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Alfréd Rényi Institute of Mathematics

nagydani@renyi.hu

Torsten Ueckerdt
Institute of Theoretical Informatics

Karlsruhe Institute of Technology

torsten.ueckerdt@kit.edu

August 21, 2020

Abstract

We study covering numbers and local covering numbers with respect to
difference graphs and complete bipartite graphs. In particular we show
that in every cover of a Young diagram with

(
2k
k

)
steps with generalized

rectangles there is a row or a column in the diagram that is used by

∗Supported by the European Union, co-financed by the European Social Fund (EFOP-
3.6.3-VEKOP-16-2017-00002).
†Partially supported by DFG grant FE-340/13-1
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at least k + 1 rectangles, and prove that this is best-possible. This
answers two questions by Kim, Martin, Masař́ık, Shull, Smith, Uzzell,
and Wang [15], namely:

1. What is the local complete bipartite covering number of a differ-
ence graph?

2. Is there a sequence of graphs with constant local difference graph
covering number and unbounded local complete bipartite cover-
ing number?

We add to the study of these local covering numbers with a lower bound
construction and some examples. Following Kim et al., we use the
results on local covering numbers to provide lower and upper bounds
for the local dimension of partially ordered sets of height 2. We discuss
the local dimension of some posets related to Boolean lattices and show
that the poset induced by the first two layers of the Boolean lattice has
local dimension (1 + o(1)) log2 log2 n. We conclude with some remarks
on covering numbers for digraphs and Ferrers dimension.

1 Introduction

The covering number of a graph H (host) with respect to a class F is the
least k such that there are graphs G1, . . . , Gk ∈ F with Gi ⊂ H for i ∈ [k]
such that their union covers the edges of H and no other edges. We denote
this number by cF(H). The study of covering numbers has a long tradition:

• In 1891 Petersen [20] showed that the covering number of 2k-regular
graphs with respect to 2-regular graphs is k.

• In 1964 Nash-William [19] defined the arboricity of a graph as the
covering number with respect to forests and showed that it equals the
lower bound given by the maximum local density.

• The track number introduced by Gyárfás and West [11] and the thick-
ness introduced by Aggarwal et al. [1] correspond to covering numbers
with respect to interval graphs and planar graphs respectively.

Knauer and Ueckerdt [17] proposed the study of local covering numbers.
This number is defined as the minimum number k such that there is a cover
of H with graphs from F (see above) such that every vertex of H is con-
tained in at most k members of the cover. We denote the local covering
number by cF` (H). Fishburn and Hammer [9] introduced the bipartite de-
gree which equals what we call the local covering number with respect to
complete bipartite graphs. Motivated by questions regarding the local di-
mension of posets, Kim et al. [15] studied the local covering number with
respect to difference graphs and compared this to the local covering number
with respect to complete bipartite graphs.

2



In this paper we continue the studies initiated in [15]. In Section 2 we
discuss local coverings with difference graphs and complete bipartite graphs.
With Theorem 1 we give a precise result regarding the local covering number
of a difference graph (Young diagram) with respect to complete bipartite
graphs (generalized rectangles). This answers a question raised in [15].

Section 3 relates the results to the local dimension of posets. In this
section we also discuss aspects of the local dimension of Boolean lattices.
Finally, in Section 4 we discuss covering numbers of directed graphs and
their relation with order dimension and notions of Ferrers dimension.

2 Covering numbers

Following the notation in [17], local covering numbers are defined as follows.
For a graph class F and a graph H, a F-covering of H is a set of graphs
G1, . . . , Gt ∈ F with H = G1 ∪ · · · ∪ Gt. (In [17] this is called an injective
F-covering. But as all coverings considered here are injective, we omit this
specification throughout.) A F-covering of H is k-local if every vertex of H
is contained in at most k of the graphs G1, . . . , Gt, and the local F-covering
number of H, denoted by cF` (H), is the smallest k for which a k-local F-cover
of H exists.

A difference graph is a bipartite graph in which the vertices of one partite
set can be ordered a1, . . . , ar in such a way that N(ai) ⊆ N(ai−1) for i =
2, . . . , r, i.e., the neighbourhoods of these vertices along this ordering are
weakly nesting.

Difference graphs are closely related to Young diagrams. Let N denote
the set of positive integers. For x ∈ N we denote [x] = {1, . . . , x}. A
Young diagram with r rows and c columns is a subset Y ⊆ [r] × [c] such
that whenever (i, j) ∈ Y , then (i − 1, j) ∈ Y provided i ≥ 2, as well as
(i, j − 1) ∈ Y provided j ≥ 2. A Young diagram1 is visualized as a set
of axis-aligned unit squares, called cells that are arranged consecutively in
rows (first row at the top) and columns (first column on the left), each row
starting in the first column, and with every row (except the first) being at
most as long as the row above.

