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Abstract. Schnyder characterized planar graphs in terms of order dimension. This seminal result

found several extensions. A particularly far reaching extension is the Brightwell-Trotter Theorem

about planar maps. It states that the order dimension of the incidence poset PM of vertices,

edges and faces of a planar map M has dimension at most 4. The original proof generalizes the

machinery of Schnyder-paths and Schnyder-regions. In this note we use a simple result about the

order dimension of grid intersection graphs to show a slightly stronger result: dim(split(PM)) � 4.

This may be the �rst result in the area that is obtained without using the tools introduced by

Schnyder.
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1 Introduction

In the context of this work we think of a planar map as a planar multigraph, loops and multiple edges

allowed, with a �xed plane embedding. With a planar map M we associate the incidence poset PM
of vertices, edges and faces of M, i.e., the inclusion order of vertices, edges and faces considered

as closed sets. Figure 1 shows a map and its incidence poset.
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Figure 1: A planar mapM and its incidence poset PM. Three edges have been highlighted to improve

readability.

The order dimension dim(P) of an order is the least t such that P is the intersection of t linear

extensions of P. A collection of linear extensions of P whose intersection is P is called a realizer

for P. Alternatively, dim(P) is the smallest dimension t such that P is a induced suborder of

(IRt ;�dom), where the dominance relation is de�ned by (x1; : : : ; xt) �dom (y1; : : : ; yt) i� xi � yi
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for all i = 1; ::; t. Trotter's book [34] is the standard reference for the dimension theory of partial

orders.

Theorem 1 (Brightwell and Trotter [10]) dim(PM) � 4 for every planar map M.

The split of an order P = (X;<) is de�ned as split(P) = (X 0 [X 00; <s) where X
0 and X 00 are two

copies of X and x 0 <s y
00 i� x � y . The split was de�ned by Kimble (c.f. [34]) who also proved

that for all orders P:

dim(P) � dim(split(P)) � dim(P) + 1:

Both inequalities are easily obtained by looking at critical pairs and alternating cycles, c.f. [34].

The main contribution of this note is a simple proof of the following:

Theorem 2 dim(split(PM)) � 4 for every planar map M.

The material is organized as follows: In the next section we discuss bipartite graphs in the context

of order dimension. There we also proof that grid intersection graphs have order dimension at most

four. In Section 3 we show that for a planar map M the bipartite comparability graph of split(PM)
admits a representation as grid intersection graph. This implies Theorem 2. In the last section we

collect some background information about dimension of orders and planarity and indicate further

directions of research.

2 Bipartite graphs and orders

Let G = (X; Y ;E) be a bipartite graph. With G we can associate an order QG of height two by

converting an edge fx; yg 2 E with x 2 X into a comparability x < y . Since G is bipartite there

are no transitive relations in QG. If we interchange the partition classes X and Y of G we obtain

the dual order of QG. Since the dimension of an order and its dual equal each other we can take

dim(QG) as a well de�ned notion of dimension for a bipartite graph. Indeed for this research it was

useful to think of bipartite graphs as orders of height 2 and conversely.

A grid intersection graph is a graph admitting an intersection representation with only vertical

and horizontal segments. In our context we require that vertical segments and horizontal segments

form two independent sets, so that grid intersection graphs are bipartite. This class of graphs is

also known as pure 2-DIR.

Proposition 1 If a bipartite graph G = (X; Y ;E) has a representation as grid intersection graph,

then dim(G) � 4, i.e., dim(QG) � 4.

Proof. Assume a grid intersection representation of G with elements of X being represented as

horizontal segments and the elements of Y as vertical segments such that no two endpoints of

di�erent segments share a coordinate.

In QG the set X is the set of minimal elements and Y is the set of maximal elements. De�ne

four linear extensions of QG corresponding to the four directions up, left, down, right (we can also

think of the geographic directions N, W, S, E). For each of the linear extensions we project all

segments orthogonally onto a ray pointing in the given direction. Then we trace the ray with the

projections and list the elements of X [ Y obeying the following rules: elements of X (minimals)

are taken as soon as the �rst point of the projection of their segment is met while elements of Y

(maximals) are taken when the last point of the projection of their segment is met, Figure 2 shows

an example. Comparable elements correspond to crossing segments. The rules ensure that if x < y

is a comparable pair, then independent of the direction x is taken before y , hence the total orders

corresponding to the directions are indeed linear extensions.

