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hberei
h Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner�inf.fu-berlin.deAbstra
t. We de�ne an analogue of S
hnyder's tree de
ompositions for 3-
onne
tedplanar graphs. Based on this stru
ture we obtain:� Let G be a 3-
onne
ted planar graph with f fa
es, then G has a 
onvex drawingwith its verti
es embedded on the (f � 1)� (f � 1) grid.� Let G be a 3-
onne
ted planar graph. The dimension of the in
iden
e order ofverti
es, edges and bounded fa
es of G is at most 3.The se
ond result is originally due to Brightwell and Trotter. Here we give a substan-tially simpler proof.Mathemati
s Subje
t Classi�
ations (1991). 05C10, 68R10, 06A07, 52B10Key Words. graph drawing, order dimension, S
hnyder labeling.1 Introdu
tionS
hnyder dis
overed that every plane triangulation admits a spe
ial de
omposition ofits interior edges into three trees. Based on these S
hnyder 3-tree de
ompositions heproved two beautiful theorems about planar graphs. In [9℄ S
hnyder 
hara
terizedplanar graphs in terms of the order dimension of their in
iden
e order:� The dimension of the in
iden
e order of verti
es and edges of a graph G is at most 3() G is planar.This striking result re
ently found appli
ations even in algebra [6℄. S
hnyder's Theoremhas found several extensions: Brightwell and Trotter proved in [2℄ that the in
iden
eorder of verti
es, edges and fa
es of a planar map has dimension at most 4. The proofof this result is indu
tive and required them to �rst establish the following theorem.Theorem 1. Let G be a 3-
onne
ted planar graph. The dimension of the in
iden
eorder of verti
es, edges and bounded fa
es of G is at most 3.Felsner and Trotter [4℄ used S
hnyder's Theorem to give a 
hara
terization of out-erplanar graphs in terms of order dimension. That paper should also give a goodoverview of other results on the dimension of graphs.The se
ond appli
ation S
hnyder had for his tree de
ompositions 
on
erns straightline drawings of planar graphs. The existen
e of straight line embeddings for planargraphs was independently proven by Wagner [16℄, F�ary [3℄ and Stein [11℄. The questionwhether every planar graph has a straight line embedding of reasonable resolution, i.e.,on a grid of polynomial size, was raised by Rosenstiehl and Tarjan [8℄. S
hnyder [9℄shows how to 
onstru
t a bary
entri
 representation whi
h yields an embedding on the(2n� 5)� (2n� 5) grid. In [10℄ S
hnyder improved on his �rst result and shows4 September 2000 1



