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Abstract. We consider the number of linear extensions of an N-free order P . We give upper
and lower bounds on this number in terms of parameters of the corresponding arc diagram.
We propose a dynamic programming algorithm to calculate the number. The algorithm is
polynomial if a new parameter called activity is bounded by a constant. The activity can be
bounded in terms of parameters of the arc diagram.
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1 Introduction

The number of linear extensions is one of the most fundamental combinatorial parameters of an
order (poset). Explicit formulas and efficient algorithms have been found for several classes of
orders, see e.g. [1] [2], [3] or [7]. Brightwell and Winkler [4] have shown that for general orders
the problem is #P-complete. Hence, unless P=NP, there is no polynomial algorithm for this
problem.

Problems that are hard for general orders may become tractable when restricted to more
structured classes of orders, see [11] for a survey on the topic. One of the most prominent
classes of orders is the class of N-free ordered sets. This class was introduced by Grillet [5].
Leclerc and Montjardet [10] characterized N-free orders as the chain-antichains-complete orders.
A series of papers investigated algorithmic problems on N-free orders : Habib and Jegou [6] and
independently Sys lo [14] showed that the jump number of an N-free order can be computed in
linear time. For general orders the jump-number problem is NP-hard. Habib and Möhring [7]
proved that the isomorphism problem remains isomorphism-complete when restricted to N-free
orders. More recent contributions to N-free orders are the enumeration of N-free orders of a
given height [8] and the computation of their page number [9]. Zaguia [16] verified the 1/3− 2/3
conjecture for N-free orders. We are not aware of previous results concerning the number of linear
extensions of N-free orders.
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The next section provides definitions and background information about N-free orders. In
Section 2 we present upper and lower bounds for the number of linear extensions of an N-free
order.

Section 3 is devoted to the dynamic programming algorithm for calculating the number of
linear extensions of N-free orders. Dynamic programming was used to show that the number of
linear extensions of orders of bounded width can be computed in polynomial time, see [1]. In
our approach the size of an antichain is replaced by the size of an active set. In particular our
algorithm has a polynomial running time for some N-free orders of unbounded width.

We conclude with a discussion of some open problems.

1.1 Definitions and background on N-free orders

We are concerned here with combinatorial problems for partially ordered sets. We assume some
familiarity with concepts and results in this area, including linear extensions, comparability
graphs and diagrams. For readers who are new to the subject, we suggest consulting one of the
books on the topic (Trotter [15], Schröder [13], Neggers and Kim [12]).

An order is N-free if its diagram does not contain an N (see Figure 1). There are many charac-
terizations for N-free orders, an overview is given by Möhring [11]. The relevant characterization
in our context is the following :

Figure 1: The order N.

Theorem 1.1 An order is N-free if and only if its diagram is the line digraph of a directed acyclic
graph (dag).

Theorem 1.1 enables us to represent N-free orders, using an arc diagram. The arc diagram
A(P ) of an N-free order P is the digraph of which the order is the line digraph. Figure 2 shows
an example. Such a digraph is not unique, but if we require that A(P ) has a unique source 0̂
and a unique sink 1̂, then it becomes unique. Sys lo [14] used A(P ) to deal with jump number
of N-free orders. Since A(P ) can easily be computed we will assume that P and A(P ) are both
available. Depending on the context we then think of elements of P as vertices of P or as edges
of A(P ), whatever is more convenient.
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Figure 2: An N-free order and its arc diagram.
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Being acyclic the arc diagram A(P ) or more precisely its transitive closure is a partial order
relation on the vertex set of A(P ). In the following, we will switch hence and forth between the
arc diagram as a directed graph and the arc diagram as an order. The interpretation will be clear
from the context. It is important to notice that in general the digraph A(P ) is not the diagram
of the order A(P ), simply because A(P ) may have transitive edges.

2 Bounds for the linear extensions of an N-free order

Using the arc diagram representation of an N-free order, we prove the following

Proposition 2.1 Let P be an N-free order and e(P ) be its number of linear extensions, then

e(A(P ))
∏

v∈VA(P )

ov! ≤ e(P ) ≤ |P |!
∏

v∈VA(P )

(
iv + ov
ov

)−1
where VA(P ) is the set of the vertices of A(P ), ov is the out-degree of v ∈ VA(P ), and iv is the
in-degree of v ∈ VA(P ).