A generalized rectangle (also called combinatorial rectangle) in a Young
diagram Y ⊆ [r] × [c] is a set R of the form R = S × T with S ⊆ [r] and
T ⊆ [c] and R ⊆ Y . Note that (unless Y = [r]× [c]) not every set of the form
R = S×T with S ⊆ [r] and T ⊆ [c] satisfies R ⊆ Y . A generalized rectangle
R = S×T with S being a set of consecutive numbers in [r] and T being a set
of consecutive numbers in [c] is an actual rectangle. A generalized rectangle
R = S × T uses the rows in S and the columns in T . See Figure 2 for an
illustrative example.

1In the literature our Young diagrams are more frequently called Ferrers diagrams. We
stick to Young diagram to be consistent with [15].
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Difference graphs can be characterized as those bipartite graphs H =
(V,E) with bipartition V = A∪· B, |A| = r, |B| = c, which admit a bipartite
adjacency matrix M = (ms,t)s∈A,t∈B can be represented as a Young diagram
Y ⊆ [r]× [c] as follows:

∀s ∈ A, t ∈ B : {s, t} ∈ E ⇔ (s, t) ∈ Y ⇔ ms,t = 1

Moreover, a complete bipartite subgraph G of H corresponds to a generalized
rectangle R in Y . Rows and columns of M correspond to vertices of H in
A and B, respectively.

Figure 1: Left: A Young diagram Y with r = 5 rows and c = 6 columns.
Highlighted are the generalized rectangle {1, 4}×{1, 3} (blue), and the actual
rectangle {2, 3}×{2, 3} (red). Right: A corresponding difference graph with
corresponding red and blue K2,2.

In [15], Kim et al. introduced the concept of covering a Young diagram
with generalized rectangles subject to minimizing the maximum number
of rectangles intersecting any row or column. Their motivation was to in-
vestigate the relations between local difference covering numbers and local
complete bipartite covering numbers.

Let D denote the class of all difference graphs, and CB ⊂ D the class
of all complete bipartite graphs. Clearly, we have cD` (H) ≤ cCB` (H) for
all graphs H. Kim et al. [15] asked whether there is a sequence of graphs
(Hi : i ∈ N) for which cD` (Hi) is constant while cCB` (Hi) is unbounded. They
prove that for all graphs H on n vertices,

cCB` (H) ≤ cD` (H) · dlog2(n/2 + 1)e ,

by showing that cCB` (H) ≤ dlog2(r + 1)e whenever H ∈ D is a difference
graph with one partite set of size r. However, no lower bound on cCB` (H) for
H ∈ D is established in [15]. Specifically, Kim et al. ask for the exact value of
cCB` (Hi) for the difference graph Hi with vertex set {a1, . . . , ai}∪{b1, . . . , bi}
and N(aj) = {b1, . . . , bj} for all j ∈ [i]. For the case that i + 1 is a power
of 2 they prove the upper bound cCB` (Hi) ≤ log2(i + 1)− 1.

The number of steps of a Young diagram Y ⊆ [r]× [c] is the number of
different row lengths in Y , i.e., the cardinality of

Z = {(s, t) ∈ Y | (s + 1, t) /∈ Y and (s, t + 1) /∈ Y }.
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The cells in Z are called the steps of Y . Young diagrams with n elements,
r rows, c columns, and z steps, visualize partitions of n into r unlabeled
summands (row lengths) with summands of z different values and largest
summand being c.

We say that Y is covered by a set C of generalized rectangles if Y =⋃
R∈C R, i.e., Y is the union of all rectangles in C. In this case we also

say that C is a cover of Y . If additionally the rectangles in C are pairwise
disjoint, we call C a partition of Y . For example, Figure 2 shows a Young
diagram with a partition into actual rectangles.

Theorem 1. For any k ∈ N, any Young diagram Y can be covered by a
set C of generalized rectangles such that each row and each column of Y is
used by at most k rectangles in C if and only if Y has strictly less than

(
2k
k

)
steps.

The Young diagram of the difference graph Hi is Yi = {(s, t) ∈ [i]× [i] |
s + t ≤ i + 1}, i.e., the (unique) Young diagram with i rows, i columns,
and i steps. Therefore Theorem 1 answers the questions raised by Kim et
al.: cCB` (Hi) is the smallest integer k such that i <

(
2k
k

)
. In particular

(Hi : i ∈ N) is a sequence of graphs for which cD` (Hi) is constant 1 while
cCB` (Hi) is unbounded.

2.1 Proof of Theorem 1

Throughout we shall simply use the term rectangle for generalized rectangles,
and rely on the term actual rectangle when specifically meaning rectangles
that are contiguous. For a Young diagram Y and i, j ∈ N, let us define a
cover C of Y to be (i, j)-local if each row of Y is used by at most i rectangles
in C and each column of Y is used by at most j rectangles in C. Recall that
Yz is the Young diagram with z rows, z columns, and z steps. See Figure 2.