� Let G be a planar graph with n verti
es, then G has a straight line drawing withits verti
es embedded on the (n� 2)� (n� 2) grid.The proof is 
onstru
tive and the embedding be 
omputed in O(n) time (see e.g. [1℄).The method of S
hnyder's still gives the strongest result regarding the size of a gridembedding arbitrary planar graphs. Xin He [5℄ gives a 
omprehensive history of theproblem.Tutte [14, 15℄ shows that every 3-
onne
ted planar graph G admits a stri
tly 
on-vex drawing, i.e. a drawing su
h that the boundary of every fa
e is a stri
tly 
onvexpolygon. A
tually this result 
an be obtained as an easy 
onsequen
e of mu
h oldertheorems of Steinitz and of the Koebe 
ir
le pa
king theorem, a reviews of these 
on-ne
tions is given by Ziegler [17℄. Again the early approa
hes to 
onvex drawings giveno reasonable guarantee on resolution.We de�ne triorientations of the edges of 3-
onne
ted planar graphs so that theyresemble the 3-tree de
ompositions of S
hnyder. Based on this stru
ture we prove:Theorem 2. Let G be a 3-
onne
ted planar graph with f fa
es, then G has a 
onvexdrawing with its verti
es embedded on the (f � 1)� (f � 1) grid.Straight line grid drawings with area O(n2) are not stri
tly 
onvex, in fa
t, everystri
tly 
onvex embedding of the n-
y
le requires an area of 
(n3). The smallest gridsize known to admit 
onvex drawings of 3-
onne
ted planar graphs is (n� 2)� (n� 2).This result has been announ
ed by two groups of authors S
hnyder and Trotter as wellas Chrobak and Kant, however, it has so far not appeared in print.Based on the drawing result we give a new proof of the result of Brightwell andTrotter (Theorem 1). This proof is mu
h shorter than the original one. Theorem 1immediately implies that fa
e latti
es of 3-polytopes are 
riti
al of order dimension 4.2 Convex Embeddings of 3-Conne
ted Plane Graphs2.1 S
hnyder labeling the angles of a plane graphA plane graph is a planar graph with a parti
ular planar embedding. Let G = (V;E)be a 3-
onne
ted plane graph, spe
ify three verti
es a1; a2; a3 in 
lo
kwise order on theboundary 
y
le of the outer fa
e. A S
hnyder labeling with respe
t to a1; a2; a3 is alabeling of the angles of G with the labels 1; 2; 3 satisfying three rules. By 
onventionthat there is a 
y
li
 stru
ture on the labels so that i+ 1 and i� 1 is always de�ned.� The outer angle at the spe
ial vertex ai has labels i+1 and i�1 in 
lo
kwise order.All the other angles of the graph have exa
tly one label.� Rule of verti
es: The labels of the angles at ea
h vertex form, in 
lo
kwise order,a nonempty interval of 1's, a nonempty interval of 2's and a nonempty interval of3's.� Rule of fa
es: The labels of the angles at ea
h interior fa
e form, in 
lo
kwise order,a nonempty interval of 1's, a nonempty interval of 2's and a nonempty interval of3's; at the outer fa
e the same is true in 
ounter
lo
kwise order.Figure 2 shows a plane graph with a S
hnyder labeling. We give the proof that every3-
onne
ted plane graph admits a S
hnyder labeling in Se
tion 3 and 
ontinue with adis
ussion of some 
onsequen
es.Lemma 1. Let G be a plane graph with a S
hnyder labeling, then the four angles ofea
h edge 
ontain all three labels 1,2,3. Thus every edge has one of the two forms shownin Figure 3. 2
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Figure 2: A plane graph with a S
hnyder labelingProof. To make the statement true for all edges we distribute the two labels at theouter angles of spe
ial verti
es to the two edges of this angle.The proof is based on double 
ounting and Euler's formula. De�ne the degree d(v)of a vertex v as the number of edges in
ident with v whose angles at v have distin
tlabels. By the rule of verti
es d(v) = 3 for every non-spe
ial vertex v and d(v) = 2 forea
h of the three spe
ial verti
es. Similarly, the degree d(F ) of a fa
e F as the numberof boundary edges of F whose angles in F have distin
t labels. By the rules of fa
esd(F ) = 3 for every interior fa
e, while the degree of the outer fa
e is zero. Therefore,S =Xv d(v) +XF d(F ) = 3n� 3 + 3(f � 1) = 3jEj:Now 
onsider the four angles �1; �2; �3; �4 of an edge in 
ounter
lo
kwise order asshown in Figure 4.De�ne �1; �2; �3; �4 so that �2 = �1+�1, �3 = �2+�2, �4 = �3+�3 and �1 = �4+�4.Form the rules of verti
es and fa
es �j 2 f0; 1g, for all j. The 
y
li
 nature of the linearsystem implies that P4j=1 �j = 0 mod 3, hen
e, either Pj �j = 0 or Pj �j = 3. The
ontribution of an edge e to the degree sum S isPj �j(e). Sin
e S = 3jEj we 
on
ludePj �j(e) = 3 for every edge e. Up to rotational symmetry this only leaves the two
ases shown in Figure 3.Note that from the labels of the exterior angles at spe
ial verti
es and the rule forthe outer fa
e we know all the edge labels at outer angles. Every outer angle on the
lo
kwise outer path from ai to ai+1 has label i� 1. With the lemma we know all fourlabels of the two outer edges at ai and 
on
lude:3



ii+ 1 ii+ 1 i� 1i � 1ii Figure 3:�1�2 �4�3Figure 4:Corollary 1. In a S
hnyder labeling all interior angles at the spe
ial vertex ai arelabeled i.2.2 Three oriented treesA triorientation of a set of edges is an assignment of one ore two opposite dire
tionsto ea
h of these edges, su
h that ea
h edge is labeled with one of the labels 1,2,3 andtwo opposite dire
tions have distin
t labels.A S
hnyder labeling of the angles of a plane graph indu
es a triorientation of theedges. If an edge has di�erent angular labels i and j at one of its ends, we orient theedge from this end towards the other and give this orientation the third label k, seeFigure 5. i i� 1 i+ 1i� 1i+ 1 ii+ 1 i � 1iii Figure 5: Orienting edges.Hen
eforth, we write labeled graph to denote a 3-
onne
ted plane graph with aS
hnyder labeling and the indu
ed labeling and orientation of the edges. With Ti wedenote the digraph indu
ed by the edges having a dire
tion labeled i and oriented inthis dire
tion. The three digraphs T1; T2; T3 have notable properties following from therule of verti
es and Corollary 1.(1) Ea
h non-spe
ial vertex v has outdegree one in ea
h Ti and the edges e1; e2; e3leaving v in labels 1,2,3 o