Proof. For the lower bound we construct an appropriate set of linear extensions of P . Let
L = (v1, v2, .., vk) be a linear extension (topological ordering) of the arc diagram A(P ). For each
vertex v of A(P ), choose a permutation σv = (xv1, x

v
2, .., x

v
ov) of the out-edges of v. Concatenating

these permutations in the order given by L yields L′ = (xv11 , x
v1
2 , .., x

v1
ov , . . . , x

vi
1 , .., x

vi
ovi
, . . . , xvkovk

),

a permutation of the elements of P . We claim that L′ is a linear extension of P . If x < y in P ,
then there is a directed path in A(P ) whose first and last edge are x and y respectively. Let vx
and vy be the source vertices of the edges x and y. The directed path implies the relation vx < vy
in A(P ), whence vx precedes vy in L. This in turn implies that x precedes y in L′. We have thus
shown that L′ respects the order relations of P , i.e., it is a linear extension.

Hence, there is a linear extension L′ for every tuple (L, σ1, . . . , σk). Obviously, if L′ and L′′ are
constructed using different tuples, then they are different. The lower bound is just the number
of tuples.

The upper bound is based on a probabilistic argument. Let σ be a randomly chosen permu-
tation of the elements of P . The upper bound will be obtained by considering the probability
that σ is a linear extension of P .

A vertex v ∈ A(P ) is good with respect to σ, in symbols vIσ, if in σ all in-edges of v precede
all out-edges of v. The probability that v is good with respect to a random permutation σ

is
(
iv+ov
ov

)−1
: just consider the induced permutation σv on the edges incident to v, out of the

(iv + ov)! possible permutations σv exactly iv!ov! make v good.
Now we try to see what happens if we have to deal with more than one vertex. Let Pr(A)

denote the probability of A and Pr(A|B) = Pr(A ∩ B)Pr(B)−1 be the conditional probability of
A given B. Since a permutation is a linear extension of P if and only if all the vertices of A(P )
are good for this permutation, we get:

Pr(σ ∈ L(P )) =
k∏
j=1

Pr(vjIσ|v1Iσ, . . . vj−1Iσ) (1)

Where (v1, . . . , vk) is an arbitrary enumeration of the vertices of A(P ) and L(P ) is the set of the
linear extensions of P . To shorten the proof a little, we will assume that (v1, . . . , vk) is a linear
extension of A(P ).
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We claim that for all j ∈ [k]

Pr(vjIσ|v1Iσ, . . . , vj−1Iσ) ≤ Pr(vjIσ) =

(
ivj + ovj
ovj

)−1
. (2)

Plugging these inequalities into (1) yields the upper bound.
Permutations σ and π of P are called equivalent for j if:

1. all x ∈ P that are not incident to vj are at the same position in σ and π,

2. both permutations induce the same orderings (permutations) on the in-edges and the out-
edges of vj , i.e., σinj = πinj and σoutj = πoutj .

Claim. If an equivalence class C contains a permutation that makes vj good, then

Pr(vjIσ|σ ∈ C) =
(ivj+ovj

ovj

)−1
, otherwise Pr(vjIσ|σ ∈ C) = 0.

To see that the claim implies the correlation inequality (2) we propose an experiment in two
phases. First we pick a class with a probability proportional to its size, then we pick a random
element from the class. When the probability space for the experiment consists of all permu-

tations, the probability for picking a σ with vj I σ is
(ivj+ovj

ovj

)−1
. For a proof of (2) we are

interested in a probability space for the experiment that only consists of permutations satisfying
v1Iσ, . . . , vj−1Iσ. In this space we only get a σ with vj Iσ if we are lucky in the first phase
of the experiment. From the claim we know that, conditioned on success in the first phase, the

probability of success in the second phase is again
(ivj+ovj

ovj

)−1
. This yields (2).

Proof of the claim. Let C be a class. With a permutation σ ∈ C consider the induced permu-
tation σj on the edges incident to vj . From the two properties in the definition of equivalence it
follows that σ is uniquely determined if we know which positions of σj are used by in-edges and
which by out-edges. This can be encoded by a 0-1 vector sσ = (s1, s2, . . . , sivj+ovj ) with si = 1

if the ith entry of σj is an in-edge and si = 0 if it is an out-edge.
Now consider an adjacent inversion (si, si+1) = (1, 0) in sσ and let σ′ be the permutation

obtained from σ by swapping the out-edge x and the in-edge y of vj that are at positions i and
i + 1 in σj . To show that σ′ belongs to the same class it suffices to show that v` I σ′ for all
1 ≤ ` < j. Let x be the edge vj → vjx and y be the edge vjy → vj . Since (v1, . . . , vk) is a
topological order of A(P ) we have jy < j < jx. We don’t care whether vjx is good with respect
to σ′. Vertex vjy is good for σ and in σ′ an out-edge of vjy has been moved further to the right
compared to σ, hence, vjy is good for σ′. For all the other ` < j the property v`Iσ′ is directly
inherited from σ. Note that the encoding vector sσ′ of σ′ has exactly one inversion pair less
than sσ.

