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Abstract. A partial cube is a graph having an isometric embedding
in a hypercube. Partial cubes are characterized by a natural equivalence
relation on the edges, whose classes are called zones. The number of zones
determines the minimal dimension of a hypercube in which the graph
can be embedded. We consider the problem of covering the vertices of
a partial cube with the minimum number of zones. The problem admits
several special cases, among which are the problem of covering the cells
of a line arrangement with a minimum number of lines, and the problem
of finding a minimum-size fibre in a bipartite poset. For several such
special cases, we give upper and lower bounds on the minimum size of
a covering by zones. We also consider the computational complexity of
those problems, and establish some hardness results.

1 Introduction

As an introduction and motivation to the problems we consider, let us look at
two puzzles.

Fig. 1. A partial cube with vertex la-
bels representing an isometric embed-
ding in Q7 and a highlighted zone.

Hitting a consecutive pair. Given a set
of n elements, how many pairs of them
must be chosen so that every permutation
of the n elements has two consecutive ele-
ments forming a chosen pair?

Guarding cells of a line arrangement.
Given an arrangement of n straight lines
in the plane, how many lines must be cho-
sen so that every cell of the arrangement is
bounded by at least one of the chosen line?

While different, the two problems can be
cast as special cases of a general problem
involving partial cubes. The n-dimensional
hypercube Qn is the graph with the set
{0, 1}n of binary words of length n as ver-
tex set, and an edge between every pair of
vertices that differ on exactly one bit. A partial cube G of dimension n is a



subgraph of the n-dimensional hypercube with the property that the distance
between two vertices in G is equal to their Hamming distance, i.e., their distance
in Qn. In general, a graph G is said to have an isometric embedding in another
graph H whenever G is a subgraph of H and the distance between any two
vertices in G is equal to their distance in H. Hence partial cubes are the graphs
admitting an isometric embedding in Qn, for some n. The edges of a partial
cube can be partitioned into at most n equivalence classes called zones, each
corresponding to one of the n directions of the edges of Qn.

We consider the following problem:

Partial Cube Covering: Given a partial cube, find a smallest subset S of its
zones such that every vertex is incident to an edge of one of the zones in S.

If we refer to the labeling of the vertices by words in {0, 1}n, the problem
amounts to finding a smallest subset I of [n] such that for every vertex v of the
input partial cube, there is at least one i ∈ I such that flipping bit i of the word
of v yields another vertex.

2 Classes of Partial Cubes

The reader is referred to the books of Ovchinnikov [16] and Imrich and
Klavžar [14] for known results on partial cubes. Let us also mention that some
other structures previously defined in the literature are essentially equivalent to
partial cubes. Among them are well-graded families of sets defined by Doignon
and Falmagne [7], and Media, defined by Eppstein, Falmagne, and Ovchin-
nikov [10].

We are interested in giving bounds on the minimum number of zones required
to cover the vertices of a partial cube, but also in the computational complexity
of the problem of finding such a minimum cover. Regarding bounds, it would
have been nice to have a general nontrivial result holding for every partial cube.
Unfortunately, only trivial bounds hold in general.

In one extreme case, the partial cube G = (V,E) is a star, consisting of one
central vertex connected to |V | − 1 other vertices of degree one. This is indeed
a partial cube in dimension n = |V | − 1, every zone of which consists of a single
edge. Since there are n vertices of degree one, all n zones must be chosen to
cover all vertices. In the other extreme case, the partial cube is such that there
exists a single zone covering all vertices. This lower bound is attained by the
hypercube Qn.

Table 1 gives a summary of our results for the various families of partial
cubes that we considered. For each family, we consider upper and lower bounds
and complexity results. We now briefly describe the various families we studied.
The proofs of the new results are in the following sections.

2.1 Hyperplane Arrangements

The dual graph of a simple arrangement of n hyperplanes in Rd is a partial cube
of dimension n. The partial cube covering problem becomes the following: given



a simple hyperplane arrangement, find a smallest subset S of the hyperplanes
such that every cell of the arrangement is bounded by at least one hyperplane
in S.