ur in 
lo
kwise order. Ea
h edge entering v in label ienters v in the 
lo
kwise se
tor from ei+1 to ei�1. See Figure 7(2) Every edge in
ident with the spe
ial vertex ai enters in label i and the two extremaledges at ai are bidire
tional, one leaves ai in label i� 1 the other in label i+ 1.With the next lemma we show that ea
h of the digraphs T1, T2, T3 is a
y
li
, a
tuallywe show a little more.Lemma 2. No 
y
le of a labeled plane graph 
an be traversed by following ea
h of itsedges in a dire
tion labeled i or in the reversal of a dire
tion labeled i� 1 or i+1, i.e.,no 
y
le of G is dire
ted in Ti [ T�1i�1 [ T�1i+1.Proof. Suppose there is a 
y
le in Ti [ T�1i�1 [ T�1i+1 and 
hoose su
h a 
y
le Z en
losingthe minimum number of fa
es. We �rst show that the interior region F of Z is a fa
e.Suppose F 
ontains a vertex x. Starting at x and following edges in Ti we 
onstru
ta path Pi 
onne
ting x to Z. By minimality of Z path Pi has no repeated vertex.Similarly, there is a path Pi�1 dire
ted in label i�1 from x to Z. By the minimality ofZ the paths Pi and Pi�1 have no 
ommon vertex other than x. Together with one of the4
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Figure 6: Edge orientations for the graph of Figure 2
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Figure 7: Edge orientations at a vertex.segments they determine on Z these two paths form a dire
ted 
y
le in Ti[T�1i�1[T�1i+1whi
h en
loses a smaller region than Z. This 
ontradi
tion shows that Z 
ontains novertex. An edge lying in F and joining two non
onse
utive verti
es of Z would similarlydetermine a 
y
le en
losing a smaller region than Z.Therefore, F is a fa
e and Z its boundary 
y
le. If the traversal of Z is 
lo
kwiseno angle of F has label i+1 and if this traversal is 
ounter
lo
kwise no angle has labeli� 1. Both 
ases are ex
luded by the rule of fa
es.The digraph Ti in
ludes all verti
es and all verti
es ex
ept ai have outdegree onein Ti, while ai has outdegree 0. Sin
e Ti is a
y
li
 we obtain:Corollary 2. Ti is a dire
ted tree rooted at ai, for i = 1; 2; 3.Let G be a labeled graph, for a vertex v we de�ne the i-path Pi(v) as the path inTi from v to the root ai of Ti. Lemma 2 implies that for i 6= j the paths Pi(v) andPj(v) have v as the only 
ommon vertex. Therefore, P1(v); P2(v); P3(v) divide G intothree regions R1(v), R2(v) and R3(v), where Ri(v) denotes the region bounded by andin
luding the two paths Pi�1(v) and Pi+1(v), see Fig. 8. The open interior of regionRi(v), denoted Roi (v), is Ri(v) n (Pi�1(v) [ Pi+1(v)).Lemma 3. If u and v are verti
es of a labeled graph with u 2 Ri(v), then Ri(u) �Ri(v). If u 2 Roi (v), then the in
lusion is proper: Ri(u) � Ri(v).5
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Figure 8: The three regions of a vertexProof. By symmetry it suÆ
es to 
onsider the 
ase i = 1. Suppose u 2 Ro1(v) and let xbe the �rst vertex of P2(u) that belongs to P2(v) [ P3(v). From the edge orientationsat x (Figure 7) it follows that x 62 P3(v). By the same reason x 6= v, hen
e x 2 P2(v).Similarly the �rst vertex y of P3(u) that belongs to P2(v)[P3(v) is on P3(v) and y 6= v.Hen
e, R1(u) � R1(v), see Figure 9, the in
lusion is proper as v 62 R1(u).P1(v) xP3(u)u P2(u)�3 y vP3(v) P2(v)
�1

�2Figure 9: If u 2 Ro1(v) then R1(u) is a proper subset of R1(v).Now let u 2 R1(v) n Ro1(v), by symmetry we only 
onsider the 
ase u 2 P3(v). Ifat u the outgoing edge in label 2 is di�erent from the in
oming edge on P3(v) then areasoning as in the previous 
ase shows that the in
lusion is proper, R1(u) � R1(v).Otherwise, if u0 is the other endvertex of the bidire
ted edge leaving u in label 2 andentering in label 3, then R1(u0) = R1(u). However, R1(u0) � R1(v) by indu
tion onthe number of verti
es between u and v on P3(v).
i+ 1

