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Abstra
t

A graph G is a max point-toleran
e (MPT) graph if ea
h vertex v of G 
an be mapped to a

pointed-interval (Iv, pv) where Iv is an interval of R and pv ∈ Iv su
h that uv is an edge of G
i� Iu ∩ Iv ⊇ {pu, pv}. MPT graphs model relationships among DNA fragments in genome-wide

asso
iation studies as well as basi
 transmission problems in tele
ommuni
ations. We formally

introdu
e this graph 
lass, 
hara
terize it, study 
ombinatorial optimization problems on it, and

relate it to several well known graph 
lasses. We 
hara
terize MPT graphs as a spe
ial 
ase of

several 2D geometri
 interse
tion graphs; namely, triangle, re
tangle, L-shape, and line segment

interse
tion graphs. We further 
hara
terize MPT as having 
ertain linear orders on their vertex

set. Our last 
hara
terization is that MPT graphs are pre
isely obtained by interse
ting spe
ial

pairs of interval graphs. We also show that, on MPT graphs, the maximum weight independent

set problem 
an be solved in polynomial time, the 
oloring problem is NP-
omplete, and the


lique 
over problem has a 2-approximation. Finally, we demonstrate several 
onne
tions to known

graph 
lasses; e.g., MPT graphs stri
tly 
ontain interval graphs and outerplanar graphs, but are

in
omparable to permutation, 
hordal, and planar graphs.

1 Introdu
tion

Interval graphs (namely, the interse
tion graphs of intervals on a line) are well-studied in 
omputer

s
ien
e and dis
rete mathemati
s (see e.g.,[15, 18℄). Many 
ombinatorial problems whi
h are NP-hard

∗
Part of this work was previously presented at the 4th biennial Canadian Dis
rete and Algorithmi
 Mathemati
s

Conferen
e (CanaDAM) in St. John's, NL, Canada June 10-13, 2013. The abstra
t and slides are available at: http:

//
anadam.math.
a/2013/program/abs/grg2.html\#s
.
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in general 
an be solved e�
iently when restri
ted to interval graphs. For example, the maximum


lique problem [18℄, the maximum weight independent set problem [17℄, and the 
oloring problem [22℄


an all be solved in linear time on interval graphs. The re
ognition problem is also solvable in linear

time [2℄.

Due to their theoreti
al and pra
ti
al signi�
an
e many generalizations of interval graphs have been

studied (see e.g.,[1, 8, 21, 23℄). Parti
ularly relevant to this work are toleran
e graphs, �rst introdu
ed

in [23℄. A graph is a toleran
e graph (also known as a min toleran
e graph) when every vertex v of

G 
an be asso
iated with an interval Iv (of the real number line: R) and a toleran
e value tv ∈ R

su
h that uv is an edge of G i� |Iu ∩ Iv| ≥ min{tu, tv}. Similarly, a graph is a max toleran
e graph

when ea
h vertex v of G 
an be asso
iated with an interval Iv and toleran
e tv su
h that uv ∈ E(G)
i� |Iu ∩ Iv| ≥ max{tu, tv}. For a detailed study of toleran
e graphs see [24℄.

In this paper we introdu
e the 
lass of max point-toleran
e (MPT) graphs

1

. A graph G is an MPT

graph when ea
h vertex v of G 
an be represented by an interval Iv of R together with a point pv ∈ Iv
su
h that two verti
es u, v are adja
ent i� both pu and pv belong to Iu ∩ Iv; i.e., ea
h pair of intervals


an �tolerate� a non-empty interse
tion (without forming an edge) as long as at least one distinguished

point is not 
ontained in this interse
tion. We 
all su
h a 
olle
tion {(Iv, pv)}v∈V (G) of pointed intervals

an MPT representation of G. Moreover, we also denote ea
h (Iv, pv) by a triplet (sv, pv, ev) where sv
and ev denote the start and end of Iv respe
tively.

MPT graphs have a number of pra
ti
al appli
ations. They 
an be used to dete
t loss of heterozy-

gosity events in the human genome; see e.g., [25, 52℄. In su
h appli
ations an interval I represents the

maximal boundary on a 
hromosome region from an individual that may 
arry a deletion and the point

p represents a site in the 
onsidered region that shows eviden
e for a deletion. MPT graphs 
ould also

be used to model tele
ommuni
ation networks; e.g., 
ommuni
ation where devi
es re
eive message on

a wide 
hannel (interval) and send messages on a narrow on a sub-band (point) of that 
hannel. Su
h

an asymmetri
 �big� downlink / �small� uplink model is quite 
ommon in tele
ommuni
ation networks

(see, e.g., [49, 29℄). In this situation the edges of the MPT graph 
orrespond to devi
es with dire
t

two-way 
ommuni
ation.

Some 
lassi
al optimization problems on MPT graphs 
orrespond to pra
ti
al problems. For ex-

ample, when modeling genome-wide asso
iation studies, �nding the 
hromosomal region showing the

highest eviden
e for a massive loss of heterozygosity in a population of individuals involves solving the

maximum 
lique problem and partitioning all eviden
e-of-deletion sites into the minimal number of

deletions involves solving the minimum 
lique 
over problem [3℄. In our tele
ommuni
ations example,

a minimum 
lique 
over 
orresponds to partitioning the devi
es into a minimum 
olle
tion of sets of

fully-
ommuni
able devi
es.

Interestingly, the maximum weight 
lique problem on a MPT graph was shown to be polynomially

solvable due to the fa
t that an MPT graph 
an have at most O(n2) maximal 
liques [3℄. Additionally,

the minimum weight 
lique 
over problem was shown to be NP-
omplete for submodular 
ost fun
tions

[3, 11℄. The 
omplexity of the unweighted 
lique 
over problem on MPT graphs remains unresolved.

Finally, 
losely related to MPT graphs is the 
lass of interval 
at
h digraphs. A digraph D is an

interval 
at
h digraph when ea
h vertex v of D 
an be mapped to an interval Iv of R together with

a point pv ∈ Iv su
h that uv is an ar
 of D i� pu ∈ Iv. Noti
e that MPT graphs are pre
isely the

1

Using the phrasing of Golumbi
 and Trenk [24℄ this 
lass would be 
alled max point-
ore bitoleran
e graphs. However,

this parti
ular 
lass of toleran
e graphs was not dis
ussed in [24℄.
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underlying undire
ted graphs of the symmetri
 edges of interval 
at
h digraphs. Interval 
at
h digraphs

have a vertex order 
hara
terization [38℄, an asteroidal-triple 
hara
terization [42℄, and a polynomial

time re
ognition algorithm [43℄. However, these results do not translate to MPT graphs.

Our Contributions: We provide 
hara
terizations of MPT graphs, utilize these 
hara
terizations

for 
ombinatorial optimization problems, and relate MPT graphs to well-known graph 
lasses.

In se
tion 2 we 
hara
terize MPT graphs as a spe
ial 
ase of L-graphs (interse
tion graphs of L-

shapes in the plane). This will imply that MPT is also a sub
lass of re
tangle interse
tion graphs (also

known as boxi
ity-2 graphs [45℄) and of triangle interse
tion graphs. We also use this 
hara
terization

to show that interval graphs and 2D ray graphs are stri
t sub
lasses of MPT graphs. We further


hara
terize MPT graphs by 
ertain linear vertex orders. In parti
ular, we show that a graph G =
(V,E) is MPT i� the verti
es of G 
an be linearly ordered by < so that no quadruple u, v, w, x ∈ V
with u < v < w < x has the edges uw and vx without the edge vw. Related to this ordering 
ondition,

we also des
ribe MPT graphs as the interse
tion of two spe
ial interval graphs (see Theorem 5.5).