Fig. 2. An arrangement of 4 lines su-
perimposed with its dual.

The case of line arrangements was first
considered in [3]. In fact it was this prob-
lem that motivated us to investigate the
generalization to partial cubes. The best
known lower and upper bounds for line ar-
rangements on |S| are of order n/6 and
n − O(

√
n log n) (see [1]). The complexity

status of the optimization problem is un-
known.

Instead of lines and hyperplanes it is
also possible to consider Euclidean or spherical arrangements of pseudo-lines
and pseudo-hyperplanes, their duals are still partial cubes. Actually, all the cited
results apply to the case of arrangements of pseudo-lines.

Spherical arrangements of pseudo-hyperplanes are equivalent to oriented ma-
troids, this is the Topological Representation Theorem of Folkman and Lawrence.
The pseudo-hyperplanes correspond to the elements of the oriented matroid and
the cells of the arrangement correspond to the topes of the oriented matroid.
Hence our covering problem asks for a minimum size set C of elements such that
for every tope T there is an element c ∈ C such that T ⊕ c is another tope. For
more on oriented matroids we refer to [2].

2.2 Acyclic Orientations

Fig. 3. Flip graph of acyclic orienta-
tions of the 4-cycle.

From a graph G = (V,E), we can define a
partial cube H in which every vertex is an
acyclic orientation of G, and two orienta-
tions are adjacent whenever they differ by
a single edge reversal (flip). This partial
cube has dimension equal to the number
of edges of G. It is also the dual graph of
the arrangement of the |E| hyperplanes of
equation xi = xj for ij ∈ E in R|V |. Every
cell of this arrangement corresponds to an
acyclic orientation, and adjacent cells are
exactly those that differ by a single edge.
This observation, in particular, shows that
H is connected. The graph H and the no-
tion of edge flippability have been studied
by Fukuda et al. [11] and more recently by Cordovil and Forge [6].

The partial cube covering problem now becomes the following: given a graph
G = (V,E), find a smallest subset S ⊆ E such that for every acyclic orientation
of G, there exists e ∈ S such that flipping the orientation of e does not create a
cycle.



2.3 Median Graphs

A median graph is an undirected graph in which every three vertices x, y, and
z have a unique median, i.e., a vertex µ(x, y, z) that belongs to shortest paths
between each pair of x, y, and z. Median graphs form structured subclass of
partial cubes that has been studied extensively, see [5] and references therein.
Since the star and the hypercube are median graph there are no non-trivial upper
or lower bounds for the zone cover problem on this class. We use a construction
of median graphs to prove hardness of the zone cover problem.

2.4 Distributive Lattices
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Fig. 4. A poset (left) and its lattice of
down-sets (right).

Cover graphs of distributive lattices are
partial cubes. From Birkhoff’s represen-
tation theorem (a.k.a. Fundamental The-
orem of Finite Distributive Lattices) we
know that there is a poset P such that
the vertices of the partial cube are the
downsets of P , the zones of the partial cube
in turn correspond to the elements of P .

The problem becomes: given a poset P ,
find a smallest subset S of its elements such
that for every downset D of P , there exists
v ∈ S such that either D ∪ {v} or D \ {v}
is a downset, distinct from D.

2.5 Trees

Trees with n edges are partial cubes of dimension exactly n. Since every zone
contains exactly one edge, the partial cube covering problem on trees boils down
to the edge cover problem on trees. There are instances attaining the lower and
upper bounds of n/2 and n−1, moreover, there is a simple dynamic programming
algorithm that computes an optimal cover in linear time.

3 Line Arrangements

We first give a lower bound on the size of a guarding set for an arrangement of
lines.

Theorem 1. The minimum number of lines needed to guard the cells of any
arrangement of n lines is n− o(n).

Proof. The proof is a direct consequence of known results on the following prob-
lem from Erdős: given a set of points in the plane with no four points on a line,
find the largest subset in general position, that is, with no three points on a line.
Let α(n) be the minimum size of such a set over all arrangements of n points.