i� 1 i� 1viui+ 1
Figure 10:6



Let verti
es u; v be neighbors su
h that the edge e = (u; v) is dire
ted from u to vin label i, see Figure 10. Sin
e v 2 Pi(u) vertex v is 
ontained in Ri�1(u) and Ri+1(u).The orientations of edges at v imply u 2 Ri(v). Therefore the following in
lusions ofregions hold:� If e = (u; v) is an unidire
tional edge in label i then Ri(u) � Ri(v) and Ri�1(u) �Ri�1(v) and Ri+1(u) � Ri+1(v).� If e = (u; v) is bidire
tional with label i from u to v and label i � 1 from v to u,then Ri+1(u) = Ri+1(v) and Ri(u) � Ri(v) and Ri�1(u) � Ri�1(v).2.3 Coordinates and embeddingsLet G be a labeled graph a 
oordinate-mapping asso
iates a triple (v1; v2; v3) of realnumbers with every vertex v su
h that:(1) v1 + v2 + v3 = 1 for all verti
es v of G.(2) If Ri(u) � Ri(v) then ui < vi and if Ri(u) = Ri(v) then ui = vi.From the previous dis
ussion we already know some further properties of 
oordinatemappings(3) If u 2 Ri(v) then ui � vi and if u 2 Roi (v) then ui < vi.(4) If an edge of G is dire
ted from u to v in label i then ui < vi, ui+1 � vi+1 andui�1 � vi�1.(5) For every edge (u; v) of a labeled graph then there are indi
es i; j su
h that ui < viand uj > vj .Given three non-
ollinear points �1, �2 and �3 in the plane. These points and a
oordinate-mapping of G 
an be used to de�ne an embedding of G in the plane. Avertex of G is mapped to the point� : v ! v1�1 + v2�2 + v3�3;an edge (u; v) is represented by the line segment (�(u); �(v)). Note that any twodrawings based on the same 
oordinate mapping but on di�erent points �1, �2 and�3 and �1, �2 and �3 
an be mapped onto ea
h other by an aÆne map, therefore, weignore the base points and denote the resulting drawing with �(G).The main result of this se
tion is that 
oordinate mappings yield 
onvex drawingsof plane graphs.Theorem 3. If v ! (v1; v2; v3) is a 
oordinate-mapping of a labeled graph G, then thedrawing �(G) is a 
onvex drawing of G.Let v be a vertex with 
oordinates (v1; v2; v3). The three lines x1 = v1, x2 = v2and x3 = v3 
ross in �(v) and partition the triangle with verti
es �1, �2 and �3 into sixregions, see Figure 11. Ea
h of the three 
losed shaded parallelograms 
ontains exa
tlyone neighbor of v. This is be
ause if (u; v) is dire
ted towards v then by property (4)vertex u is 
ontained in one of the three white triangles. Iterating this observation weobtain:Lemma 4. In the embedding �(G) every vertex v of G has a path from v to ea
h ex-terior vertex �i whi
h is 
ompletely 
ontained in the shaded parallelogram with 
ornersv and �i. 7



x1 = v1x3 = v3
�3 �2

x2 = v2v
�1

Figure 11: Ea
h of the three shaded parallelograms 
ontains exa
tly one neigh-bor of v, these are the outgoing edges at v of the three S
hnyder trees.A �rst step towards a proof of the theorem is to show that �(G) is a plane embed-ding of G, i.e., if two segments representing edges interse
t, then they have a 
ommonendpoint. The next lemma deals with a spe
ial 
ase of interse
tion.Lemma 5. In the drawing �(G) of a labeled graph G there is no vertex w whi
h ispla
ed on an edge (u; v).Proof. Assume that �(w) is 
ontained in the segment (�(u); �(v)). The edge (u; v) is
ontained in one of the regions of w, say in R1(w). Therefore, u1 � w1 and v1 � w1and due to the assumption w1 = u1 = v1. Sin
e u; v 2 R1(w) this is only possible ifR1(u) = R1(v) = R1(w), by Lemma 3.If u and v are both on P2(w) then u2 > w2 and v2 > w2, by property (3). This
ontradi
ts the assumption �(w) 2 (�(u); �(v)). Similarly not both of u and v are onP3(w).For the remaining 
ase suppose u 2 P3(w) and v 2 P2(w). Sin
e R1(u) = R1(v) =R1(w) we �nd u;w; v in this order on P2(u). Label 2 and orientation u ! v for edge(u; v) would lead to two outgoing edges in label 2 at u. Together with P2(u) everyother label and orientation for (u; v) would generate a 
y
le in Ti[T�1i�1[T�1i+1 for i = 1or 3 in 
ontradi
tion to Lemma 2.Corollary 3. The mapping � is inje
tive from V to the plane.Lemma 6. In the drawing �(G) of a labeled graph G there is no pair of 
rossing edges.Proof. Consider two edges (u; v) and (x; y) sharing no vertex. Let i; j; k; l be su
h that(u; v) 2 Ri(x); (u; v) 2 Rj(y); (x; y) 2 Rk(u); (x; y) 2 Rl(v):If i = j or k = l then the two edges are separated by a 
oordinate in �(G), hen
e,disjoint.By symmetry we may assume that i = k = 1. From x 2 R1(u) and u 2 R1(x) weinfer with Lemma 3 that R1(u) = R1(x). Let P � be the bidire
tional path in labels 2and 3 between u and x, w.l.o.g. P � is dire
ted from u to x in label 2, see Figure 12. Interms of 
oordinates we havex1 = u1; u2 > x2; and u3 < x3:Lemma 3 implies y1 � u1 and v1 � x1, if one of the two inequalities is an equality weare done by Lemma 5. Therefore let y1 < u1 and v1 < x1.8
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Figure 13:We 
laim that with these assumptions v is the vertex with the maximal third
oordinate and y is the vertex with the maximal se
ond 
oordinate. This implies thatthe position of the two edges in �(G) is as shown Figure 13. Clearly the edges do notinterse
t.To prove the 
laim we �rst show that x 2 Ro3(v). Re
all that v 2 R1(x) = R1(u)and (u; v) is an edge. If v is the neighbor of u on P3(u) then the �rst edge of P2(v)is in the interior of region R1(x) (otherwise we would have the 
ontradi
tion R1(v) =R1(x) = R1(u)). If v 2 Ro1(u) then edge (v; u) is unidire
tional in label 1. In either
ase let s be the �rst vertex of P2(u) \ P2(v). If s 2 P � then there is a 
y
le inT1 [ T�12 [ T�13 , hen
e s 2 P2(x) and s 6= x. This proves x 2 Ro3(v) and sin
e (x; y)is an edge also y 2 R3(v). Expressed in terms of 
oordinates this yields v3 > x3 andv3 � y3, i.e., the 
laim. A symmetri
 argument shows that y2 � v2 and y2 > x2.To 
omplete the proof of Theorem 3 it remains to shown that the embedding ofevery fa
e in the drawing �(G) is 
onvex.Lemma 7. In the drawing �(G) of a labeled graph G every interiour fa
e is a 
onvexpolygon.Proof. Let F be an interiour fa
e and let m1, m2 and m3 denote the maximum �rst,se
ond and third 
oordinate of the boundary verti
es of F . The three lines with equa-tions x1 = m1, x2 = m2 and x3 = m3 de�ne a triangle r. The 
laim is that everyvertex of F is pla
ed on an edge of r, i.e. every vertex is maximal in one of the three
oordinates, see Figure 14. From this 
laim it is immediate that the embedding of Fis 
onvex.Let v be a boundary vertex of F with 
oordinates (v1; v2; v3). If F � Ri(v) thenui � vi for every vertex u 2 F . So F and also r is 
ompletely 
ontained in thehalfspa
e xi � vi. By de�nition r interse
ts the line xi = vi hen
e this line supportsan edge of r.This 
ompletes the proof of Theorem 3.
9