Figure 2: The Young diagram Y9 with 9 steps and a (2, 3)-local partition
of Y with actual rectangles.

We start with a lemma stating that instead of considering any Young
diagram with z steps, we may restrict our attention to just Yz.

Lemma 2. Let i, j, z ∈ N and Y be any Young diagram with z steps. Then Y
admits an (i, j)-local cover if and only if Yz admits an (i, j)-local cover with
exactly z rectangles.
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Figure 3: Transforming a cover of any Young diagram Y with 5 steps into
a cover of Y5 (left) and vice versa (right).

Proof. First assume that Y admits an (i, j)-local cover C. Every rectangle is
contained in a [s]× [t] for some step (s, t) ∈ Z. Thus, if C consists of strictly
more than z = |Z| rectangles, then by the pigeonhole principle there are
R1, R2 ∈ C, R1 6= R2, such that R1, R2 ⊆ [s] × [t] for some step (s, t) ∈ Z.
However, in this case C − {R1, R2}+ {R1 ∪R2} is also an (i, j)-local cover
of Y with one rectangle less, where {R1 ∪ R2} denotes the rectangle whose
row set and column set is the union of the row set and column set of R1 and
R2. Thus, by repeating this argument, we may assume that |C| = z.

If Y 6= Yz, there is a row s or a column t that is not used by any step in
Z. Apply to Y (and any cover of Y ) the mapping N× N→ N× N with

(x, y) 7→

{
(x, y) if x < s

(x− 1, y) if x ≥ s
respectively (x, y) 7→

{
(x, y) if y < t

(x, y − 1) if y ≥ t

Intuitively, we cut out row s (respectively column t), moving all rows below
one step up (respectively all columns to the right one step left). This gives
an (i, j)-local cover of a smaller Young diagram with z steps, and eventually
leads to an (i, j)-local cover of Yz, as desired. See the left of Figure 3.

On the other hand, if Yz admits an (i, j)-local cover C = {R1, . . . , Rz},
this defines an (i, j)-local cover of Y as follows. Index the rows used by the
steps Z of Y by s1 < · · · < sz and the columns used by the steps Z of Y by
t1 < · · · < tz and let s0 = t0 = 0. Defining

R′a = {(s, t) ∈ Y | sx−1 < s ≤ sx and ty−1 < t ≤ ty for some (x, y) ∈ Ra}

for a = 1, . . . , z gives an (i, j)-local cover {R′1, . . . , R′z} of Y . See the right
of Figure 3.

Observe that the construction maps an actual rectangle Ra of Yz to an
actual rectangle R′a of Y . Also, if {R1, . . . , Rz} is a partition of Yz, then
{R′1, . . . , R′z} is a partition of Y . This will be used in the proof of Item (i)
of Theorem 3.

Let us now turn to our main result. In fact, instead of proving Theorem 1,
we shall show the following stronger but also more technical statement.
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R

Y ′

Y ′′

Y

Figure 4: Left: The Young diagram Yz with z = f(1, 7) =
(
1+7
1

)
− 1 = 7

steps and a (1, 7)-local partition of Yz into actual rectangles. Right: The
Young diagram Yz with z = f(3, 2) =

(
3+2
3

)
− 1 = 9 steps, the rectangle

R = [a] × [z + 1 − a] = [6] × [4] with a = f(2, 2) + 1 = 6, and the Young
diagrams Y ′ and Y ′′ with f(2, 2) = 5 and f(3, 1) = 3 steps, respectively.

Theorem 3. For any i, j, z ∈ N and any Young diagram Y with z steps,
the following hold.

(i) If z <
(
i+j
i

)
, then there exists an (i, j)-local partition of Y with actual

rectangles.

(ii) If z ≥
(
i+j
i

)
, then there exists no (i, j)-local cover of Y with generalized

rectangles.

Proof. First, let us prove Item (i). For shorthand notation, we define
f(i, j) :=

(
i+j
i

)
− 1. It will be crucial for us that the numbers {f(i, j)}i,j≥1

solve the recursion

f(i, j) =


f(i− 1, j) + f(i, j − 1) + 1 if i, j ≥ 2

j if i = 1, j ≥ 1

i if i ≥ 1, j = 1.

(1)

This follows directly from Pascal’s rule
(
a
b

)
=
(
a−1
b−1
)

+
(
a−1
b

)
for any a, b ∈ N

with 1 ≤ b ≤ a− 1.
Due to Lemma 2 it suffices to show that for any i, j ∈ N and z ≤ f(i, j) =(

i+j
i

)
− 1, there is an (i, j)-local partition of Yz with actual rectangles.

In case z = f(i, j), we define the (i, j)-local partition C by induction on
i and j. For illustrations refer to Figure 4.