Finally, MPT graphs are 
hara
terized as interse
tion graphs of 
ertain line segments from 
y
li
 line

arrangements.

These 
hara
terizations are then used to study 
ombinatorial optimization problems on MPT

graphs. Namely, we demonstrate that the weighted independent set (WIS) problem 
an be solved

in polynomial time, the 
lique 
over problem 
an be 2-approximated in polynomial time, and that the


oloring problem is NP-
omplete but 
an be log(n)-approximated in polynomial time. As part of the

approximations, we show that the 
lique 
over number γ(G) is at most twi
e the independen
e number

α(G) and that the 
hromati
 number χ(G) is at most O(ω log(ω)) where ω is the 
lique number

2

.

Finally, we observe some stru
tural results and 
ompare MPT graphs to several well-known graph


lasses. For example, we observe that outerplanar graphs are a proper sub
lass of MPT graphs

and 
hara
terize them by a �
onta
t� MPT representation. We additionally observe in�nite fami-

lies of forbidden indu
ed subgraphs for MPT graphs whi
h are 
onstru
ted from non-interval and

non-outerplanar graphs.

Related Work: While our results have been obtained independently, there are several pla
es whi
h

overlap with some existing papers [37, 51, 9℄. We will identify ea
h of these as they are presented.

Note that [51℄ is te
hni
al report, [9℄ is a refereed 
onferen
e paper, and [37℄ is a journal publi
ation.

Some of our results also appear in the Masters Thesis of our 
o-author Thomas Hixon [26℄.

Preliminaries: All graphs 
onsidered in this paper are simple, undire
ted, and loopless (unless

otherwise stated). For a graph G with vertex set V and edge set E, we use the following notation. The
symbols n and m denote |V | and |E| respe
tively. For a subset S of V , G[S] denotes the subgraph of

G indu
ed by S and G \ S denotes the subgraph of G indu
ed by V \ S; i.e., G \ S = G[V \ S]. For a
vertex v ∈ V , N(v) denotes the neighborhood of v (i.e., the verti
es in G whi
h are adja
ent to v).

2 Geometri
 representations of MPT graphs

In this se
tion we relate MPT graphs to geometri
 interse
tion graphs. Spe
i�
ally, we 
hara
terize

MPT graphs as interse
tion graphs of axis-aligned L-shapes whose 
orner points form a line with

2

The bound on χ(G) follows from [4℄ and one of our 
hara
terizations.

3



negative slope (namely, linear L-graphs as de�ned below). On
e we formalize this it will be easy to see

that this implies that MPT graphs are a spe
ial sub
lass of boxi
ity-2 graphs and triangle interse
tion

graphs. The equivalen
e between linear L-graphs and MPT graphs is also stated in [51℄. Later in this

paper we use these 
hara
terizations to study 
ombinatorial optimization problems on MPT graphs

and to relate MPT graphs to 
lassi
al graph 
lasses.

An L-shape 
onsists of a verti
al line segment and a horizontal line segment with a 
orner that is

the lowest point of the verti
al segment and the left-most point of the horizontal segment. We de�ne a

linear L-system L to be a 
olle
tion of L-shapes {L1, . . . , Ln} in the plane su
h that the 
orner points

of L1, . . . , Ln are distin
t and form a line with negative slope. We say that a graph G is a linear

L-graph if G is the interse
tion graph of a linear L-system L and we refer to L as a linear L-system of

G. We de�ne linear re
tangle graphs and linear right-triangle graphs similarly (i.e., with the lower-left


orners of the shapes forming a line with negative slope; note: we always 
onsider the lower-left 
orner

of ea
h triangle to be the right angle). In parti
ular, it is easy to see that these three graph 
lasses are

the same; e.g., as in Figure 2.

Without loss of generality we assume that the 
orner points in all linear systems have the form

(c,−c) for some positive integer c. This allows us to spe
ify ea
h L-shape L in a linear L-system by

(tL, cL, rL) where: −tL is the y-
oordinate of the top of L, (cL,−cL) is the 
orner point of L, and rL
is the x-
oordinate of the right-most point of L. Su
h an L-shape is given in Figure 1.

L

−tL

−cL

cL rL

Figure 1: Anatomy of an L-shape in a linear L-system. Noti
e that we in
lude a �platform� 
orre-

sponding to the line x+ y = 0 to emphasize the linearity of the system.

•
•

•
•

•
•

v1

v2

v3

v4

v5

v6

v1
v2

v3
v4

v5
v6

v1
v2

v3
v4

v5
v6

v1
v2

v3
v4

v5
v6

Figure 2: (from left-to-right) The net G, a linear L-system L of G, the linear re
tangle-system 
orre-

sponding to L, and the linear right-triangle-system 
orresponding to L.

Theorem 2.1 Max point-toleran
e graphs are pre
isely linear L-graphs.

Proof: Let {(s1, p1, e1), . . . , (sn, pn, en)} be a MPT representation of a graph G. Consider the linear

4



L-system L = {L1, . . . , Ln} where tLi
= −si, cLi

= pi, and rLi
= ei. The theorem follows from the

depi
tion of this 
onstru
tion given in Figure 3 �

−si

−pi

si pi ei

Figure 3: Illustrating the equivalen
e between MPT representations and linear L-systems. From left-

to-right: the L-shape 
orresponding to a pointed-interval, two examples of non-adja
ent verti
es as

pointed-intervals and the 
orresponding linear Ls, and one example of adja
ent verti
es as pointed-

intervals and the 
orresponding linear Ls.

3 L-systems of Interval Graphs

In this se
tion we 
onne
t interval graphs with MPT graphs. We do this by demonstrating that every

interval representation of a graph is equivalent to an an
hored linear L-system (see De�nition 3.1 and

Proposition 3.2). Interval graphs have are also observed to be a sub
lass of MPT graphs in [51℄. In fa
t,

they 
laim that rooted path graphs (a super
lass of interval graphs) are a sub
lass of MPT graphs, but

they do not observe our 
hara
terization. We later use this 
hara
terization in our 2-approximation of


lique 
over and to identify an in�nite family of non-MPT graphs.

De�nition 3.1 A linear L-system L is an
hored if there exists A ∈ R su
h that tL ≤ A ≤ cL for every

L ∈ L. Note: we say that L is an
hored at A and refer to A as the an
hor point of L.

Proposition 3.2 G = (V,E) is an interval graph i� G has an an
hored linear L-system.

Proof: (=⇒) Let I = {I1, . . . , In} be an interval representation of G where si and ei denote the

starting and ending points of the interval Ii (respe
tively) for ea
h i ∈ {1, . . . , n}. Furthermore, (wlog)

assume si ≥ 0 and si < sj i� i < j. Consider the linear L-system L = {L1, . . . , Ln} su
h that

Li = (0, si, ei); i.e., L is an
hored at 0. Noti
e that, when two intervals Ii, Ij (1 ≤ i < j ≤ n) interse
t,
the 
orresponding L-shapes Li, Lj will also interse
t. Spe
i�
ally, the horizontal segment of Li will

interse
t the verti
al segment of Lj (see Figure 4 (left)). Moreover, when two intervals are disjoint

the 
orresponding L-shapes will be disjoint sin
e their horizontal segments will not have any 
ommon

x-
oordinates (see Figure 4 (right)).