F
Figure 14:2.4 Counting fa
esLet G be a labeled graph with f fa
es. With vertex v asso
iate the triple (v1; v2; v3):vi = number of fa
es of G in the region Ri(v)f � 1Sin
e every bounded fa
e of G belongs to exa
tly one of the regions of v the three
oordinates of v sum up to 1. The se
ond de�ning property of 
oordinate-mappingsis just as obvious. Hen
e we 
an apply Theorem 3 to obtain 
onvex drawings of G.With the 
hoi
e of the spe
ial verti
es �1 = (0; f � 1), �2 = (f � 1; 0) and �3 = (0; 0)every vertex v of G is mapped by � to an integral point in the (f � 1)� (f � 1) grid.Hen
e, Theorem 2 is obtained as a spe
ial instan
e of Theorem 3. A
tually, the proofis not 
omplete yet, it remains to prove the existen
e of S
hnyder labelings. This willbe fet
hed in the next se
tion.

�3 = (0; 0)

�1 = (0; 13)

�2 = (13; 0)Figure 15: A 
onvex grid drawing obtained by fa
e-
ounting. Graph and label-ing are taken from Figure 63 Existen
e of S
hnyder LabelingsThe �rst idea for the 
onstru
tion of a S
hnyder labeling of a 3-
onne
ted planar graphis as follows:(1) Choose an edge e of G and let G=e be the graph obtained by 
ontra
tion of e.10



(2) Re
ursively 
onstru
t a S
hnyder labeling of G=e.(3) Expand the labeling of G=e to a S
hnyder labeling of G.The �rst detail that deserves some 
autiousness is the 
hoi
e of edge e. For the indu
tionit is required that G=e is again 3-
onne
ted. We 
all an edge e of a 3-
onne
ted graph Gsu
h that G=e is again 3-
onne
ted a 
ontra
tible edge. The existen
e of a 
ontra
tibleedge is warranted by a lemma of Thomassen. If we let e be an arbitrary 
ontra
tibleedge, however, the proof that the expansion of the labeling 
an be 
arried out mayinvolve ex
essive 
ase distin
tions. To redu
e the 
ase analysis it would be desirableto have a 
ontra
tible edge of a spe
ial form. But the existen
e of su
h an edge willlikewise not 
ome for free. Here we take a di�erent approa
h.Let G be a 3-
onne
ted planar graph with three spe
ial verti
es a1; a2; a3 in 
lo
k-wise order on the boundary 
y
le C of the outer fa
e. Let x 62 C be a neighbor ofa1. Suppose that e = (a1; x) is 
ontra
tible and let a1; x1; x2; : : : xk be the neighborsof x in 
lo
kwise order. Note that only x1 and xk may be 
ommon neighbors of a1 andx. Figure 16 shows a generi
 
ontra
tion of an edge (a1; x) into a1.
x2xk xk x2x1a1a1x x1Figure 16: Contra
tion of edge (a1; x) into a1.By the rule for the labels at spe
ial verti
es all inner angles at a1 are labeled 1.The angles of edge (a1; xi) at xi have to to be labeled 2 and 3 as shown in the leftpart of Figure 17. The right part of Figure 17 shows that the labeling of G=e 
an beexpanded to a S
hnyder labeling of G. Note that the expansion leaves the labels in allfa
es that do not have (a1; x) as boundary edge un
hanged. a1a1 1111 1 22 2 221 31 323322 33 1 1 1 312 2 32 1 1 3333 Figure 17: Expansion of edge and labels.Next suppose that e = (a1; x) is not 
ontra
tible, i.e., G=e is only 2-
onne
ted.Clearly, every 
utset of size two in G=e has to 
ontain a1, let y be the se
ond vertexof su
h a 
utset. The set S = fa1; x; yg is a 
utset of in G, denote the 
omponents ofG n S by H and K. Let H 0 be G nK and K 0 = G nH . The idea is to take S
hnyderlabelings of the two smaller graphs H 0 and K 0 and to show that they 
an be pastetogether.The �rst problem is that H 0 and K 0 need not be 3-
onne
ted, resolve this byaugmenting both graphs with the edges (a1; y) and (x; y), provided these edges are notexistent, this yields H 00 and K 00.We have to 
onsider two 
ases. First suppose that one of the graphs, say H 00,
ontains all spe
ial verti
es a1; a2 and a3. A S
hnyder labeling of H 00 
ontains all three11