Partial Cube Lower
bound

Upper
bound

Complexity

Arrangements of n lines
in R2

n− o(n)
(Thm. 1)

n−Ω(
√
n logn)

[1]
–

Arrangements of n
hyperplanes in Rd – n−Ω(n1/d)

(Thm. 2)

–

Acyclic orientations
–

Minimum
edge cut
(Thm. 4)

Recognition is
coNP-complete, even for
complete graphs (Thm. 3)

Median graphs 1 n
NP-complete (Cor. 2),
APX-hard (Cor. 3)

Distributive lattices with
representative poset of n
elements

–
2n/3

(Cor. 4)

Recognition is
coNP-complete (Cor. 5)
ΣP

2 -complete (Cor. 6)

Trees with n edges n/2 n− 1 P (min edge cover)

Table 1. Worst-case bounds and complexities for the special cases of the partial cube
covering problem. When used, n denotes the dimension of the partial cube.

Füredi observed [12] that α(n) = o(n) follows from the density version of the
Hales-Jewett theorem [13]. But this directly proves that we need at least n−o(n)
lines to guard all cells of an arrangement. The reduction is the one observed by
Ackerman et al. [1]: consider the line arrangement that is dual to the point set,
and slightly perturb it so that each triple of concurrent lines forms a cell of size
three. Now the complement of any guarding set is in general position in the
primal point set. ut

We now show that for arrangements of hyperplanes in Rd, with d = O(1),
there always exists a guarding set of size at most n−Ω(n1/d). This generalizes
a result for d = 2 obtained in [3].

Theorem 2. In every arrangement of hyperplanes in general position in Rd

(with d = O(1)), there exists a subset of the hyperplanes of size at most n −
Ω(n1/d) such that every cell is bounded by at least one hyperplane in the subset.

Proof. We will prove that every such arrangement has an independent set of
size Ω(n1/d), where an independent set is defined as the complement of a guard-
ing set, that is, a subset of the hyperplanes such that no cell is bounded by
hyperplanes of the subset only.

Let H be a set of n hyperplanes, and consider an arbitrary, inclusionwise
maximal independent set I. For each hyperplane h ∈ H \ I, there must be a
cell ch of the arrangement that is bounded by a set of hyperplanes C ∪{h} with
C ⊆ I, since otherwise we could add h to I, and I would not be maximal. If ch
has size at least d+ 1, there must be a vertex of the arrangement induced by I
that is also a vertex of ch. We charge h to this vertex. Note that each vertex can
only be charged 2d = O(1) times. If ch has size d, we charge h to the remaining



(d− 1)-tuple of hyperplanes of I bounding ch. This tuple can also be charged at
most O(1) times. Therefore

|H \ I| = n− |I| ≤ 2d ·O(|I|d) +O(|I|d−1) (1)

|I| = Ω(n1/d). (2)

ut

4 Acyclic Orientations

Given a graph G = (V,E) we wish to find a subset S ⊆ E such that for every
acyclic orientation of G, there exists a flippable edge e ∈ S, that is, an edge e ∈ S
such that changing the orientation of e does not create any cycle. Let us call
such a set a guarding set for G. Note that an oriented edge e = uv in an acyclic
orientation is flippable if and only if it is not transitive, that is, if and only if uv
is the only oriented path from u to v.

4.1 Complexity

Theorem 3. Given a graph G = (V,E) and a subset S ⊆ E of its edges, the
problem of deciding whether S is a guarding set is coNP-complete, even if G is
a complete graph.

Proof. The set S is not a guarding set if and only if there exists an acyclic
orientation of G in which all edges e ∈ S are transitive.

Consider a simple graph H on the vertex set V , and define G as the complete
graph on V , and S as the set of non-edges of H. We claim that S is a guarding
set for G if and only if H does not have a Hamilton path. Since deciding the
existence of a Hamilton path is NP-complete, this proves the result.

To prove the claim, first suppose that H has a Hamilton path, and consider
the acyclic orientation of G that corresponds to the order of the vertices in
the path. Then by definition, no edge of S is in the path, hence all of them
are transitive, and S is not a guarding set. Conversely, suppose that S is not
guarding. Then there exists an acyclic orientation of G in which all edges of S
are transitive. The corresponding ordering of the vertices in V yields a Hamilton
path in H. ut

4.2 Special cases and an upper bound

Lemma 1. The minimum size of a guarding set in a complete graph on n ver-
tices is n− 1.