(⇐=) Let L = {L1, . . . , Ln} be an an
hored linear L-system of G. Consider the interval representa-
tion I = {I1, . . . , In} su
h that Ii = (cLi

, rLi
). The equivalen
e of I and L follows similarly to (=⇒).

�

Corollary 3.3 Interval graphs are a stri
t sub
lass of MPT graphs.
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Ii
Ij

Li

Lj

Ii
Ij

Li

Lj

Figure 4: Illustrating the mapping between intervals and Ls for adja
ent verti
es (left) and non-adja
ent

verti
es (right).

Proof: This follows from Proposition 3.2 and the fa
t that the graph in Figure 2 is an MPT graph

but not an interval graph [36℄. �

4 Combinatorial Optimization Problems

In this se
tion we will dis
uss the weighted independent set (WIS) problem, 
lique 
over (CC) problem,

and the 
oloring problem on MPT graphs. In parti
ular, we will show the WIS problem 
an be solved

in O(n3) time, the CC problem 
an be 2-approximated in quadrati
 time, the 
oloring problem is

NP-
omplete but 
an be log(n)-approximated in linear time.

Throughout this se
tion we 
onsider an MPT graph G = (V,E) together with a linear L-system

L = {L1, . . . , Ln} of G where i < j i� the 
orner point of Li o

urs to the left of Lj . Without loss of

generality we shall assume that the 
orner point of Li is (i,−i) for ea
h i ∈ {1, . . . , n}; i.e., pi = i in
the 
orresponding MPT representation and Li = (ti, i, ri).

4.1 Maximum Weight Independent Set

The IS problem, even for the unweighted 
ase, is known to be NP-
omplete for: L-graphs, boxi
ity-

2 graphs, and triangle interse
tion graphs sin
e they 
ontain the interse
tion graphs of verti
al and

horizontal line segments (also known as 2-DIR) and the problem is NP-
omplete on 2-DIR [34℄. Prior

to [34℄, the IS problem was known to be NP-
omplete on boxi
ity-2 graphs [16, 28℄. However, for

interval graphs, the WIS problem is known to be solvable in linear time from a super
lass (e.g., 
hordal

graphs [17℄) of interval graphs. A graph is 
hordal when it has no indu
ed k-
y
le for all k ≥ 4.
Noti
e that an independent set in an MPT graph 
orresponds to a 
olle
tion of disjoint L-shapes in

a linear L-system. We use this equivalen
e to solve the WIS problem on a vertex-weighted MPT graph

in polynomial time algorithm via dynami
 programming. A 
lose examination of our approa
h reveals

its similarity to an algorithm for WIS on generalizations of interval graphs [37℄. The approa
h in [37℄

also involves the use of dynami
 programming with respe
t to 
ertain intervals (whi
h we simplify to

dominant L-shapes) and no spe
i�
 time bound other than polynomial is 
laimed. However we believe

our presentation is mu
h 
learer for the 
ontext of MPT graphs and it provides a dire
t time bound

of O(n3). Also, there has been a re
ent O(n2) dynami
 programming algorithm for this problem [9℄

(this is based on [37℄), but here we believe that the simpli
ity of our approa
h provides insight into

the stru
ture of independent sets in MPT graphs and so we have in
luded it.

We now dis
uss the key idea. Let J be a sub-
olle
tion of disjoint L-shapes of L. We say that an

6



L-shape Li is dominant in J if it 
ontains the right-most point among the L-shapes in J ; i.e., Li ∈ J
and ri = maxLj∈J rj . Consider a dominant Li and some Lj ∈ J su
h that j > i. Noti
e that Lj


annot 
ontain any points to the right of the line x = rj (sin
e Li is dominant). Moreover, Lj must

o

ur stri
tly below the line y = −i (sin
e Lj 's 
orner point is below Li's 
orner point). Similarly, for

Lj′ ∈ J with j′ < i, Lj′ again 
annot 
ontain any points to the right of the line x = rj . Furthermore,

Lj′ is 
ontained stri
tly above the line y = −i. Thus, for an L-shape Li, if Li is dominant in a sub-


olle
tion J of disjoint L-shapes of L, then the L-shapes whi
h belong to J and pre
ede Li 
an be


hosen independently of the L-shapes whi
h belong to J and follow Li.

The following notation is depi
ted in Figure 5. For a, b ∈ {1, . . . , n} and a ≤ b, let L0,n+1 = L and

La,b = L0,b ∩ La,n+1 where:

• L0,b = {Li : 1 ≤ i ≤ b− 1, ri < rb, and Li ∩ Lb = ∅}; and
• La,n+1 = {Li : a+ 1 ≤ i ≤ n, ri < ra, and Li ∩ La = ∅}.

Lb

La

Figure 5: The L-shapes stri
tly 
ontained in the shaded regions illustrate L0,b (left) and La,n+1 (right).

Let opt[a, b] denote the maximum total weight of a 
olle
tion of mutually disjoint L-shapes in La,b.
Noti
e that opt[0, n+1] is the maximum weight of an independent set in G. Furthermore, by the above

dis
ussion, we have the following re
urren
e for opt[a, b]:
opt[a, b] = max

Li∈La,b

(opt[a, i] + w(Li) + opt[i, b])

It is easy to see that the 
olle
tion of sets {La,b : a, b ∈ {0, . . . , n + 1}, a ≤ b} 
an be 
omputed in

O(n3) time (sin
e ea
h of La,b 
an be 
omputed in O(n) time). Moreover, the size of the table opt is
O(n2), and the time to 
ompute ea
h entry is O(n). Thus, we have the following theorem.

Theorem 4.1 For a vertex weighted MPT graph with a given linear L-system, a maximum weight

independent set 
an be 
omputed in O(n3) time.

4.2 Clique Cover

The CC problem is known to be NP-
omplete on boxi
ity-2 graphs (from unit square interse
tion

graphs [16℄), and L-graphs (from 
ir
le graphs [31℄). However it is solvable in polynomial time on

interval graphs and outerplanar graphs.

In this subse
tion we des
ribe a polynomial time 2-approximation algorithm for the CC problem

on MPT graphs. Our approa
h uses ideas similar to the algorithm for hitting set in [7℄. From our

algorithm we will see that the 
lique 
over number γ(G) is at most twi
e the independen
e number

α(G) for any MPT graph G. Re
ently it has been observed that a hitting set for a linear re
tangle-

system 
an be 2-approximated in polynomial time [9℄. Su
h a hitting set also provides a 
orresponding

7




lique 
over of the same size and their proof implies the 2α(G) bound. This proof uses a duality gap

argument regarding the di�eren
e between the size of a MIS and and the size of a minimum hitting

set and is quite di�erent from our approa
h. Additionally, our approa
h is faster and simpler.

Our algorithm begins with the linear L-system L = {L1, ..., Ln}. Re
all that L is ordered a

ording

to the 
orner points of the L-shapes. From L we greedily sele
t an independent set I. We then build a

partial 
lique 
over of G with one 
lique for ea
h element of I. Finally, we 
onsider the graph H whi
h

remains after removing these 
liques and observe that it is an interval graph. Sin
e H is an interval

graph we 
an e�
iently 
ompute an optimal 
lique 
over for it. This 
ompletes the overview of our

algorithm. Noti
e that, sin
e H will be an interval graph (i.e., a perfe
t graph), γ(H) = α(H). Thus,
the size of the 
lique 
over that we produ
e is |I|+ α(H) ≤ 2α(G). We now des
ribe our algorithm in

detail.