2



To show that LN , LW , LS, and LE form a realizer of QG, i.e, their intersection is QG we have to

show that a pair a; b of incomparable elements appear in either order in the linear extensions. Since

a and b are incomparable their segments are disjoint. Hence, there is a line separating them. In the

given setting where each of the segments is horizontal or vertical there is a horizontal or vertical

separating line `. If the separating line ` is vertical, then the order of a and b in LW and LE is

reversed. If ` is horizontal, then LN and LS have a and b in di�erent order.
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Figure 2: A grid intersection with bipartition classes X = fa; b; c; dg (minimals) and Y = fU; V;Wg

(maximals) with its 4-realizer LS, LE , LN , LW .

The applicability of the proposition is limited by the fact that recognizing grid intersection graphs

is NP-hard [26]. Still in some interesting cases a grid intersection may be available or constructible.

We will see such a case in the next section. The following corollary may also lead to applications of

the proposition. De�ne a cross matrix to be a 3� 3 matrix

� 1 �

1 0 1

� 1 �

, where the stars are place

holder for unrestricted entries. In [5] grid intersection graphs have been characterized as bipartite

graphs admitting an adjacency matrix that has no cross submatrix.

Corollary 1 If a bipartite graph G = (X; Y ;E) has an ordering on X and Y such that the bipartite

adjacency matrix AG that has no induced cross submatrix, then dim(G) � 4.

Another result from [5] that should be mentioned in our context is that the class of grid intersec-

tion graphs and the class of bipartite intersection graphs of axis-aligned rectangles (a.k.a. bipartite

graphs of boxicity 2) are the same. Indeed Proposition 1 was already known in the context of

boxicity: in [1] it was shown that dim(P ) � 2box(GP ), where GP is the comparability graph of P .

Proposition 1 has a natural generalization to intersection graphs of more general objects than

segments. Let S be a class of geometric objects in IRd we say that S is t-separable if there exist a

family H = fH1; : : : Htg of hyperplanes such that any two disjoint elements of S can be separated

by a translate of one of the hyperplanes from H.

Proposition 2 If a bipartite graph G = (X; Y ;E) has a representation as intersection graphs of

objects from a t-separable class, then dim(G) � 2t, i.e., dim(QG) � 2t.

The result is best possible as the standard example S2t of a 2t dimensional order admits an

intersection representation with axis aligned boxes in IRt .
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3 Planar maps and grid intersection graphs

In this section we show that starting from a planar map M we can construct a grid intersection

graph B such that the associated order QB equals the split of the incidence order PM of M, i.e.,

QB = split(PM). Proposition 3 is a weaker intermediate result. The proof of this proposition,

however, is very transparent and cleanly shows the key idea.

An angle of M is a triple (e1; v ; e2) where e1 and e2 are consecutive edges in the clockwise order

of edges around v , i.e., an adjacent pair in the rotation of v . Note that angles of M and of the dual

map M� are in bijection, indeed f is the face on the left side when leaving v along e2, i� (e�2 ; f ; e
�

1)

is an angle of M�. The angular map AM associated with M has vertices V [ F where V and F are

the vertices and faces of M respectively. The edges of AM correspond to incidences (v ; f ) at angles

of M, i.e., AM has as many edges connecting v and f as there are angles shared by the two. An

example of a map M with its angular map is shown in Figure 3.

The angular map AM of a planar map is a again a planar map and it is bipartite, indeed every

facial cycle has length four, i.e., AM is a plane quadrangulation. Although the drawing of M is �xed

there remains some choices for the drawings of AM and of the dual map M�. However if a drawing

of one of the two is �xed then there is an essentially unique consistent choice for the drawing of

the other. We want to use Theorem 3 to get a grid intersection representation of the angle graph,

however, the theorem only applies to simple graphs while AM may have multiple edges. Therefore,

we remove all but one instance of every multiedge of AM. This results in a reduced angular map.

Since AM is a planar map it makes a di�erence which of the instances of a multiedge is kept so

that the reduced angular map is not uniquely de�ned. Theorem 3 could directly be applied to the

reduced angular map, most proofs of the theorem, however, assume that the planar bipartite in

question is a quadrangulation. Therefore, we prefer to �rst augment the reduced angular map to a

quadrangulation A�

M
by adding some new vertices and edges that are incident to at least one new

vertex.

A�

M
AM

Figure 3: The planar map M from Fig. 1 with its angular map AM (left) and a quadrangular aug-

mentation A�

M
of a reduced angular map (right).

Theorem 3 Every planar bipartite map H admits a contact representation with interiorly disjoint

horizontal and vertical segments.

This was shown by Hartman et al. [25] and by de Fraysseix et al. [12]. A short inductive proof

can be found in [11]. A survey of di�erent proofs of the theorem is contained in [17].