Proof. First note that there always exists a guarding set of size n−1 that consists
of all edges incident to one vertex.

Now we need to show that any other edge subset of smaller size is not a
guarding set. This amounts to stating that every graph with at least

(
n
2

)
−(n−2)



edges has a Hamilton path. To see this, proceed by induction on n. Suppose this
holds for graphs with less than n vertices. Consider a set S of at most n − 2
edges of the complete graph. Let u, v be two vertices with uv ∈ S. One of the
two vertices, say v, is incident to at most b(n − 2)/2c edges of S. Consider a
Hamilton path on the n− 1 vertices 6= v, which exists by induction hypothesis.
Then vertex v must have one or two incident edges that do not belong to S and
connect v to the first, or the last, or two consecutive vertices of this path. Hence
we can integrate v in the Hamilton path. ut

Since acyclic orientations of the complete graph Kn correspond to the per-
mutations of Sn, this is in fact the solution to the puzzle “hitting a consecutive
pair” in the introduction. The dual graph of the arrangements of hyperplanes
corresponding to the complete graph is known as the permutohedron. Hence the
above result can also be stated in the following form.

Corollary 1. The minimum size of a set of zones covering the vertices of the
n-dimensional permutohedron is n− 1.

We now give a simple, polynomial-time computable upper bound on the size
of a guarding set. A set C ⊆ E is an edge cut whenever the graph (V,E \ C) is
not connected.

Theorem 4. Every edge cut of G is a guarding set of G.

Proof. Consider an edge cut C ⊆ E and an acyclic orientation AG of G. This
acyclic orientation can be used to define a partial order on V . Let us consider a
total ordering of V that extends this partial order, and pick an edge e = uv ∈ C
that minimizes the rank difference between u and v. We claim that e is flippable.
Suppose for the sake of contradiction that e is not flippable. Then e must be
transitive and there exists a directed path P in AG between u and v that does
not use e. Since C is a cut, u and v belong to distinct connected components of
(V,E \C), and P must use another edge e′ ∈ C. By definition, the endpoints of
e′ have a rank difference that is smaller than that of u and v, contradicting the
choice of e. ut

An even shorter proof of the above can be obtained by reusing the following
observation from Cordovil and Forge [6]: for every acyclic orientation of G, the
set of flippable edges is a spanning set of edges. Therefore, every such set must
intersect every edge cut.

While guarding sets are hard to recognize, even for complete graphs, we show
that a minimum-size guarding set can be found in polynomial time whenever the
input graph is chordal. In that case, the upper bound given by the minimum
edge cut is tight, and the result generalizes Lemma 1.

Theorem 5. The minimum size of a guarding set in a chordal graph is the size
of a minimum edge cut.



Proof. We need to show that whenever a set S of edges of a chordal graph G
has size strictly less than the edge connectivity of G, there exists an acyclic
orientation of G in which all edges of S are transitive. Let us denote by k the
edge connectivity of G, and n its number of vertices.

We proceed by induction. The base case consists of a complete graph on k+1
vertices. From Lemma 1, the minimum size of a guarding set is k. Now suppose
the statement holds for every chordal graph with n− 1 vertices, and that there
exists a k edge connected chordal graph G on n vertices with a guarding set S of
size k− 1. Since G is chordal, it has at least two nonadjacent simplicial vertices
u and v. The degree of both u and v is at least k. Hence one of them, say v,
is incident to at most b(k − 1)/2c ≤ b(d(v) − 1)/2c edges of S. Now remove v
and consider, using the induction hypothesis, a suitable acyclic orientation of
the remaining graph. This orientation induces a total order, i.e., a path p with
d(v) vertices, on the neighbors N(v) of v. Then vertex v must have one or two
incident edges that do not belong to S and connect v to the first, or the last,
or two consecutive vertices of path p. Hence we can integrate v in the path such
that all the edges of S that are incident to v are transitive. This yields a suitable
acyclic orientation for G and completes the induction step. ut

When the graph is not chordal, it may happen that the minimum size of a
guarding set is arbitrarily small compared to the edge connectivity. We can in
fact construct a large family of such examples.