If i = 1, respectively j = 1, then C is the set of rows of Yj , respectively
the set of columns of Yi. If i ≥ 2 and j ≥ 2, then z = f(i, j) = f(i− 1, j) +
f(i, j − 1) + 1 by (1). Consider the actual rectangle R = [a] × [z + 1 − a]
for a = f(i − 1, j) + 1. Then Yz − R splits into a right-shifted copy Y ′ of
Ya−1 and a down-shifted copy Y ′′ of Yz−a. Note that a− 1 = f(i− 1, j) and
z − a = f(i, j − 1).

By induction we have an (i− 1, j)-local cover C ′ of Y ′ and an (i, j − 1)-
local cover C ′′ of Y ′′, each consisting of pairwise disjoint actual rectangles.
Define

C = {R} ∪ C ′ ∪ C ′′,
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M

Y

Y ′′

Y ′

Figure 5: The Young diagram Yz with z =
(
3+2
3

)
= 10 steps, the rectangle

M = [a] × [z − a] = [6] × [4] with a =
(
2+2
2

)
= 6, and the Young diagrams

Y ′ and Y ′′ with
(
2+2
2

)
= 6 and

(
3+1
3

)
= 4 steps, respectively.

this is a cover of Yz consisting of pairwise disjoint actual rectangles. Rows
1 to a are used by R and at most i − 1 rectangles in C ′, and rows a + 1
to z are used by at most i rectangles in C ′′. Hence each row of Yz is used
by at most i rectangles in C. Similarly, each column of Yz is used by at
most j rectangles in C. Thus C is an (i, j)-local partition of Yz by actual
rectangles, as desired.

For z′ < z = f(i, j) we obtain an (i, j)-local partition of Yz′ by restricting
the rectangles of the cover C of Yz to the rows from z − z′ to z. This yields
an (i, j)-local partition of a down-shifted copy Y ′ of Yz′ .

Now, let us prove Item (ii). Due to Lemma 2 it is sufficient to show that
for i, j ∈ N the Young diagram Yz′ with z′ ≥

(
i+j
i

)
admits no (i, j)-local

cover. If Yz′ with z′ > z =
(
i+j
i

)
has an (i, j)-local cover, then by restricting

the rectangles of the cover to the rows from z′ − z to z′ we obtain an (i, j)-
local cover of a down-shifted copy of Yz. Therefore, we only have to consider
Yz.

Let C be a cover of Yz. We shall prove that C is not (i, j)-local. Again,
we proceed by induction on i and j, where illustrations are given in Figure 5.

If i = 1, then each row is only used by a single rectangle in C, other-
wise, C would not be (1, j)-local. Hence, each row of Yz is a rectangle in C.
Thus column 1 of Yz is used by z = j + 1 rectangles, proving that C is not
(i, j)-local.

The case j = 1 is symmetric to the previous by exchanging rows and
columns.

Now let i ≥ 2 and j ≥ 2. We have z =
(
i+j
i

)
=
(
(i−1)+j
i−1

)
+
(
i+(j−1)

i

)
.

Consider the rectangle M = [a] × [z − a] for a =
(
(i−1)+j
i−1

)
. Then Yz −M

splits into a right-shifted Y ′ copy of Ya and a down-shifted copy Y ′′ of Yz−a.
Note that z − a =

(
i+(j−1)

i

)
.

Let C ′, respectively C ′′, be the subset of rectangles in C using at least
one of the rows 1, . . . , a in Y ′, respectively at least one of the columns
1, . . . , z − a in Y ′′. Note that C ′ ∩ C ′′ = ∅ as each generalized rectangle is
contained in Yz.
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Prune each rectangle in C ′ to the columns z − a + 1, . . . , z and each
rectangle in C ′′ to the rows a + 1, . . . , z. This yields covers of Y ′ and Y ′′.

The Young diagram Y ′ is a copy of Ya and a =
(
(i−1)+j
i−1

)
. Hence, by

induction the pruned cover C ′ is not (i− 1, j)-local. If some column t of Y ′

is used by at least j + 1 rectangles in C ′, this column of Yz is used by at
least j + 1 rectangles in C, proving that C is not (i, j)-local, as desired. So
we may assume that some row s of Y ′ is used by at least i rectangles in C ′.

Symmetrically, Y ′′ is a copy of Yz−a and z − a =
(
i+(j−1)

i

)
. Hence, the

pruned C ′′ is a cover of Y ′′, which by induction is not (i, j − 1)-local, and
we may assume that some column t of Y ′′ is used by at least j rectangles
in C ′′. Hence row s in Yz is used by at least i rectangles in C ′ and column
t in Yz is used by at least j rectangles in C ′′. As C ′ ∩ C ′′ = ∅ and element
(s, t) is contained in some rectangle of C, either row s of Yz is used by at
least i + 1 rectangles or column t of Yz is used by at least j + 1 rectangles
(or both), proving that C is not (i, j)-local.