First we 
onstru
t the greedy independent set as follows. Let I1 = {L1}, and let Ii = Ii−1 ∪ {Lj}
su
h that Lj does not interse
t any L-shape in Ii−1 and j is the smallest index satisfying this property.

Let I = {Li1 , ..., Lik} be the maximal independent set 
onstru
ted in this way su
h that ij < ij′

whenever j < j′. Sin
e I is an independent set in G, we 
an see that k is at most the 
lique 
over

number of G. We will 
onstru
t a partial 
lique 
over using I and show that the remaining graph H
will be an interval graph.

To this end, 
onsider the following disjoint sets of verti
es. For ea
h j ∈ {1, . . . , k − 1}, let

Cj = {vℓ : ij ≤ ℓ < ij+1, and rℓ ≥ ij+1}. First we 
laim that ea
h su
h Cj is a 
lique, and then we


laim that removing all su
h Cjs from G results in an interval graph H.

Claim 1: Cj is a 
lique.

Proof: Consider two verti
es in Cj . Their 
orner points o

ur between the 
orners of Lij and Lij+1
,

their top points o

ur above the 
orner of Lij (otherwise one of them would be 
hosen into I instead

of Lij+1
), and their right points o

ur to the right of the 
orner of Lij+1

. Thus, they must interse
t;

i.e., Cj is a 
lique. �

Claim 2: H = G \ (
⋃k

j=1Cj) is an interval graph.

Proof: Consider vp in H where ij ≤ p < ij+1 and 1 ≤ j < k. First, due to our 
onstru
tion of I,
either vp = vij or vp is a neighbor of some vij′ where ij′ ≤ ij ; i.e., the verti
al segment of every su
h vp
interse
ts the line y = ij . Se
ond, we know that the right-most point of Lp is to the left of Lij+1

(sin
e

vp /∈ Cj). This implies that every neighbor vq of vp in H has ij ≤ q < ij+1. Thus, H indu
ed on its

verti
es between vij and vij+1
is an interval graph (sin
e it has an an
hored linear L-system an
hored

at ij) and is a disjoint union of 
onne
ted 
omponents of H.

The same argument applies to verti
es vp with ik ≤ p. This show that H is the disjoint union of

interval graphs; i.e., H itself is an interval graph. �

Noti
e that the greedy independent set as well as the 
liques Cj are easily generated in linear time.

Moreover, the CC problem on interval graphs 
an be solved in linear time [27℄. This leads to the main

theorem of this subse
tion.

Theorem 4.2 For an MPT graph G the 
lique 
over number is at most twi
e the independen
e number.

Also, when a linear L-system is given as input, the 
lique 
over G 
an be 2-approximated in O(n+m)
time.
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4.3 Coloring

The 
oloring problem is known to be NP-
omplete on L-graphs (sin
e 
ir
le graphs, also known as

interval overlap graphs, are 
ontained in L-graphs [1℄ and 
oloring 
ir
le graphs is NP-
omplete [20℄),

on boxi
ity-2 graphs [28℄, and on triangle interse
tion graphs (sin
e they in
lude planar graphs [10℄

and 
oloring is NP-
omplete on planar graphs [19℄). On the other hand, the 
oloring problem 
an be

solved in linear time on interval graphs [22℄ and outerplanar graphs [44℄.

In this se
tion we will demonstrate that it is NP-
omplete to determine the 
hromati
 number for

MPT graphs, but it 
an be log(n)-approximated in polynomial time. We will use χ(G) to denote the


hromati
 number of G.
Prior to proving the hardness result we observe that χ(G) 
an be log(n)-approximated using known

te
hniques. For any boxi
ity-2 graph G, the relationship between the χ(G) and ω(G) (the 
lique

number) has been well-studied. The best results regarding this relationship are given in [4℄. The

relevant result for MPT graphs is as follows. For a boxi
ity-2 graph G with a re
tangle system su
h

that no re
tangle 
ontains another, χ(G) is O(ω(G) log(ω(G))) and this log(n)-approximation of χ(G)

an be 
omputed in polynomial time. It is easy to see from our 
hara
terization of MPT graphs as

linear boxi
ity-2 graphs, that this result applies dire
tly to MPT graphs. Thus, the 
hromati
 number

of MPT graphs 
an be log(n)-approximated in polynomial time.

We now turn to the hardness of 
oloring for MPT graphs. To do this we transform the hardness of


oloring of 
ir
ular-ar
 graphs to this 
lass. Cir
ular-ar
 graphs are the interse
tion graphs of ar
s of

a 
ir
le. Determining a minimum 
oloring of a 
ir
ular-ar
 graph is known to be NP-hard [20℄; i.e., it

is NP-
omplete to determine whether a 
ir
ular ar
 graph is k 
olorable when k is part of the input.

Theorem 4.3 It is NP-
omplete to determine the 
hromati
 number for MPT graphs.

Proof: Consider a 
ir
ular-ar
 graph G = (V,E). We use n and m to denote |V | and |E| respe
tively.
Now, for any k > 2, we will 
onstru
t an MPT graph G′ = (V ′, E′) su
h that: |V ′| = O(n), |E′| =
O(n2), and χ(G) ≤ k i� χ(G′) ≤ k. Moreover, G′

is easily 
onstru
ted in O(n2) time. An example of

this 
onstru
tion is depi
ted in Figure 6. The basi
 idea is that we �
ut� the 
ir
ular-ar
 representation

at an arbitrary point p. This point 
orresponds to a 
lique and we split every vertex 
rossing this point

into two verti
es so that the result is an interval graph. This interval graph has an an
hored linear

L-system to whi
h we add a 
lique 
onsisting of k verti
es. This 
lique will ensure that in any 
oloring

of this 
onstru
ted graph, the two 
opies of every split vertex have the same 
olor. We now present

the formal proof.

Consider an arbitrary 
ir
ular-ar
 representation A of G (su
h a representation 
an be 
onstru
ted

in O(n+m) time [39℄). Let p be a �xed point on the 
ir
le of A and let Ap = {A1, . . . , Aℓ} be the ar
s
of A that in
lude p. The verti
es {v1, . . . , vℓ} 
orresponding to Ap form a 
lique in G (sin
e the ar
s

all share the point p). Hen
e, if no ar
s pass through the point p, then G is an interval graph; i.e., G
is an MPT graph and so we 
an let G′ = G and we are done. Similarly, if ℓ > k, then χ(G) > k and

we are done; i.e., we simply let G′
be a 
lique on ℓ verti
es. Thus we may assume 1 ≤ ℓ ≤ k.

We now form an interval graph H from G by �
utting� the 
ir
ular-ar
 representation A at the

point p. Formally, for some small enough ǫ > 0 and ea
h i ∈ {1, . . . , ℓ}, we repla
e the ar
 Ai = (si, ei)
with two ar
s A1

i = (si, p− ǫ), and A2
i = (p+ ǫ, ei) and 
onsider H as the resulting interse
tion graph.

In parti
ular, ea
h vertex vi is repla
ed by two verti
es v1i and v2i 
orresponding to the ar
s A1
i and

9
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Figure 6: Sample 
onstru
tion from the proof of Theorem 4.3 where the �
ut� 
ontains 5 verti
es and

k = 6.

A2
i respe
tively. Noti
e that |V (H)| = n + ℓ and |E(H)| ≤ 2m. Sin
e there are no ar
s passing

through the point p in this 
ir
ular-ar
 representation of H, the graph H is an interval graph. Thus,

by Proposition 3.2, H has an an
hored linear L-system.

