim(P=v) � dim(P;Fv). Sine P=v is (d � 1)-dimensional dim(P=v) � d by indution. Now let F 2 Fv and w 62 V(F ), by the hoieof v the order Lt an not bring w over F , therefore, L1; L2; : : : ; Lt�1 is a realizer for(P;Fv), i.e., dim(P;Fv) � t� 1. Combining the inequalities we obtain t � d+ 1.It is known that for d � 4 there is no bound depending only on d for the dimensionof d-polytopes. For d = 3, however, the situation is di�erent. By Steinitz's theorempolytopes and 3-onneted plane graphs are essentially the same. Making use of themahinery of Shnyder labelings we formulate and prove a slightly stronger version ofTheorem 1.Theorem 6. For every 3-polytope P the dimension satis�es dim(P ) = 4. Moreover,if I 2 F(P ) and FI = F(P ) n fIg then dim(P;FI ) = 3.Proof. Let R be a realizer of (P;FI ). To obtain a realizer for P we only have to add asingle linear order with v < w for all v 2 V(I) and w 2 V(P ) n V(I) to R. Combinedwith the lower bound from Theorem 5 this yields 4 � dim(P ) � dim(P;FI) + 1. Toprove the theorem it remains to show dim(P;FI ) � 3.14



Choose a planar embedding of the graph G of P with I as the exterior fae, speifythree verties a1; a2; a3 in lokwise order around I and onsider a Shnyder labeling ofG. As in the proof of Theorem 4 we will use linear extensions Li of the inlusion orderQi of regions i = 1; 2; 3, i.e., u < v in Qi i� Ri(u) � Ri(v). To bring every vertex yover every fae F 2 FI with y 62 F , however, more are in the hoie of Li is required.De�ne Q�i suh that u < v in Q�i if either(a) u < v in Qi or(b) u jj v in Qi and u < v in Qi+1.Lemma 8. Q�i is ayli for i = 1; 2; 3.Proof. Call (u; v) a type-a pair if u < v in Q�i by part (a) of the de�nition and all it atype-b pair if u < v in Q�i by (b). A yle in Q�i has to ontain both a type-a pair anda type-b pair. We laim that if u < v is a type-a pair and v < w is a type-b pair thenu < w is also in Q�i . Sine u < v and v < u an not be both in Q�i the laim yields aontradition to the assumption that Q�i ontains a yle.Claim. If u < v is a type-a pair and v < w is a type-b pair then u < w is also in Q�i .By symmetry we may assume that i = 1. If R1(v) = R1(w) then with (u; v) the pair(u;w) also is type-a. Therefore, we assume R1(v) 6� R1(w), sine (v; w) is type-b thisimplies w 62 R1(v) and w 62 R2(v). Therefore, w 2 Ro3(v) and R3(w) � R3(v). Sineu 2 R1(v) we either �nd u in R1(w) or in R2(w). If u in R1(w) then R1(u) � R1(w) butequality is impossible sine w 62 R1(u), i.e., (u;w) is type-a pair in this ase. Otherwiseu 2 Ro2(w), i.e., R2(u) � R2(w), and the i{regions of u and w are inomparable. Thisshows that (u;w) is a type-b pair in this ase.Let Li be a linear extension of Q�i , the laim is that L1; L2; L3 is a realizer. Considera pair (F; y), where F is a fae and y is some vertex not on F . Fae F is ontained inone of the regions of y, by symmetry we assume F 2 R1(y). Hene, R1(x) � R1(y) forall x 2 F . If R1(x) � R1(y) for all x 2 F then F is below y in Q1 and in L1.Assume that there is an x 2 F with R1(x) = R1(y). It is impossible that F ontainsverties x and x0 with R1(x) = R1(y) = R1(x0) and x 2 P3(y) while x0 2 P2(y). Thiswould lead to the plaement of y on some edge bounding F in the drawing �(G),ontraditing Lemma 5.If for all x 2 F either R1(x) � R1(y) or R1(x) = R1(y) and x 2 P3(y), thenR2(x) � R2(y) for all x 2 F with R1(x) = R1(y). By the de�nition of Q�1 this showsthat F is below y in L1.Finally, onsider the situation that for all x 2 F either R1(x) � R1(y) or R1(x) =R1(y) and x 2 P2(y). We laim that F is below y in L3 in this ase. All x in F withR1(x) = R1(y) have R3(x) � R3(y), hene, they are below y in L3. The other vertiesx of F have R1(x) � R1(y). The next lemma shows that xjjy in Q3 holds for all theseverties whih implies that they also also go below y in L3.Lemma 9. If R1(x) = R1(y), x 2 P3(y) and F is a fae in R1(x) with x 2 F andy 62 F then R3(y) 6� R3(v) for all v 2 F .Proof. Consider the triangle r enlosing F in the onvex drawing �(G) (Lemma 7).Vertex y is plaed on the horizontal line `1 bounding r and y is left of all verties ofF on `1, Figure 20 shows the situation.Let x0 be the leftmost vertex of F on `1 and u be the uppermost vertex of F on`3. Let x1 be the other neighbor of x0 at F . Even so x1 need not be on `1 the edge(x0; x1) is the outgoing edge of x0 in label 2, .f. Figure 11. Also (x0; y) is the outgoingedge of x0 in label 3. The edge orientations at vertex x0 imply that (u; x0) is orientedfrom u to x0 in label 1. This shows that x0 is on P1(v) for all v 2 F \ `3. The paths15



u Fy x0 `2 `1
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