Theorem 6. For every natural number t ≥ 2 and odd natural number g such
that 3 ≤ g ≤ t, there exists a graph G with edge connectivity t and a guarding
set of size g.

Fig. 5. A graph G with edge connec-
tivity 6 and a guarding set of size 3.

Proof. The graph G is constructed by con-
sidering a wheel with g + 1 vertices and
center c, and replacing every edge incident
to the center c by a copy of the complete
graph Kt−1 such that each vertex of the
complete graph is connected to both end-
points of the original wheel edge. Figure 5
shows an example. Let us call Cg the cycle
induced by the non-center vertices.

Let us first look at the edge connectiv-
ity of G. Vertices belonging to one of the
Kt−1 have t incident edges. On the other
hand we easily construct t edge-disjoint paths between every pair of vertices.
Hence, the edge connectivity of G equals t.

We now show that the set of vertices of Cg is a guarding set.
Suppose the opposite: there exists an acyclic orientation for which no edge

of the cycle is flippable, hence all of them are transitive. Since Cg is odd, there
must exist two consecutive edges of Cg with the same orientation, say uv and
vw, with uv oriented from u to v, and vw from v to w.



The only way to make vw transitive is to construct an oriented path from
v to w going through the center c. Hence there must exist an oriented path of
the form vPc, where P is a path in the complete graph Kt−1 attached to v. To
make uv transitive we need a directed path cP ′v. The oriented cycle vPcP ′v is in
contradicion to the acyclicity. Therefore, some edge of Cg is always flippable. ut

5 Median Graphs

G

x

G´

Fig. 6. A graphG and theG′ obtained
by the construction.

A median graph is an undirected graph in
which every three vertices x, y, and z have
a unique median, i.e., a vertex µ(x, y, z)
that belongs to shortest paths between
each pair of x, y, and z. Imrich, Klavžar,
and Mulder [15] proposed the following
construction of median graphs: Start with
any triangle-free graph G = (V,E). First
add an apex vertex x adjacent to all ver-
tices of V , then subdivide every edge of
E once, and let G′ be the resulting graph.
Figure 6 illustrates the construction.

We only need that G′ is a partial cube.
This can be shown with the explicit con-
struction of an isometric embedding into
Qn. Let V = {v1, . . . , vn} and map these vertices bijectively to the standard
basis, i.e., vi → ei. Apex x is mapped to 0 and the subdivision vertex wij of
an edge vivj is mapped to ei + ej . The embedding shows that the zones are
in one-to-one correspondence with the vertices of G, where the zone of vi con-
sists of the edge xvi together with all edges wijvj . Hence, a zone cover of G′

corresponds to a subset of V (G). Let us call we the vertex of G′ subdividing
the edge e ∈ E(G). The construction of the embedding into Qn shows that the
transformation G → G′ yields a partial cube even if G contains triangles, only
membership in the smaller class of median graphs is lost in this case.

Lemma 2. If G has no isolated vertices, then the minimum size of a zone cover
of G′ equals the minimum size of a minimum vertex cover of G.

Proof. We first show that a vertex cover S of G corresponds to a zone cover of
G′ of the same size. For a vertex wij at least one of vi and vj is in S, hence wij

is covered. If vi belongs to S then it is covered by its own zone. Otherwise there
is an edge vivj and necessarily vj ∈ S, therefore in this case vi is covered by the
zone of vj . The apex x is covered by every zone.

The other direction is straightforward. A zone cover of G′ must in particular
cover all subdivision vertices we ∈ V (G′). Hence the zone corresponding to at
least one of the endpoint of e must be selected, yielding a vertex cover in G. ut



Given a connected triangle-free graph G, one can construct the median graph
G′ in polynomial time. Since deciding whether G has a vertex cover of size at
most k is NP-complete, even on triangle-free graphs, we obtain:

Corollary 2. Given a median graph G′ and an integer k, deciding whether there
exists a zone cover of size at most k of G′ is NP-complete.