labels in the triangle T = (a1; x; y). The label at a1 is 1, let the se
ond spe
ial vertex forK 00 be the vertex with label 2 in T and the third spe
ial vertex be the vertex with label3 in T . Constru
t a S
hnyder labeling for K 00 with this assignment of spe
ial verti
es.If all three edges of T have been present in G, then the pasting of the labelings makesno problem: the rules of verti
es and fa
es 
an be veri�ed in the labelings of H 00 andK 00.It remains to 
onsider a fa
e that was 
ut by a new edge. We treat this 
ase withthe edge (x; y) with the assumption that the angle of x in T has label 2 in the labelingof H 00. Let F be the fa
e of G 
ontaining x and y and let FH and FK be the parts ofthis fa
e after insertion of the edge (x; y) su
h that FH belongs to H 00 and FK to K 00.Figure 18 shows the situation. a1y x0 xFHFKTy0
Figure 18: Separating triple, �rst 
ase.Sin
e in labeling of H 00 the angles of x and y at T are 2 and 3 the label of x atFH is 1 or 2 and the label of y at FH is 1 or 3. The 
laim is that we 
an use the samelabels in G. Now 
onsider the labeling of K 00. Both labels of x at the edge (x; x0) are 2and both labels of y at the edge (y; y0) are 3 by the rule for spe
ial verti
es. Therefore,the labels of x0 and y0 at FK are both 1, see Figure 3, and all verti
es between x0 andy0 in K 00 also have label 1 at FK by the rule for the fa
e. This proves that using thelabels of H 00 leads to a 
onsistent labeling.It remains to 
onsider the 
ase where the two spe
ial verti
es a2 and a3 are sepa-rated by fa1; x; yg. Assume a3 2 H 00 and a2 2 K 00 vertex y has to play the role of themissing spe
ial vertex in both graphs, i.e., the role of a2 in H 00 and the role of a3 inK 00. Figure 19 shows some of the labels in the S
hnyder labelings of H 00 and K 00, wehave to prove that they 
an be pasted together to yield a S
hnyder labeling of G.

H 00 K 00xa1 a1
a2y

xa3 y
2

2
2 3 311

23 11 1 1
2 32 33Figure 19: Separating triple, se
ond 
ase.The edge a1; y was not present in G, so we remove it from both graphs and identifythe two 
opies of a1, x and y. Sin
e the edges (a1; x) and (x; y) from the two graphsare also identi�ed the labels in the triangles formed by a1; x; y in H 00 and K 00 vanish.12



However, if we assign label 1 to the outer angle at y the rule of verti
es is satis�ed atx and y. If the edge (x; y) is in G then the rules of all the other verti
es and fa
es 
anbe veri�ed in the labelings of H 00 and K 00. If (x; y) has to be removed assign label 1 tothe angle at x and one of the labels 2 or 3 to the angle at y. Again all the 
onditionsfor a S
hnyder labeling are easily veri�ed.4 Order Dimension of 3-PolytopesLet G = (V;E) be a �nite simple graph. A nonempty family R of linear orders on thevertex set V of graph G is 
alled a realizer of G provided(�) For every edge e 2 E and every vertex x 2 V n e, there is some L 2 R so thatx > y in L for every y 2 e.The dimension of G, denoted dim(G), is then de�ned as the least positive integer t forwhi
h G has a realizer of 
ardinality t. An intuitive formulation for 
ondition (�) is asfollows: For every vertex v and edge e with v 62 e the vertex has to get over the edgein at least one of the orders of a realizer.The de�nition we gave is not the traditional de�nition for the dimension of graphs.In most older paper the dimension of graphs is understood to be the dimension of thein
iden
e order. We brie
y explain the 
onne
tions: With a �nite graph G = (V;E),asso
iate a height two order PG whose ground set is V [ E. The order relation isde�ned by setting x < e in PG if x 2 V , e 2 E and x 2 e. PG is the in
iden
e order ofG. When P = (X;<) is an order, and R = fL1; L2; : : : ; Ltg is a family of linear orderson X , we 
all R a realizer of P if P = \R, i.e., x < y in P if and only if x < y inLi for all i = 1; 2; : : : ; t. The dimension of an order is then de�ned as the minimum
ardinality of a realizer.G is a graph with minimum degree at least 2, then the dimension of G and thedimension of its in
iden
e order agree. The order theoreti
 fa
ts that sit in the ba
k-ground of the phenomenon are:� All 
riti
al pairs of in
iden
e orders of graphs with minimum degree at lest 2 aremin-max pairs.� If all 
riti
al pairs of an order are min-max pairs then its interval dimension equalsits order dimension.� The dimension of a graph is just the interval dimension of its in
iden
e order.For additional information on this ba
kground we suggest looking at Trotter's mono-graph [12℄.If G is a graph 
ontaining a 
y
le then dim(G) � 3. It is also easy to 
onstru
ta realizer 
onsisting of 3 linear orders for the 
y
le Cn, n � 3. The dimension ofthe 
omplete graph K5 is 4, but the removal of any edge redu
es the dimension to 3.Similarly, the dimension of the 
omplete bipartite graphK3;3 is 4 and again the removalof any edge redu
es the dimension to 3. These examples motivate the now 
lassi
,theorem of S
hnyder.Theorem 4. A graph G is planar if and only if its dimension is at most 3.Proof. The easier part of the theorem is to show that dim(G) � 3 implies that G isplanar. The proof of this impli
ation is a
tually due to Babai and Du�us, the argument
an be found in [12℄ and [13℄.We show that every planar graphG admits a realizer fL1; L2; L3g. By monotoni
itywe may assume that G is a maximal planar graph, i.e., a triangulation. The S
hnyder13