Finally, we add a 
lique of size k to H so that the result is an MPT graph G′
and in any k-
oloring

of G′
, the verti
es v1i and v2i must be assigned the same 
olor. To this end, we de�ne G′ = (V ′, E′) as

follows:

V ′ = V (H) ∪ {u1, . . . , uk},

E′ = E(H) ∪ {utv
j
i : j ∈ {1, 2}, i ∈ {1, . . . , ℓ}, t ∈ {i+ 1, . . . , k}} ∪ {uiuj : i, j ∈ {1, . . . , k}, i 6= j}.

We show that G′
has a k-
oloring i� χ(G) ≤ k.

=⇒ Noti
e that the verti
es v11 and v21 are adja
ent to the same 
lique of size k − 1 in G′
. Thus, in

any k-
oloring of G′
, v11 and v21 must be assigned the same 
olor. Indu
tively, it is easy to see that v1i

and v2i must also re
eive the same 
olor in any k-
oloring of G′
. Spe
i�
ally, ui, v

1
i , and v2i will re
eive

the same 
olor for every i ∈ {1, . . . , ℓ}. Thus, any k-
oloring of G′
provides a k-
oloring of G.

⇐= We 
an extend any k-
oloring f : V (G)→ {1, . . . , k} of G to a k-
oloring f ′ : V (G′)→ {1, . . . , k}
of G′

as follows. For every v ∈ V (G) \ {v1, . . . , vℓ}, set f ′(v) = f(v). For ea
h i ∈ {1, . . . , ℓ}, set
f ′(ui) = f ′(v1i ) = f ′(v2i ) = f(vi), and then 
hoose f ′(uℓ+1), . . . , f

′(uk) so that {f
′(uℓ+1), . . . , f

′(uk)} =
{1, . . . , k} \ {f(v1), . . . , f(vℓ)}. It is easy to see that f ′

is a k-
oloring of G′
. This 
ompletes the proof

of the 
laim.

All that remains is to show that G′
has the appropriate size and that it is an MPT graph. Noti
e

that |V (G′)| = n + ℓ+ k ≤ 3n and |E(G′)| ≤ 2m +
(

k
2

)

+ (k − ℓ) ∗ 2ℓ +
∑ℓ−1

t=1 2t ≤ 3n2
. Thus, G′

has

the appropriate size. Furthermore, we 
an 
onstru
t an MPT representation of G′
by starting from an

10



an
hored linear L-system of H and adding L-shapes for the new 
lique �above� this an
hored linear

L-system (see Figure 6). Thus, G′
is an MPT graph.

From the above 
onstru
tion we 
an see that determining the 
hromati
 number for MPT graphs

is NP-hard, sin
e it is NP-hard to determine the 
hromati
 number for 
ir
ular-ar
 graphs. �

This leaves open the k-
oloring problem for �xed k ≥ 3. In parti
ular, note that in the above


onstru
tion it was ne
essary that the number of 
olors k was part of the input, sin
e for �xed k, the
k-
oloring problem is solvable in polynomial time on 
ir
ular-ar
 graphs [20℄.

5 Other Chara
terizations

In this se
tion we 
hara
terize MPT graphs by linear vertex orders, the interse
tion of interval graphs,

and as a restri
ted 
lass of segment graphs.

5.1 Vertex Ordering

Several well known graph 
lasses have been 
hara
terized by spe
ial linear orders on their verti
es; e.g.,

interval graphs (see De�nition 5.1 and Theorem 5.2), unit interval graphs [48℄, 
hordal graphs [12℄, and


o-
omparability graphs [35℄. In this se
tion we 
hara
terize MPT graphs as graphs with MPT-orders

(see De�nition 5.3 and Theorem 5.4). This 
hara
terization is also stated in [51℄. We then use this

ordering to show that a graph is an MPT graph i� it is the interse
tion of two �spe
ial� interval graphs

(see Theorem 5.5).

De�nition 5.1 An I-order of a graph G with verti
es v1, . . . , vn is an ordering v1 < v2 < · · · < vn
su
h that: for every u < v < w, if uw ∈ E(G), then uv ∈ E(G).

Theorem 5.2 [41, 46, 47℄ G is an interval graph i� G has an I-order. Moreover for any interval

representation I of a graph G, ordering the verti
es of G by the left end-points of their intervals results

in an I-order of G.

De�nition 5.3 An MPT-order of a graph G with verti
es v1, . . . , vn is an ordering v1 < v2 < · · · < vn
su
h that: for every u < v < w < x, if uw, vx ∈ E(G), then vw ∈ E(G).

Noti
e that MPT-order is a generalization of I-order. In parti
ular, let σ be an I-order of a graph

G. Now suppose we have u, v, w, x ∈ V (G) su
h that u <σ v <σ w <σ x and uw, vx ∈ E(G). Sin
e σ
is an I-order with v <σ w <σ x and vx ∈ E(G), the edge vw is for
ed. Thus, σ is an MPT-order; i.e.,

every I-order is also an MPT-order. We now prove that MPT graphs are 
hara
terized as the graphs

with MPT-orders.

Theorem 5.4 G = (V,E) is an MPT graph i� G has an MPT-order (i.e., the verti
es of G 
an be

ordered by < so that for every u, v, w, x ∈ V , if u < v < w < x and uw, vx ∈ E, then vw ∈ E).
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Proof: (=⇒) Let {(sv, pv, ev) : v ∈ V } be an MPT representation of G. Order the verti
es of G su
h

that vertex v 
omes before vertex u if pv ≤ pu. Now, 
onsider any four distin
t verti
es u, v, w, x where

u < v < w < x and uw, vx ∈ E. Then, it is easy to realize that, due to the 
onsidered ordering, it

holds that sw ≤ pu ≤ pv and ev ≥ px ≥ pw, whi
h implies vw ∈ E.
(⇐=) Let G = (V,E) be a graph with ordered vertex set V = {v1, . . . , vn} su
h that for any

i, j, k, ℓ ∈ {1, . . . , n}, if i < j < k < ℓ and vivk, vjvℓ ∈ E then vkvj ∈ E (i.e., v1 < · · · < vn is

an MPT-order). We now 
onstru
t an MPT representation of G based on this ordering. For ea
h

i ∈ {1, . . . , n}, let:

• si = min{i, j} where j is the smallest index su
h that vjvi is an edge in G.
• pi = i
• ei = max{i, j} where j is the largest index su
h that vivj is an edge in G.

Clearly I = {(si, pi, ei) : i ∈ {1, . . . , n}} is an MPT representation in whi
h every edge of G is 
aptured.

Now we need to demonstrate that this representation does not in
lude any edges whi
h are not edges

of G. Suppose that for some j, k ∈ {1, . . . , n}, j < k, vjvk /∈ E but sk ≤ pj and ej ≥ pk. Sin
e sk ≤ pj
there must be vi with i < j su
h that vivk ∈ E. Similarly, there must be vℓ with ℓ > k su
h that

vjvℓ ∈ E. However, we now have i < j < k < ℓ with vivk, vjvℓ ∈ E but vjvk /∈ E; i.e., a 
ontradi
tion

to the vertex order. Thus I is an MPT representation of G. �

Noti
e that, sin
e every I-order is an MPT-order and every graph with an MPT-order is an MPT

graph, we have an alternate proof of Corollary 3.3; i.e., that every interval graph is an MPT graph.