Finally, Theorem 1 follows from Theorem 3 by setting i = j = k.

2.2 More about local covering numbers

Using Theorem 1 and
(
2k
k

)
= (1 + o(1)) 1√

kπ
22k, we see that

• for every difference graph H the exact value of cCB` (H) is the smallest

k ∈ N such that for the number z of steps2 of H it holds that z <
(
2k
k

)
,

• the difference graphs Hi, i ∈ N (corresponding to the Young diagrams
Yi, i ∈ N), defined by Kim et al. [15] satisfy

cCB` (Hi) = 1
2 log2 i + 1

4 log2 log2 i + O(1),

(and, using more precise bounds on Stirling’s approximation, it can be
shown that the O(1) term is at most 2 for all i ≥ 2),

• for this sequence (Hi : i ∈ N) of difference graphs cD` (Hi) is constant
1, while cCB` (Hi) is unbounded, and

• for all graphs H on n vertices,

cCB` (H) ≤ cD` (H) ·
(
1
2 log2

n
2 + 1

4 log2 log2
n
2 + 2

)
. (2)

It is also interesting to understand the worst case scenario in covering
a bipartite graph by complete bipartite graphs or difference graphs. The
following result was already shown in [15]; here we present it with a different
proof.

2For graphs, this is the number of different sizes of neighbourhoods in one partite set.
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Theorem 4 ([15]). For any n there exists a bipartite graph H on n vertices
such that cD` (H) = Ω(n/ log n).

Proof. Suppose n ≥ 2 is even. Consider a random bipartite graph G with
vertex classes A and B, where |A| = |B| = n/2 and each edge is chosen
with probability 1/2. For any t ≥ 2, the expected number of Kt,t’s in G is

2−t
2(n/2

t

)2
< 2−t

2
(n/2)2t, where

(
n/2
t

)2
is the number of ways to choose two

t-element subsets from A and B and 2−t
2

is the probability that a specific
choice gives a Kt,t. If we choose t = d2 log2 ne, then the expected number
of Kt,t’s (and hence the probability that G contains a Kt,t) is less than 1/2.
The probability that e(G) ≥ 1

8n
2 is at least 1/2, so with nonzero probability

e(G) ≥ 1
8n

2 and G has no Kt,t.
Now consider a cover of G with difference graphs. We call a star an

A-star (resp. B-star) if its centre is in A (resp. B). No difference graph in
the cover contains a Kt,t and thus every difference graph in the cover can
be decomposed into at most t− 1 A-stars or at most t− 1 B-stars. Without
loss of generality, at least half the edges of G are covered by A-stars. As
B has n/2 vertices, among the 1

16n
2 edges covered by A-stars there are at

least n/8 incident to some vertex v ∈ B. Each difference graph in the cover
contributes at most t − 1 ≤ 2 log2 n of the A-stars containing v. Therefore
at least n

16 log2 n
difference graphs of the cover contain v.

As Kim et al. [15] already observed, the upper bound follows from a
theorem of Erdős and Pyber [7], which shows that a cover of corresponding
size exists even with complete bipartite graphs.

Theorem 5 (Erdős and Pyber). For any simple graph H on n vertices,
cCB` (H) = O(n/ log n).

Hansel [12] (see also Király, Nagy, Pálvölgyi and Visontai [16] and Bol-
lobás and Scott [3]) proved that cCB` (Kn) ≥ log2 n, which together with the
obvious upper bound gives the following proposition:

Proposition 6. For all n, cCB` (Kn) = dlog2 ne.

In fact, Hansel proved a somewhat stronger result, namely that, for
every CB-covering of Kn, the average number of complete bipartite graphs
in which a vertex appears is at least log2 n.

An interesting case is K?
n,n, which is obtained by deleting the edges of

a perfect matching from the complete bipartite graph Kn,n. (In fact, we
will use Proposition 7 below in combination with Proposition 6 later in
Section 3.2.) Note that K?

n,n is the union of two difference graphs. What is
the best covering of this graph by complete bipartite graphs?