labeling of G indu
es three trees. Sin
e ea
h of the trees has n�1 edges and the graphhas 3n� 6 edges the only bidire
ted edges are the three edges of the exterior triangle.Therefore, Ri(u) � Ri(v) whenever u 2 Ri(v). For i = 1; 2; 3 let the in
lusion order onthe i{regions indu
e an order Qi on the verti
es, i.e., u < v in Qi i� Ri(u) � Ri(v).For any edge (u; v) and vertex w 6= u; v the edge is in one of the regions Ri(w) of w,hen
e, u < w and v < w in Qi. This shows that any 
hoi
e of three linear extensionsLi of Qi, i = 1; 2; 3, will produ
e a realizer for G.In 
omplete analogy to the de�nition of the dimension of a graph the dimension ofa hypergraph 
an be de�ned. A parti
ularly interesting instan
e is related to polytopesand hen
e, by Steinitz's theorem also to planar graphs.Let P be a polytope with vertex set V(P ) and fa
ets F(P ). Given a subset G ofF(P ) a realizer for (P;G) is a nonempty family R of linear orders on V(P ) provided(��) For every fa
et F 2 G and every vertex x 2 V(P ) n V(F ), there is some L 2 R sothat x > y in L for every y 2 V(F ).The dimension of (P;G), denoted dim(P;G), is then de�ned as the least positive inte-ger t for whi
h (P;G) has a realizer of 
ardinality t. In the 
ase G = F(P ) we simplywrite dim(P ) and 
all this the dimension of the polytope P . Traditionally people wouldbe interested in the order dimension of the fa
e latti
e L(P ) of a polytope P . However,it is not hard to see that all 
riti
al pairs of L(P ) are min-max pairs, so that by theabove remarks the two 
on
epts of dimension 
oin
ide.The next theorem is a lower bound whi
h was proved by Reuter [7℄ in the 
ontextof Ferrer's dimension.Theorem 5. If P is a d-polytope with d � 2, i.e., a polytope whose aÆne hull is ddimensional, then dim(P ) � d+ 1.Proof. The proof is by indu
tion on d. If d = 2 then the verti
es and fa
ets of P havethe stru
ture of the 
y
le Cn with n = jV(P )j. In that 
ase dim(P ) � 3.Let P be a d-polytope embedded in Rd for some d > 2 with realizer L1; L2; : : : ; Lt.Let v be the highest vertex in Lt and 
onsider a hyperplane H whi
h separates v fromall the other verti
es of P . The interse
tion P \ H is a (d � 1)-polytope P=v, the so
alled vertex �gure of P at v. The (k � 1)-dimensional fa
es of P=v are in bije
tionwith the k-dimensional fa
es of P that 
ontain v. In parti
ular an edge (u; v) of P
orresponds to a vertex u0 = (u; v) \ H of P=v and for every fa
et fu01; : : : ; u0rg ofP=v there is a fa
et fv; u1; : : : ; ur; w1; : : : ; wsg of P . Let Fv be the set of fa
ets of P
ontaining v, the bije
tion shows that dim(P=v) � dim(P;Fv). Sin
e P=v is (d � 1)-dimensional dim(P=v) � d by indu
tion. Now let F 2 Fv and w 62 V(F ), by the 
hoi
eof v the order Lt 
an not bring w over F , therefore, L1; L2; : : : ; Lt�1 is a realizer for(P;Fv), i.e., dim(P;Fv) � t� 1. Combining the inequalities we obtain t � d+ 1.It is known that for d � 4 there is no bound depending only on d for the dimensionof d-polytopes. For d = 3, however, the situation is di�erent. By Steinitz's theorempolytopes and 3-
onne
ted plane graphs are essentially the same. Making use of thema
hinery of S
hnyder labelings we formulate and prove a slightly stronger version ofTheorem 1.Theorem 6. For every 3-polytope P the dimension satis�es dim(P ) = 4. Moreover,if I 2 F(P ) and FI = F(P ) n fIg then dim(P;FI ) = 3.Proof. Let R be a realizer of (P;FI ). To obtain a realizer for P we only have to add asingle linear order with v < w for all v 2 V(I) and w 2 V(P ) n V(I) to R. Combinedwith the lower bound from Theorem 5 this yields 4 � dim(P ) � dim(P;FI) + 1. Toprove the theorem it remains to show dim(P;FI ) � 3.14