Also, sin
e the order of verti
es in an MPT-order 
orresponds to the order of the points in an MPT

representation, they also 
orrespond to the order of the 
orner points in a linear L-system of an MPT

graph.

We 
on
lude this se
tion by further 
hara
terizing MPT graphs as the interse
tion of two related

interval graphs.

Theorem 5.5 G = (V,E) is an MPT graph with MPT-order σ = (v1 < . . . < vn) i� there are interval

graphs H1 = (V,E1) and H2 = (V,E2) su
h that E = E1 ∩ E2, σ is an I-order of H1, and the reverse

of σ (i.e., vn < · · · < v1) is an I-order of H2.

Proof: (=⇒) Let σ = v1 < · · · < vn be an MPT-order of G, and let L be the linear L-system of

G 
onstru
ted in the proof of Theorem 5.4 using this order; i.e., cvi < cvj i� i < j. Constru
t an

an
hored linear L-system L1 by extending the horizontal segment of every L-shape in L to the right

beyond the 
orner of the right-most L-shape in L. Similarly, 
onstru
t an an
hored linear L-system L2
by extending the verti
al segment of every L in L so that it rea
hes above the 
orner of the left-most

L-shape in L. By Proposition 3.2, ea
h of L1 and L2 
orresponds to an interval representation. Let

H1 = (V,E1) and H2 = (V,E2) be the interval graphs spe
i�ed by L1 and L2. Noti
e that, by Theorem
5.2, σ is an I-order of H1 and the reverse of σ is an I-order of H2. Thus, we just need to ensure that

E1 ∩ E2 = E. Clearly E ⊆ E1 ∩ E2 from our 
onstru
tion of L1 and L2. Moreover there 
an be no

edge in both E1 and E2 whi
h is not in E simply due to how these �extra� edges 
ome into existen
e

(see Figure 7).

(⇐=) Let H1 = (V,E1) and H2 = (V,E2) su
h that V = {v1, . . . vn}, σ = (v1 < · · · < vn) is an
I-order of H1, and the reverse of σ is an I-order of H2. We now 
laim that σ is an MPT-order of

12



Figure 7: (left) Lu, Lv su
h that uv ∈ E1 \E. (right) Lu, Lv su
h that uv ∈ E2 \ E.

G = (V,E1 ∩ E2). Consider 1 ≤ i < j < k < ℓ ≤ n where vivk, vjvℓ ∈ E1 ∩ E2. Noti
e that vjvk ∈ E1

sin
e σ is an I-order of H1 and vjvℓ ∈ E1. Similarly, vjvk ∈ E2 sin
e the reverse of σ is an I-order of

H2 and vivℓ ∈ E2. Thus, vjvk ∈ E1 ∩ E2 as needed. �

5.2 Cy
li
 Segment Graphs

In this se
tion we 
hara
terize MPT graphs as interse
tion graphs of line segments from a 
y
li
 line

arrangement. A line arrangement is simply a 
olle
tion of lines in the plane (see [14℄ for more on line

arrangements). A line arrangement A is 
y
li
 when there is a 
onvex fun
tion f (e.g., a parabola)

su
h that every line in A is tangent to f . We de�ne 
y
li
 segment graphs as the interse
tion graphs

of line segments where the underlying line arrangement is 
y
li
 with respe
t to some fun
tion f and

ea
h segment 
ontains a point on f . In the following theorem we prove that 
y
li
 segment graphs are

pre
isely MPT graphs. This follows easily from our 
hara
terization of MPT graphs via MPT-orders

(see Theorem 5.4).

Theorem 5.6 MPT graphs are pre
isely 
y
li
 segment graphs.

Proof: Let σ = (v1 < . . . < vn) be an MPT-order of an MPT graph G. We will 
onstru
t a 
y
li


segment representation of G by mapping ea
h vertex to a segment of a line tangential to the parabola

y = x2. First, we assign ea
h vi the tangent line ℓi of the parabola for the point (i, i
2). Now, to 
hoose

the segment of ℓi for the vertex vi we 
onsider the left-most and right-most verti
es, say vimin
and vimax

,

from N(vi) ∪ {vi}. In parti
ular, we let the segment Si for vi be de�ned as the segment of ℓi starting
from ℓimin

and ending on ℓimax
. Note, if i = imin (i = imax) then we simply use the point (i, i2) as the

starting (ending) point of the segment ℓi. Clearly ea
h Si passes through the point (i, i2). Thus, we

have 
onstru
ted a valid 
y
li
 segment representation. Consider an edge vivj of G with i < j. From
our 
onstru
tion, Si passes through the line ℓj in order to rea
h Simax

. Similarly, Sj passes through

the line ℓi in order to rea
h Sjmin
. Thus, Si and Sj interse
t. Now, suppose that Si and Sj interse
t

(i < j), but vivj is not an edge of G. In order for these segments to interse
t, ea
h must need to �rea
h

over� the other. In parti
ular, this means that there is vp and vq su
h that p < i < j < q, and vivq
and vjvp are edges in G; i.e., this violates the MPT-order. Therefore, every MPT graph has a 
y
li


segment representation.

To 
onstru
t an MPT-order from a 
y
li
 segment representation one simply uses the order of the

tangent points and the proof follows similarly to the above. �

With our 
hara
terization established we note that it may be interesting to 
onsider generalizations

in this 
ontext. In parti
ular, one might 
onsider interse
tion graphs of line segments whi
h are tangent

to 
onvex bodies or unimodal fun
tions in R
2
.
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6 Non-MPT graphs and More Sub
lasses of MPT graphs

In this se
tion we observe two additional stri
t sub
lasses of MPT graphs (namely, outerplanar graphs

and 2D ray graphs). We further observe in�nite families of graphs whi
h are not MPT graphs.

6.1 Outerplanar graphs

In this se
tion we 
onsider outerplanar graphs as a restri
ted form of MPT graphs. In parti
ular,

we 
onsider linear L-
onta
t-systems and demonstrate that the graphs of these 
onta
t systems are

pre
isely outerplanar graphs. It has been independently stated that outerplanar graphs are a sub-


lass of MPT graphs [51℄. Their proof is 
ompletely di�erent from ours and does not provide the


hara
terization we have observed.

A graph is outerplanar if it has a 
rossing-free embedding in the plane su
h that all verti
es are on

the same fa
e. Moreover, an outerplanar graph is said to be maximal when it is not a proper subgraph of

any outerplanar graph with the same number of verti
es. We will demonstrate that outerplanar graphs

are pre
isely the linear 
onta
t L-graphs (see De�nition 6.1 and Theorem 6.3). For more information

on 
onta
t L-graphs see [6, 5, 32℄.

De�nition 6.1 A graph G is a linear L 
onta
t graph when it has a linear L-system L su
h that no

two L-shapes �
ross-over� ea
h other; i.e., for L-shapes Lu = (tu, cu, ru), Lv = (tv, cv , rv), if Lu∩Lv 6= ∅
and cu < cv, then either cu = tv or ru = cv. Moreover, we say su
h an L 
onta
t system is equilateral

when, for ea
h L-shape, the verti
al and horizontal segments have the same length.