Let s and s′ be two 0-1 vectors of length t with r ones such that s′ is majorized by s, i.e.,∑j
i=1 s

′
i ≤

∑j
i=1 si for all j = 0, .., t. Sequence s′ can be reached from s by a sequence of steps

that remove a single inversion each. Now, suppose class C contains a permutation σ that makes vj
good. Being good is equivalent to sσ = (1, .., 1, 0, .., 0) which is the maximum in the majorization
order. Hence, starting from σ we can find a sequence of inversion reducing swaps to reach every
permutation σ′ such that sσ′ is majorized by sσ. Since σ ∈ C and the steps do not leave C we
find that |C| =

(ivj+ovj
ovj

)
. This completes the proof of the claim and of the proposition.

There are few examples of N-free orders where one of the bounds is sharp. In special cases,
however, there may be many ways for improving the bounds. We exemplify this with the lower
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bound. First note that the dual P ∗ of an N-free order P is N-free again and A(P ∗) is the dual
of A(P ). Indeed A(P ∗) = A(P )∗ holds in both interpretations, as a digraph and as an order.
Hence the dual lower bound can be written as e(A(P ))

∏
v∈VA(P )

iv! and also provides a lower

bound on e(P ). Moreover, in many cases the set of linear extensions of P that are obtained from
the lower bound proof and the dual are disjoint. This is always the case if there is a vertex v
in A(P ) such that the out-edges of v are always separated if we keep the in-edges of all vertices
together. In particular, if A(P ) has a subdigraph of one of the types shown in Figure 3 then
e(A(P ))(

∏
v∈VA(P )

ov! +
∏
v∈VA(P )

iv!) is a lower bound on e(P ).

v

v

Figure 3: Subdigraphs of A(P ) that allow the addition of the lower bound and its dual.

3 A dynamic programming algorithm for enumeration

In this section we describe a dynamic programming algorithm for the enumeration of linear
extensions of an N-free order.

Let P be an N-free order with arc diagram A(P ). Given a linear extension (x1, . . . , xn) of P the
algorithm computes the number of linear extensions of the induced suborders Pi = P [x1, .., xi]
for i increasing from 1 to n. Denote the edge of A(P ) that represents xj by (v−j , v

+
j ). The active

set Ai corresponding to Pi consists of all vertices of A(P ) that have incident edges from Pi and
from the complement of Pi, i.e., Ai = {v : ∃ j′ ≤ i < j′′ with v+j′ = v = v−j′′}. Let L be a linear
extension of Pi−1, extending L to a linear extension of Pi means that xi is placed at a position
behind all of its immediate predecessors in L. The immediate predecessors of xi are exactly the
elements that point into v−i , whence v−i belongs to the active set Ai−1.

We are now ready to describe the algorithm. For i = 1, . . . , n and a function f : Ai → [i] we
define

zi(f) = #
(
L : linear extension of Pi such that in L the last element xj with v+j = v

is at position f(v), for all v ∈ Ai).

Let zi−1(f) be known for all f : Ai−1 → [i − 1], then we can compute zi(f) for all f : Ai → [i].
The first thing that has to be done is to find Ai. Only two events have to be checked for the
update from Ai−1 to Ai :

• If all element incident to v−i belong to Pi, then v−i is removed from the active set.

• If xi is the only element of Pi incident to v+i , then v+i is added to the active set.

For fixed f let consider a linear extension L counted by zi−1(f). Inserting xi in L after the tth

element yields a linear extension of Pi if and only if f(v−i ) ≤ t < i. If t respects these bounds we
obtain a linear extension of Pi counted by zi(f

′) where for v ∈ Ai the value f ′(v) is defined as
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follows:

f ′(v) =


max(f(v), t) + 1 if v = v+i
f(v) if f(v) ≤ t
f(v) + 1 if f(v) > t.

We write f ′ = Γi(f, t). The initialization for the dynamic program is zi(f) = 0 for all i and f
except z1(f0) = 1, where f0(v

+
1 ) = 1 (note that A1 = {v+1 }). The outer loop of the algorithm is

increasing i from 2 to n. For each i we go through all f and all t with f(v−i ) ≤ t ≤ i and update
zi(Γi(f, t))← zi(Γi(f, t)) + zi−1(f).

Let α be an upper bound on the size of the active sets, i.e, if |Ai| ≤ α for all i. For each of
the n levels i of the computation we have to consider at most nα functions f . For each function f
we have to consider ≤ n derived functions f ′, if in the loop for f we decrease t in steps of −1,
then updates can be done in O(1). Altogether this yields a running time of O(nα+2).