Proposition 7. cCB` (K?
n,n) ≤ cCB` (Kn) ≤ 2 cCB` (K?

n,n) and therefore

cCB` (K?
n,n) = Θ(log n).
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Proof. Let us denote the vertices of Kn by {v1, v2, . . . vn}, and the vertices
of K?

n,n by {a1, a2, . . . an, b1, b2, . . . bn} where aibj ∈ E(K?
n,n) ⇔ i 6= j. One

can easily obtain a covering of K?
n,n from a covering of Kn. For every

complete bipartite graph in the covering with vertex classes {vi1 , vi2 , . . . vip}
and {vj1 , vj2 , . . . vjq} take the complete bipartite graph with vertex classes
{ai1 , ai2 , . . . aip} and {bj1 , bj2 , . . . bjq} and another one with vertex classes
{bi1 , bi2 , . . . bip} and {aj1 , aj2 , . . . ajq}. This will be a covering of K?

n,n where
the vertices ai and bi are covered exactly as many times as vi in the covering
of Kn. This construction shows cCB` (K?

n,n) ≤ cCB` (Kn).
On the other hand, we can obtain a covering of Kn from a covering of

K?
n,n. For a complete bipartite graph in the covering with vertex classes
{ai1 , ai2 , . . . aip} and {bj1 , bj2 , . . . bjq} take the complete bipartite graph with
vertex classes {vi1 , vi2 , . . . vip} and {vj1 , vj2 , . . . vjq}. This will be a covering
of Kn where the vertex vi is covered exactly as many times as ai and bi are
covered in total in the covering of K?

n,n. This construction shows cCB` (Kn) ≤
2 cCB` (K?

n,n).

3 Local dimension of posets

The motivation for Kim et al. [15] to study local difference covering numbers
comes from the local dimension of posets, a notion recently introduced by
Ueckerdt [23].

For a partially ordered set (also called a poset) P = (P,≤), define a
realizer as a set L of linear extensions such that if x and y are incomparable
(denoted x||y), then x < y in some L ∈ L and y < x in some L′ ∈ L. The
dimension of P, denoted dim(P), is the minimum size of a realizer. The
dimension of a poset is a widely studied parameter.

A partial linear extension of P is a linear extension L of an induced
subposet of P. A local realizer of P is a non-empty set L of partial linear
extensions such that (1) if x < y in P, then x < y in some L ∈ L, and
(2) if x and y are incomparable (denoted x||y), then x < y in some L ∈ L
and y < x in some L′ ∈ L. The local dimension of P, denoted ldim(P), is
then the smallest k for which there exists a local realizer L of P with each
x ∈ P appearing in at most k partial linear extensions L ∈ L. Note that by
definition ldim(P) ≤ dim(P) for every poset P.

For an arbitrary height-two poset P = (P,≤), Kim et al. [15] consider
the bipartite graph GP = (P,E) with partite sets A = min(P) (the minimal
elements of P) and B = P − min(P) ⊆ max(P) (Unless P has isolated
elements, these are just the maximal elements of P.) whose edges correspond
to the so-called critical pairs:

∀x ∈ A, y ∈ B : {x, y} ∈ E ⇔ x||y in P

11



They prove that

cD` (GP)− 2 ≤ ldim(P) ≤ cCB` (GP) + 2,

which also gives good bounds for ldim(P) when P has larger height, since
we have

ldim(Q)− 2 ≤ ldim(P) ≤ 2 ldim(Q)− 1

for the associated height-two posetQ known as the split of P (see [2], Lemma
5.5). Using these results and the the bound cCB` (GQ) ≤ cD` (GQ) · (1/2 +
o(1)) log2 n in Eq. (2), we can conclude the following for the local dimension
of any poset.

Corollary 8. For any poset P on n elements with split Q we have

cD` (GQ)− 4 ≤ ldim(P) ≤ cD` (GQ) · (1 + o(1)) log2 n.

3.1 Local dimension of the Boolean lattice

Let 2[n] denote the Boolean lattice of subsets of the n element set [n] (note
that this lattice has 2n elements, one for each subset of [n]). Since the
dimension of 2[n] is n we immediately have ldim(2[n]) ≤ n.

For any integer s ∈ {0, . . . , n} let
(
[n]
s

)
denote the family of all the subsets

of [n] of size s. This we call layer s or the s’th layer of 2[n] and let P (s, t;n)
be the subposet of 2[n] induced by layers s and t. We denote ldim(s, t;n) :=
ldim(P (s, t;n)).

The study of the dimension dim(s, t;n) := dim(P (s, t;n)) has a long
history; see for example the valuable survey of Kierstead [14] on the topic.

Kim et al. [15] give a lower bound for ldim(1, n−dn/ee;n) = Ω(n/ log n)
which implies that ldim(2[n]) = Ω(n/ log n). For the height 2 poset P (1, n−
dn/ee;n) they in fact give bounds on the local covering numbers of the
corresponding bipartite graphs.

A similar lower bound on ldim(2[n]) can be obtained as follows: Let
k = ldim(2[n]) and consider a local realizer L1, . . . , Ls such that each subset
of [n] appears in at most k of the partial linear extensions. Altogether
there are at most kn appearances of singletons and at most kn partial linear
extensions containing a singleton. The singletons cut these partial linear
extensions altogether into at most 2kn consecutive parts. Given a non-
singleton fixed set A of [n], for any given such part we have two options, A
is either present in this part or not. Moreover, A is present in at most k
partial linear extensions, thus in at most k such parts. Two non-singleton
sets A 6= B cannot be present in exactly the same parts by the definition of
a local realizer. Thus, the number of non-singleton sets A (which is equal to
2n − n) is at most the number of subsets of size at most k on 2kn elements.
Hence 2n − n ≤

∑k
j=1

(
2nk
j

)
≤ k

(
2nk
k

)
. From the inequality it follows that

k ≥ (1− o(1))n/ log2 n.