We will use the following 
hara
terization of maximal outerplanar graphs related to 2-trees (whi
h

follows easily from [40℄). A 2-tree is a graph that 
an be 
onstru
ted by starting from an edge and

iteratively adding verti
es with exa
tly two adja
ent neighbors. Semi-squares will also play a role

throughout this se
tion. A semi-square is a right-triangle whose verti
al and horizontal sides are the

same length (e.g., the lower-left �half� of a square). Noti
e that, there are four types of semi-squares

depending on the 
hoi
e of 
orner: lower-left (ll), lower-right (lr), upper-left (ul), and upper-right

(ur). It is known that max toleran
e graphs are pre
isely semi-square interse
tion graphs where every

semi-square has the same type (e.g., max toleran
e graphs are pre
isely the ll-semi-square interse
tion

graphs) [30℄.

Theorem 6.2 ([40℄) Let G be a maximal outerplanar graph. For any edge v1v2 of the outerfa
e of G,
the verti
es of G 
an be ordered v1, . . . , vn su
h that vi (2 < i ≤ n) has exa
tly two neighbors, u and v,
in Gi−1 = G[{v1, . . . , vi−1] and uv is and edge of G. We refer to su
h an order as an outerplanar-order.

Theorem 6.3 Every maximal outerplanar graph G is a linear equilateral-L 
onta
t graph.

Proof: Consider an outerplanar order v1, v2, . . . , vn of G. We iteratively build the linear equilateral-

L 
onta
t system as follows. Let Lv1 = (−1, 0, 1) and Lv2 = (0, 1, 2) be the L-shapes for v1 and v2
respe
tively. Clearly Lv1 and Lv2 
onta
t ea
h other at the point (1, 0), both terminate at this point,

are equilateral, and their 
orner points lie on the line y = −x. Moreover, the ur-semi-square de�ned

by the points (0, 0), (1, 0), (1,−1) is:
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• empty (i.e., it is internally disjoint from all the L's we have so far),

• its diagonal is a segment of the line y = −x, and

• the point (1, 0) is the point of 
onta
t between Lv1 and Lv2 .

Now assume that we have a linear equilateral-L 
onta
t system Li−1 for v1, . . . , vi−1 su
h that every

edge uv on the outerfa
e of Gi−1 
orresponds to an empty ur-semi-square as in the base 
ase. We

extend this representation to a representation of Gi as follows. From the outerplanar ordering, the

vertex vi is adja
ent in Gi−1 to pre
isely one pair u, v su
h that uv is an edge on the outerfa
e of Gi−1.

Thus, we have an empty ur-semi-square (x,−x), (x+d,−x), (x+d,−x−d) where the point (x+d,−x)
is the 
onta
t point of Lu and Lv. Consider Li = Li−1∪{Lvi} where Lvi = (x, x+d/2, x+d). Without

loss of generality Lvi 
onta
ts Lu at the point (x + d/2,−x) and Lv at the point (x + d,−x − d/2).
Moreover, these new 
onta
t points form the appropriate empty and disjoint semi-squares as needed.

Finally, sin
e the semi-square 
orresponding to uv was empty before inserting Lvi , the L-shape Lvi

does not interse
t any other L-shapes. Thus, Li is a linear equilateral L 
onta
t system as needed. �

Similarly to how linear L-graphs are equivalent to linear boxi
ity-2 graphs and linear right-triangle

graphs, we have the following 
orollary regarding linear 
onta
t graphs.

Corollary 6.4 The following graph 
lasses are equivalent: outerplanar, linear L 
onta
t, linear equilateral-

L 
onta
t, linear ll-semi-square 
onta
t, linear square 
onta
t.

Proof: Sin
e maximal outerplanar graphs are linear equilateral L 
onta
t graphs (by Theorem 6.3),

all outerplanar graphs are linear equilateral L 
onta
t graphs. In parti
ular, one may simply adjust an

equilateral L a by small amount to remove any individual 
onta
t with another L su
h that no other


onta
t is altered.

Moreover, given any of the 
onta
t representations listed, one 
an easily 
onstru
t an outerplanar

drawing of the graph. In parti
ular, ea
h vertex v is lo
ated at its 
orresponding 
orner point on the

line y = −x and the edges uv are drawn by tra
ing Lu and Lv to the 
orresponding 
onta
t point.

Clearly all verti
es lie on the outside of su
h a drawing and this 
an be done so that no edges interse
t.

�

6.2 2D Ray Graphs

A graph is a 2D ray graph when it is an interse
tion graph of rays in the plane where the rays have

at most two dire
tions and parallel rays do not interse
t (i.e., this is a bipartite graph 
lass). For

more information on this graph 
lass (in
luding its relationship to many well-known graph 
lasses) see

[33, 50℄. We observe that 2D ray graphs are a stri
t sub
lass of bipartite MPT graphs and that they

play an interesting role in the stru
ture of neighborhoods of verti
es of MPT graphs.

Proposition 6.5 2D ray graphs are a stri
t sub
lass of bipartite MPT graphs.

15



Proof: Noti
e that, without loss of generality, we may assume that any 2D ray representation of a

graph G only uses ↓ and← as the two dire
tions its rays follow. With this in mind it is easy to see that

this representation is in fa
t a linear L-system. In parti
ular, we 
an imagine a line with negative slope

that interse
ts all the rays and o

urs �below� and to the �left� of any point of interse
tion between

two rays. Thus, by stopping all rays on this line we have a linear L-system of G. Additionally, this

in
lusion is stri
t sin
e a 6-
y
le is not a 2D ray graph [33℄, but it is easily 
onstru
ted as a linear

L-graph. �

Re
all that MPT graphs have been shown to have O(n2) maximal 
liques [3℄. Moreover, every


omplete bipartite graph is a 2D ray graph. Thus, O(n2) is a tight bound (up to a multipli
ative


onstant) on the number of maximal 
liques in MPT graphs.

We now 
onsider the neighborhood of a single vertex and observe the following 
onne
tion to 2D

ray graphs and interval graphs.

Proposition 6.6 If G is an MPT graph and v is a vertex of G, then the neighborhood of v 
an be

partitioned into VL and VR su
h that:

• G[VL] and G[VR] are interval graphs; and

• the bipartite graph indu
ed by the edges 
onne
ting verti
es from VL to VR is a 2D ray graph.

Proof: Let L be a linear L-system of G. We set VL as the neighbors of v whose 
orner points o

ur

prior to v's 
orner point and de�ne VR to be the remaining neighbors of v. Noti
e that the 
orner

points of verti
es in VR will o

ur after v in L. The L-shapes of VL 
learly form an an
hored linear

L-system and as su
h 
orrespond to an interval representation. Thus, by Proposition 3.2, G[VL] and
(similarly) G[VR] are interval graphs. Moreover, by 
onsidering L, one 
an easily see that the bipartite

graph indu
ed by the edges 
onne
ting verti
es from VL to VR is a 2D ray graph. In parti
ular, the

horizontal segments of VL 
orrespond to ← rays and the verti
al segments of VR 
orrespond to ↓ rays.
�

6.3 Non-MPT graphs

In this se
tion we observe some stru
tural properties of MPT graphs that allow us to identify in�nite

families of non-MPT graphs. These non-MPT graphs will allow us to 
ompare MPT graphs to planar

and permutation graphs.

Proposition 6.7 If G is an MPT graph with non-adja
ent verti
es u and v, then G[N(u) ∩N(v)] is
an interval graph.

Proof: Consider the relative position of u and v in the linear L-system ofG. Without loss of generality

they must o

ur as in Figure 8. In ea
h possibility the 
orner point of any 
ommon neighbour of u
and v o

urs in the shaded region; i.e., in every linear L-system of G, the L-shapes 
orresponding to

N(u)∩N(v) form an an
hored linear L-system (an
hored to v's L-shape). Therefore, by Proposition 3.2,
G[N(u) ∩N(v)] is an interval graph.