We can improve the running time by stripping off a factor of n. The key observation is that in
each relevant f at level i, i.e., each f with zi(f) 6= 0, we have some v ∈ Ai with f(v) = i. Hence,
if we mark this element v we can describe the rest of f as a function in [n]α−1. This shows that
we only have to consider αnα−1 functions on each level.

In the following subsection we discuss conditions that allow to bound the size of the active set.

3.1 Bounding the size of active sets

Since each active set Ai is a subset of the vertex set of the arc diagram we easily get:

Proposition 3.1 The number of linear extensions of N-free orders with n elements and an arc
diagram with ≤ k vertices can be computed in O(nk+1).

The initial linear extension L0 = (x1, . . . , xn) of P determines the sequence A1, . . . , An of
active sets. Different choices for L0 may lead to active sets of very different size. Let us define
the activity α(L) of a linear extension as the maximum size of an active set in its sequence. The
activity an N-free order is

α(P ) = min
(
α(L) : L a linear extension of P

)
In some sense the strongest result that can be stated on the basis of our algorithm is the following

Proposition 3.2 The number of linear extensions of an N-free order P of bounded activity can be
computed efficiently if a linear extension L with α(P ) = α(L) is given.

However, we do not know how to compute the activity of an N-free order. We propose the
activity as a new parameter of N-free ordered sets for further studies.

It would be nice to improve on Proposition 3.1 by only bounding the width of the arc diagram.
This, however, is not enough. In Figure 4 we show the arc diagram A(R`) of an N-free order R`
with 3` elements and width(A(R`)) = 1, the activity of R` is at least `. Indeed if x̂ is at position i
in L, then Ai contains at least one of {ui, wi} for i = 1, .., `.

For two vertices u and v of a directed acyclic graph D we define spread(u, v) by looking at
pairs of interiorly disjoint u to v paths. If there is no such pair, then spread(u, v) = 0, otherwise
we let spread(u, v) be the maximal difference in length of two such paths. The spread of D is
spread(D) = max(spread(u, v) : u, v ∈ D). Since shortest and longest paths in directed acyclic
graphs are efficiently computable the spread is also tractable.

Note that spread(A(R`)) = ` + 1. In fact, the activity of an N -free order P is small if width
and spread of A(P ) are small.
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Figure 4: The arc diagram of an N-free order R5 with α(R5) = 6.

Lemma 3.3 For N-free orders P we have α(P ) ≤ width(A(P )) · (spread(A(P )) + 2).

Proof. The rank rk(v) of a vertex of A(P ) is the length of a longest path ending in v. Let
T = (v1, . . . , vs) be a topological order of A(P ) such that i < j implies rk(vi) ≤ rk(vj). Define a
linear extension LT such that for i < j the out-edges of vi precede the out-edges of vj .

Claim. α(LT ) ≤ width(A(P )) · (spread(A(P )) + 2).

Partition the vertices of A(P ) into ranks Sj = {v ∈ VA(P ) : rk(v) = j}. By definition each Sj
is an antichain of A(P ), hence |Sj | ≤ width(A(P ). If xi, the ith element of LT , has its source v−xi
in Sj , then Ai ⊂ Sj ∪ Sj+1 ∪ . . . ∪ Sj+spread(A(P ))+1. To see this consider v ∈ Ai with rk(v) = k.

Let p be a path of length k from 0̂ to v in A(P ). From v ∈ Ai and the construction of LT we
conclude that there is y ∈ P with rk(v−y ) ≤ j and v+y = v. Let q be a path from 0̂ through v−y to

v. The length of q is at most j + 1. Note that after clipping p and q from 0̂ to the last common
vertex u we obtain a pair of disjoint u to v paths whose difference in length is at least k− (j+ 1),
hence spread(A(P )) ≥ k − j − 1.

Theorem 3.4 The number of linear extensions of N-free orders with n elements and an arc
diagram with width ≤ k and spread ≤ s can be computed in O(nk(s+2)+1).

Conclusion

We have shown that the number of linear extensions of N-free orders of bounded activity can be
computed in polynomial time. It would be interesting to understand the class of N-free orders
of bounded activity better. Is membership in this class testable in polynomial time? Are there
simple additional sufficient conditions or necessary conditions for membership in this class?

We do not expect that there is a polynomial algorithm that solves the problem for general N-free
orders. Indeed we conjecture that counting linear extensions of N-free orders is #P-complete.

Brightwell and Winkler [4] have shown #P-completeness for general orders of height 3. They
expect that the problem remains hard for orders of height 2. Since N-free orders of height 2 are
disjoint unions of weak orders of height 2 the counting problem for this class is easy. We think
that the counting problem should already be hard for N-free orders of height 3.
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