Choose a planar embedding of the graph G of P with I as the exterior fa
e, spe
ifythree verti
es a1; a2; a3 in 
lo
kwise order around I and 
onsider a S
hnyder labeling ofG. As in the proof of Theorem 4 we will use linear extensions Li of the in
lusion orderQi of regions i = 1; 2; 3, i.e., u < v in Qi i� Ri(u) � Ri(v). To bring every vertex yover every fa
e F 2 FI with y 62 F , however, more 
are in the 
hoi
e of Li is required.De�ne Q�i su
h that u < v in Q�i if either(a) u < v in Qi or(b) u jj v in Qi and u < v in Qi+1.Lemma 8. Q�i is a
y
li
 for i = 1; 2; 3.Proof. Call (u; v) a type-a pair if u < v in Q�i by part (a) of the de�nition and 
all it atype-b pair if u < v in Q�i by (b). A 
y
le in Q�i has to 
ontain both a type-a pair anda type-b pair. We 
laim that if u < v is a type-a pair and v < w is a type-b pair thenu < w is also in Q�i . Sin
e u < v and v < u 
an not be both in Q�i the 
laim yields a
ontradi
tion to the assumption that Q�i 
ontains a 
y
le.Claim. If u < v is a type-a pair and v < w is a type-b pair then u < w is also in Q�i .By symmetry we may assume that i = 1. If R1(v) = R1(w) then with (u; v) the pair(u;w) also is type-a. Therefore, we assume R1(v) 6� R1(w), sin
e (v; w) is type-b thisimplies w 62 R1(v) and w 62 R2(v). Therefore, w 2 Ro3(v) and R3(w) � R3(v). Sin
eu 2 R1(v) we either �nd u in R1(w) or in R2(w). If u in R1(w) then R1(u) � R1(w) butequality is impossible sin
e w 62 R1(u), i.e., (u;w) is type-a pair in this 
ase. Otherwiseu 2 Ro2(w), i.e., R2(u) � R2(w), and the i{regions of u and w are in
omparable. Thisshows that (u;w) is a type-b pair in this 
ase.Let Li be a linear extension of Q�i , the 
laim is that L1; L2; L3 is a realizer. Considera pair (F; y), where F is a fa
e and y is some vertex not on F . Fa
e F is 
ontained inone of the regions of y, by symmetry we assume F 2 R1(y). Hen
e, R1(x) � R1(y) forall x 2 F . If R1(x) � R1(y) for all x 2 F then F is below y in Q1 and in L1.Assume that there is an x 2 F with R1(x) = R1(y). It is impossible that F 
ontainsverti
es x and x0 with R1(x) = R1(y) = R1(x0) and x 2 P3(y) while x0 2 P2(y). Thiswould lead to the pla
ement of y on some edge bounding F in the drawing �(G),
ontradi
ting Lemma 5.If for all x 2 F either R1(x) � R1(y) or R1(x) = R1(y) and x 2 P3(y), thenR2(x) � R2(y) for all x 2 F with R1(x) = R1(y). By the de�nition of Q�1 this showsthat F is below y in L1.Finally, 
onsider the situation that for all x 2 F either R1(x) � R1(y) or R1(x) =R1(y) and x 2 P2(y). We 
laim that F is below y in L3 in this 
ase. All x in F withR1(x) = R1(y) have R3(x) � R3(y), hen
e, they are below y in L3. The other verti
esx of F have R1(x) � R1(y). The next lemma shows that xjjy in Q3 holds for all theseverti
es whi
h implies that they also also go below y in L3.Lemma 9. If R1(x) = R1(y), x 2 P3(y) and F is a fa
e in R1(x) with x 2 F andy 62 F then R3(y) 6� R3(v) for all v 2 F .Proof. Consider the triangle r en
losing F in the 
onvex drawing �(G) (Lemma 7).Vertex y is pla
ed on the horizontal line `1 bounding r and y is left of all verti
es ofF on `1, Figure 20 shows the situation.Let x0 be the leftmost vertex of F on `1 and u be the uppermost vertex of F on`3. Let x1 be the other neighbor of x0 at F . Even so x1 need not be on `1 the edge(x0; x1) is the outgoing edge of x0 in label 2, 
.f. Figure 11. Also (x0; y) is the outgoingedge of x0 in label 3. The edge orientations at vertex x0 imply that (u; x0) is orientedfrom u to x0 in label 1. This shows that x0 is on P1(v) for all v 2 F \ `3. The paths15



u Fy x0 `2 `1
`3Figure 20:P1(v) for v 2 F \ `2 
learly 
ross `1 to the right of x0. This shows that y 62 R3(v) forall v 2 F , hen
e R3(y) 6� R3(v).A
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