12



Problem 1. Determine the asymptotics of ldim(2[n]).

A possible approach towards resolving the problem would be to study
the local dimension of appropriate pairs of levels. We continue with what
we can say regarding ldim(1, 2;n).

3.2 The subposet of the first two levels

In this subsection, we look at the poset P (1, 2;n) and the graph GP (1,2;n)

of critical pairs in P (1, 2;n). Throughout this section, we identify the first
layer with [n] in the obvious way.

It is known that the dimension of P (1, 2;n) grows asymptotically as
log2 log2 n + (12 + o(1)) log2 log2 log2 n. Spencer proved the upper bound
in [22], and Füredi, Hajnal, Rödl, and Trotter proved the corresponding
lower bound in [10]. The maximum n such that dim(1, 2;n) ≤ k is sometimes
denoted HM(k), see OEIS3 Sequence A001206 and Hoşten and Morris [13].

Theorem 9. As n→∞, ldim(P (1, 2;n)) = log2 log2 n+O(log2 log2 log2 n).

Proof. The upper bound follows from Spencer’s upper bound for
dim(P (1, 2;n)). We prove the lower bound

ldim(P (1, 2;n)) ≥ cD` (GP (1,2;n))− 2 ≥
log2 log2 n−

(
1 + 1

ln 2

)
log2 log2 log2 n− o(1).

Let D be a D-covering of G = GP (1,2;n). Recall that, for each D ∈ D, the
singletons in D are weakly ordered by reverse inclusion of their neighbour-
hoods. We define a sequence of difference graphs Di ∈ D and a sequence
of subsets Li ⊆ [n] as follows. Let c < 1 be a fixed positive real num-
ber. First, choose D1 ∈ D such that D1 contains at least nc singletons, if
there is such a graph in D. If there isn’t, then each pair is contained in
at least n−2

nc � log2 log2 n elements of D. Otherwise, let L1 be the set of
singletons in D1. Now suppose Li and D1, D2, . . . , Di have already been
chosen. We choose a graph Di+1 ∈ D such that V (Di+1) ∩ Li ≥ |Li|c,
if such a graph exists. If so, then, by the Erdős-Szekeres theorem, there
is a subset Li+1 ⊆ V (Di+1) ∩ Li such that |Li+1| ≥ |Li|c/2 and the ele-
ments of Li+1 appear in the same or opposite order in Di and Di+1. Con-
tinue in this way until either |Li| ≤ log2 n or |Li| > log2 n and there is
no graph in D that contains |Li|c elements of Li. In the former case, each
element of Li appears in at least i elements of D, and n(c/2)i ≤ log2 n, so
i ≥ 1

1−log2 c
(log2 log2 n − log2 log2 log2 n). In the latter case, let a and b be

the first and last elements of Li in the order induced by Di and look at the
set of chosen difference graphs Dj that contain the pair ab. Because the
ordering on Li induced by Dj begins with either a or b for every j, none of

3On-Line Encyclopedia of Integer Sequences; https://oeis.org
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these graphs can contain any edges from ab to Li. Every other difference
graph in D contains less than |Li|c edges from Li to ab, so there must be at

least |Li|−2
|Li|c ≥ (log2 n)1−c− 2(log2 n)−c such difference graphs containing ab.

Now, if we take c = 1− log2 log2 log2 n
log2 log2 n

, then

(log2 n)1−c − 2(log2 n)−c =

(log2 n)
log2 log2 log2 n

log2 log2 n − 2(log2 n)−1+o(1) =

2(
((((log2 log2 n ·

log2 log2 log2 n

((((log2 log2 n − o(1) =

log2 log2 n− o(1).

Using the affine approximation

1
1−log2 c

= 1 + 1
ln 2(c− 1) + O

(
(c− 1)2

)
as c→ 1, we have

1
1−log2 c

(log2 log2 n− log2 log2 log2 n) =(
1− 1

ln 2 ·
log2 log2 log2 n

log2 log2 n
+ O

(
( log2 log2 log2 nlog2 log2 n

)2
))

(log2 log2 n− log2 log2 log2 n) =

log2 log2 n−
(
1 + 1

ln 2

)
log2 log2 log2 n− o(1).

Therefore,

cD` (GP (1,2;n)) ≥ min
{

log2 log2 n− o(1),

log2 log2 n−
(
1 + 1

ln 2

)
log2 log2 log2 n− o(1)

}
,

and the stated lower bound follows immediately.