�

Noti
e that Proposition 6.7 is tight. In parti
ular, if one adds a independent set I to an interval

graph G su
h that every element of I is adja
ent to every vertex in G, then the resulting graph G′
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Figure 8: The three ways to represent two non-adja
ent verti
es u, v in a linear L-model. Noti
e that

any 
ommon neighbor of u and v must have its 
orner point in the shaded region.

is an MPT graph. Spe
i�
ally, by Proposition 3.2, G has an an
hored linear L-system L. We form a

linear L-system for G′
as follows. Starting from L, one simply adds a set of |I| horizontal segments

su
h that the �rst one o

urs �just below� the an
hor point of L, and ea
h subsequent segment o

urs

�just below� the previous segment. Ea
h su
h segment will interse
t every L-shape of in L (sin
e they

are an
hored) and they are disjoint from ea
h other. Thus, this is a linear L-system of G′
; i.e., G′

is an

MPT graph. This leads to the following observation regarding minimal forbidden indu
ed subgraphs

for MPT graphs. The set of minimal forbidden indu
ed subgraphs of interval graphs is known [36℄ and

is in�nite.

Observation 6.8 If H is a minimal forbidden indu
ed subgraph for interval graphs and G is obtained

from H by adding two non-adja
ent universal verti
es x and y to H; i.e., V (G) = V (H) ∪ {x, y} and
E(G) = E(H)∪ {zu : z ∈ {x, y} and u ∈ V (H)}, then either G, G \ {x}, or H is a minimal forbidden

indu
ed subgraph of MPT graphs.

By Proposition 6.7 we see that K2,2,2, the graph formed by taking a 4-
y
le together with two

non-adja
ent verti
es adja
ent to ea
h vertex of the 
y
le, is not an MPT graph. However, it is easy

to see that this graph is a permutation graph as well as a planar graph (see Figure 9). Moreover, non

planar graphs (e.g., the 5-
lique) and non permutation graphs (e.g., the graph in Figure 2) are both

MPT graphs. Thus we have the following observation.

Figure 9: A planar drawing of the non-MPT graph K2,2,2 together with a permutation representation

of it.

Observation 6.9 The MPT graph 
lass is in
omparable with both planar graphs and permutation

graphs.

The minimal forbidden indu
ed subgraphs of MPT graphs in
lude many more graphs than those

built from the graphs non-interval graphs. For example, we will show that the full subdivision of any

non-outerplanar graph is also not an MPT graph. The full subdivision G of a graph H is the graph

obtained from H by subdividing every edge of G. It is known that any string representation S of the
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full-subdivision H of a planar graph G is 
ombinatorially equivalent to some planar embedding of G
[13℄. In parti
ular, in S, ea
h edge e of G 
orresponds to a string Se whi
h 
onne
ts exa
tly the two

strings 
orresponding to verti
es in
ident with e and Se does not interse
t any other strings. From this

it is easy to see that the full-subdivision of any non-planar graph is not a string graph [13℄.

A graph G is an outer-string graph when it has a string representation su
h that, for a �xed 
ir
le

C, every string is 
ontained within C and exa
tly one endpoint of ea
h string belongs to C. It is

easy to see that outer-string graphs are a super
lass of MPT graphs; i.e., we 
an easily repli
ate a

linear L-system with an outer-string representation. Moreover, in Lemma 6.10, we observe that the

full-subdivision of a non-outerplanar graph is not an outer-string graph and, 
onsequently, not an MPT

graph.

Lemma 6.10 If H is a non-outerplanar graph and G is the graph obtained from H by subdividing

every edge of H, then G is not an outer-string graph (i.e., G is not an MPT graph).

Proof: Sin
e G is not outerplanar, any string representation S of H ne
essarily 
ontains a string

Sv su
h that Sv is 
ontained in a region en
losed by the strings of a set X of non-neighbors of v. In
parti
ular, it is not possible to draw a 
ir
le onto S so that both Sv and every string of the verti
es in

X satisfy the outer-string property. �

Even with the set of forbidden graphs we have observed, there are yet many more whi
h are not


aptured (e.g., the 
omplement of a 7-
y
le). Thus, a 
omplete des
ription of the minimal forbidden

indu
ed subgraphs for MPT graphs remains an open problem.

7 Con
luding Remarks

In this paper we have introdu
ed max point-toleran
e graphs. We have 
hara
terized this 
lass and

demonstrated in
lusions with respe
t to well-known graph 
lasses. Our results are summarized in

Theorems 7.2 and 7.3 below. We also solved the WIS problem in polynomial time, 2-approximated the


lique 
over problem in polynomial time, showed the NP-
ompleteness of the 
oloring problem, and

log(n)-approximated the 
oloring problem in polynomial time.

Interesting open problems remain for this graph 
lass. Perhaps the most interesting is that of

re
ognition. Our 
hara
terizations of this graph 
lass provide a variety of ways to approa
h this prob-

lem. Several 
ombinatorial optimization problems remain open for this graph 
lass. Two parti
ularly

interesting ones are: k-
oloring (for �xed k) and unweighted 
lique 
over. One may also try to im-

prove the χ binding fun
tion as we rely on an existing result regarding 
oloring axis-aligned re
tangles

where no pair are in a 
ontainment relation. Additionally, one may be interested to further study the

relationships with existing graph 
lasses.

Another dire
tion of resear
h would be to study min point-toleran
e graphs. In parti
ular, just as

there are min toleran
e graphs and max toleran
e graphs one 
an 
onsider min point-toleran
e (mPT)

graphs.

De�nition 7.1 A graph G = (V,E) is a min point-toleran
e (mPT) graph if ea
h vertex v of G 
an

be mapped to a pointed-interval (Iv, pv) where Iv is an interval of R and pv ∈ Iv su
h that uv is an

edge of G i� either pu ∈ Iv or pv ∈ Iu.
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It should be noted that this graph 
lass is referred to as point-
ore bi-toleran
e graphs and further

information 
an be found in Chapter 5 of [24℄. Additionally, there is a dire
ted graph 
lass utilizing this

de�nition, namely, the interval 
at
h digraphs [42, 43℄ mentioned in the introdu
tion. The min point-

toleran
e graphs are pre
isely the undire
ted graphs underlying interval 
at
h digraphs. In 
ontrast,

max point-toleran
e graphs are pre
isely the undire
ted graphs underlying the bi-dire
ted edges of

interval 
at
h digraphs.

Theorem 7.2 The max point-toleran
e graph 
lass stri
tly in
ludes interval graphs, outerplanar graphs,

and 2D ray graphs.

Theorem 7.3 For a graph G = (V,E), the following are equivalent:

• G is a max point-toleran
e graph.

• G is a linear L-graph (equivalently, a linear re
tangle-graph or a linear right-triangle-graph).

• The verti
es of G 
an be ordered by < so that for every u, v, w, x ∈ V (G), if u < v < w < x and

uw, vx ∈ E(G), then vw is an edge of G.
• There are two interval graphs H1 = (V,E1) and H2 = (V,E2) su
h that E = E1 ∩ E2 and the

verti
es of G 
an be ordered by < so that for every u < v < w if uw ∈ E1 then uv ∈ E1 and if

uw ∈ E2 then wv ∈ E2.

• G is a 
y
li
 segment graph.

• There is an interval 
at
h digraph D = (V,A) su
h that the bi-dire
ted ar
s of D are pre
isely

the edges of G.
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