The minimum vertex cover problem is hard to approximate, even on triangle-
free graphs. This directly yields the following corollary.

Corollary 3. Given a median graph G′, finding a minimum size zone cover of
G′ is APX-hard.

6 Distributive Lattices

In this special case of the partial cube covering problem, we are given a poset P ,
and we wish to find a subset S of its elements such that the following holds: for
every downset D of P , there exists x ∈ S such that either D ∪ {x} or D \ {x} is
a downset, distinct from D. Given a poset P , we refer to a suitable set S as a
guarding set for P , and let g(P ) be the size of a smallest guarding set. Figure 4
gives an example of poset and the corresponding partial cube.

6.1 Relation to poset fibres

We first establish a connection between guarding sets and fibres. A fibre of a
poset is a subset of its elements that meets every nontrivial maximal antichain.
Let f(P ) be the size of a smallest fibre of P .

Lemma 3. Every fibre is a guarding set. In particular, g(P ) ≤ f(P ).

Proof. Consider a poset P = (V,≤) and one of its downset D ⊆ V . Let F :=
V \D, A := max(D), and B := min(F ). By definition, a guarding set is a hitting
set for the collection of subsets A ∪B constructed in this way.

Let us now consider the subset A ∪ B′ ⊆ A ∪ B, where B′ := {b ∈ B :
b is incomparable to a,∀a ∈ A}. This set is easily shown to be a maximal an-
tichain. Hence, it must be hit by any fibre. ut

Duffus, Kierstead, and Trotter [8] have shown that every poset on n elements
has a fibre of size at most 2n/3. This directly yields the following.

Corollary 4. For every n-element poset P , g(P ) ≤ 2n/3.

We now consider a special case for which the notions of guarding set and
fibre coincide. A poset is bipartite if P = min(P )∪max(P ), i.e., if the height of
P is at most 2.

Lemma 4. For a bipartite poset P , a set S is a guarding set for P if and only
if it is a fibre of P .



Proof. We know from Lemma 3 that every fibre is a guarding set. The other
direction is as follows.

Consider a guarding set S and let A be any maximal antichain of P . Let
T := A∩max(P ), and let D be the downset generated by T . As a downset D is
guarded, hence either an element of T is hit by S, or an element of min(P \D)
is hit, but since A is maximal A = T ∪min(P \D), hence A is hit. Therefore, S
is a fibre. ut

6.2 Complexity

Lemma 4 yields two interesting corollaries on the complexity of recognizing and
finding guarding sets.

Corollary 5. Given a poset P and a subset S of its elements, the problem of
deciding whether S is a guarding set is coNP-complete. This holds even if P is
bipartite.

Proof. Recognition of fibres in bipartite posets has been proved coNP-complete
by Duffus et al. [8]. From Lemma 4, this is the same problem as recognizing
guarding sets. ut

Corollary 6. Given a poset P and an integer k, the problem of deciding whether
there exists a guarding set of size at most k is ΣP

2 -complete. This holds even if
P is bipartite.

Proof. Again, this is a consequence of Lemma 4 and a recent result of Cardinal
and Joret [4] showing that the corresponding problem for fibres in bipartite
posets is ΣP

2 -complete. ut

Duffus et al. [9] mention that it is possible to construct posets on 15n + 2
elements, every fibre of which must contain at least 8n+ 1 elements, which gives
a lower bound with a factor 8/15. The guarding sets for these examples do not
seem to require as many elements.

Open Problems

We left a number of problems open. For instance, we do not know the complexity
status of the problem of deciding whether there exists a guarding set of edges of
size at most k in a given graph. A natural candidate class would be ΣP

2 . For the
same problem, we do not have any nontrivial lower bound on the minimum size of
a guarding set. It would also be interesting to give tighter lower and upper bounds
on the minimum size of a guarding set in a poset and in a line arrangement.
Finally, questions involving partial cubes derived from antimatroids, such as
elimination orderings in chordal graphs, are currently under investigation.
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