Apply Theorem 3 to A�

M
. In the resulting contact representation enlarge all segments slightly

so that all contacts become intersections but without introducing additional intersections. From

Proposition 1 it follows that dim(A�

M
) � 4. From the de�nitions of AM and A�

M
it follows that if v

is a vertex and f a face of M then there is an edge (v ; f ) in A�

M
if and only if v and f are incident
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in M. This shows that the incidence order of vertices and faces of M is an induced suborder of QA�
M
.

The monotonicity of order dimension with respect to induced suborders implies:

Proposition 3 The order dimension of the incidence order of vertices and faces of a planar map is

at most four.

For the proof of Theorem 2 we have to work a little more. Recall that the order split(PM)
contains points v 0; v 00 for every vertex v , points e 0; e 00 for every edge e, and points f 0; f 00 for every

face f of M. The relations are x 0 < y 00 if and only if x � y when identifying x and y with their

geometric extent in M. The grid intersection graph constructed for the proof of Proposition 3 can

be regarded a representation for the suborder of split(PM) induced on V 0 [ F 00. A representation of

the suborder induced on V 0[V 00[F 0[F 00 is easily obtained by adding to each segment representing

an x 2 V 0 [ F 00 a short segment that intersects x and nothing else. Hence the challenge is to �nd

appropriate segments representing the elements of E0[E00. If e is an edge ofM that is neither a loop

nor a bridge, then e corresponds to a non-degenerate quadrangular face �e of AM, i.e., to a face

with four di�erent incident vertices. Assuming that the four edges of the face �e are not removed

when reducing AM to a simple graph, then we �nd a rectangle in the grid intersection representation

that corresponds to �e . Suppose that the horizontal segments bounding this rectangle correspond

to the vertices of e and the vertical segments to the faces of the dual edge e�, then we can introduce

segments representing e 0 and e 00 as a pair of crossing segments in the rectangle. The segment for e 0

is horizontal and intersects the vertical boundaries and the segment for e 00 is vertical and intersects

the horizontal boundaries of the rectangle. A special case is when the quadrangular face �e of AM
happens to be the outer face, however, in this case it is also quite obvious how to introduce segments

representing e 0 and e 00 as a pair of crossing segments in the unbounded face.

Suppose M is a planar map such that the angular map AM has no multiple edges, then AM has

a segment contact representation such that the rectangular faces of this representation (including

the outer face) are in bijection to the edges of M. From this segment contact representation we

obtain, with the above construction, a grid intersection representation of the comparability graph

of split(PM). For an example see Figure 4. We have thus obtained:

Proposition 4 If M is an at least 2-connected planar map, then dim(split(PM)) � 4.

M AM

Figure 4: A 2-connected planar map M, the angular map AM, a segment contact representation of

AM, and the grid intersection representation of split(PM).

Finally we construct a grid intersection representation for split(PM) for general planar maps M

that takes the previous proposition as a base case in an inductive construction.

Let M be a planar map such that AM has multiple edges. The reason for the multiple edges are

loops and cut vertices of M, so we have to deal with them. First we subdivide each loop ` with a

new vertex x` into a parallel pair `1, `2 of edges. Let M+ be the resulting map.

Fact S. split(PM) is an induced suborder of split(PM+).

For every loop ` of M delete the elements x 0

`
and x 00

`
as well as `02 and `002 from split(PM+). The

remaining elements `01 and `001 in split(PM+) take the role of `0 and `00 in split(PM). All the other
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elements and relations of split(PM) and split(PM+) are in obvious bijection. 4

Now consider a cut vertex v and break M+ at v into two maps M1 and M2 such that both retain

a copy of v . We assume that the outer face of M1 equals the outer face of M. By induction on the

number of vertices we can assume grid intersection representations of split(PM1
) and split(PM2

).

Moreover, if we follow the construction, the grid intersection representation ofM2 has the horizontal

segment sv corresponding to v and the vertical segment sf corresponding to the unbounded face.

The segments sv and sf have both endpoints in the outer region of the representation. Since v

and f2 also belong to M1 and are incident there, the grid intersection representation of M1 has a

corner where the segments of v and f2 meet. An appropriately scaled copy of the representation of

split(PM2
) �ts into this corner to make a representation of split(PM+). An example for the inductive

step is shown in Figure 5. This completes the proof of our main result, Theorem 2.

M+

M1

M2

Figure 5: Map M+ is split at a cut vertex into M1 and M2. The grid intersection representation

of M+ has a copy of the representation of M2 in a corner of the representation of M1.

4 Order dimension and planarity

In this �nal section we intend to give a brief survey on results connecting graph planarity and order

dimension. Probably the �rst contribution can be found in a paper of Babai and Du�us [3], they

prove that the order dimension of the incidence order of a non-planar graph is at least 4. In his

seminal paper [30] Schnyder added the following results:

1. The dimension of the incidence order of vertices and faces of a graph G is at most 3 ()

G is planar.

2. The dimension of the incidence order PG of vertices, edges, and faces of a planar triangu-

lation G is 4 and the dimension of the suborder obtained by deleting a single vertex or face

from PG is 3. (Note that this can be interpreted as a statement about the dimension of face

lattices of simplicial 3-polytopes.)

Due to the count by Google-Scholar Schnyder's paper [30] and the followup [31] where he em-

phasizes on compact drawings of planar graphs, together have 700 citations (October 2013). The

reason behind this huge number is that Schnyder introduced important auxiliary structures on pla-

nar triangulations. These structures, nowadays known as Schnyder woods (respectively Schnyder

realizers) and Schnyder angle labelings have found many applications. For illustration we cite some

applications to graph drawing models [27], [13], [6], [2] and to the enumeration and encoding of

planar maps [8], and [24].

Regarding the limits of possible extensions of Schnyder's results there are two observations:

6



� Every graph of chromatic number at most 4 has an incidence order of dimension at most 4.

This class includes graphs of arbitrarily high genus (Schnyder [30]).

� Skeleton graphs of simplicial 4-polytopes can contain arbitrarily large complete graphs (neigh-

borly polytopes). Since the dimension of complete graphs has the growth rate of log log(n)

(see e.g. [14]), there is no constant bound for the dimension of 4-polytopes.

Ossona de Mendez [29] shows a generalization of 2 to stacked polytopes of higher dimensions.

Brightwell and Trotter [9] and [10] proved strong extensions of Schnyder's results.

3. The dimension of the incidence order PG of vertices, edges, and faces of a 3-connected planar

graph G is 4 and the dimension of the suborder obtained by deleting a single vertex or face

from PG is 3, see [9]. (This can be interpreted as a statement about the dimension of face

lattices of 3-polytopes.)

4. The dimension of the incidence order PG of vertices, edges, and faces of a planar map M

with loops and multiple edges allowed is at most 4, [10].

The key to the proofs of Brightwell and Trotter are Schnyder like structures but the proofs are

rather long and technical. In [33], Problem 2, Trotter asked for a simple argument (in the sense

that it avoids the use of Schnyder's structures) showing that the dimension of the vertex-edge-face

poset of a planar map is at most 1010.

A simpli�ed proof for 3 was given in [15], the proof introduces a very useful generalization of

Schnyder's structures to 3-connected planar graphs. The usefulness may be exempli�ed by some of

the subsequent applications in graph drawing, see e.g. [7], [4]. Proposition 4 is stronger than the

�rst part of 3 (dimension � 4), it would be interesting to understand the drop in dimension upon

removal of a face on the basis of the grid intersection representation.

Miller [28] pioneered the connection between Schnyder structures and orthogonal surfaces that

subsequently lead to new and even simpler proofs of 3 in [16] and [23]. Orthogonal structures also

open a line for generalizations to higher dimensions. This line of research is the subject of [18]. So

far 4 has shown to be more elusive. The present paper seems to contain the �rst new proof of the

result.

In [21] with Trotter we provide a characterization of outerplanar graphs in terms of order di-

mension. Again the key tool are Schnyder structures. The research was continued in [20] with

characterizations of outerplanar maps whose vertex-face respectively vertex-edge-face order has

order dimension at most 3.

Adjacency posets of planar graphs have been studied in [19]. The adjacency poset of a graph

G = (V; E) has two copies V 0 and V 00 of V as vertices and comparabilities x 0 < y 00 i� fx; yg 2 E.

For planar graphs the dimension of the adjacency poset is at most 8 while there exist examples

of dimension 5. For outerplanar graphs the upper bound is 5 and the existence of examples of

dimension 4 is shown. In [19] it is also shown that if the underlying graph of an order P of height

2 is planar, then dim(P ) � 4. The proof there is based 3, i.e., on the use of Schnyder structures.

The result implies Proposition 3.

The dimension of orders with a planar diagram respectively a planar cover graph also has received

quite some attention. Since this is not central to this note we only provide two recent references

where additional pointers can be found: [22] and [32].

Acknowledgments: We thank Steve Chaplick and Veit Wiechert for inspiring discussions.
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