Theorem 10. As n→∞, cCB` (GP (1,2;n)) = Θ(log n).

Proof. First we prove the lower bound. Choose any x ∈ [n] and consider the
subgraph F of GP (1,2;n) induced by the set of singletons other than x and the
set of pairs containing x. F is a complete bipartite graph minus a matching,
and the homomorphism ϕ : F → Kn−1 defined by ϕ(y) = ϕ(xy) = y is a
double covering map. Hence if B is a CB-covering of GP (1,2;n) and B′ is
its restriction to F , then B′ is a CB-covering of K?

n−1,n−1. Therefore, by

Proposition 6 and Proposition 7, cCB` (GP (1,2;n)) ≥ 1
2 log2(n− 1).

Now we prove the upper bound. Choose a random partition A ∪· B of
[n] and consider the complete bipartite subgraph of GP (1,2;n) induced by
the set of singletons in A and the set of pairs of elements of B. The edge
{a, bc} is covered by this subgraph if and only if a ∈ A, b, c ∈ B, so the
probability that the edge is not covered is 7

8 . If we choose 3 log8/7 n such
partitions independently, then the expected number of edges not covered is

3
(
n
3

)(
7
8

)3 log8/7 n < n3 · n−3 = 1. Therefore, cCB` (GP (1,2;n)) ≤ 3 log8/7 n.
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4 Ferrers Dimension

Covering numbers and local covering numbers can also be defined for di-
rected graphs. In this section we provide some links to research in this
direction with emphasis to questions regarding notions of dimension.

Recall that Young diagrams are more commonly called Ferrers diagrams.
Riguet [21] defined a Ferrers relation4 as a relation R ⊆ X×Y on (possibly
overlapping) base sets X and Y such that

(x, y) ∈ R and (x′, y′) ∈ R =⇒ (x, y′) ∈ R or (x′, y) ∈ R.

A relation R ⊂ X × Y can be viewed as a digraph D with VD = X ∪ Y
and ED = R. A digraph thus corresponding to a Ferrers relation is a
Ferrers digraph. Riguet characterized Ferrers digraphs as those in which
for N+(v) ⊆ N+(w) or N+(w) ⊆ N+(v) for any two vertices v, w, i.e., the
out-neighbohoods are linearly ordered by inclusion. Hence, bipartite Ferrers
digraphs (i.e., when X ∩ Y = ∅) are exactly the difference graphs.

By looking at y = x′ in the definition of a Ferrers relation we see that
Ferrers digraphs without loops are 2+2-free and transitive, i.e., they are
interval orders. (A 2+2 is an induced matching on two edges). In general,
however, Ferrers digraphs may have loops.

In the spirit of order dimension, the Ferrers dimension of a digraph D
(fdim(D)) is the minimum cardinality of a set of Ferrers digraphs whose in-
tersection is D. Here intersection is defined as D1∩D2 := (VD1 ∩VD2 , ED1 ∩
ED2). If P = (P,≤) is a poset and DP the digraph associated with the
order relation (reflexivity implies that DP has loops at all vertices), then
dim(P) = fdim(DP). This was shown by Bouchet [4] and Cogis [5]. The
result implies that Ferrers dimension is a generalization of order dimension.
Since Ferrers digraphs are characterized by having a staircase shaped adja-
cency matrix the complement of a Ferrers digraph is again a Ferrers digraph.
Therefore, instead of representing a digraph as the intersection of Ferrers
digraphs containing it (D =

⋂
Fi with D ⊆ Fi), we can as well represent

its complement as union of Ferrers digraphs contained in it (D =
⋃
Fi with

Fi ⊆ D). This simple observation is sometimes useful and indicates the
connection to covering numbers, cf., Section 2.

The Ferrers dimension of a relation R (fdim(R)) is the minimum cardi-
nality of a set of Ferrers relations whose intersection is R. Note that if D is
the digraph corresponding to a relation R, then fdim(D) = fdim(R). Hence,
the result of Bouchet can be expressed as dim(P) = fdim(P, P,≤), where
we use the notation (P, P,≤) to emphasize that we interpret the order as
a relation. The interval dimension idim(P) of a poset P is the minimum
cardinality of a set of interval orders extending P whose intersection is P.

4 According to [6] Ferrers relations have also been studied under the names of biorders,
Guttman scales, and bi-quasi-series.
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Interestingly, interval dimension is also nicely expressed as a special case
of Ferrers dimension: idim(P) = fdim(P, P,<). For this and far reaching
generalizations see Mitas [18].

Relations R ⊆ X × Y with X ∩ Y = ∅ can be viewed as bipartite
graphs. In this setting fdim(R) is the global D-covering number of R, i.e.,
the minimum cardinality of a set of difference graphs whose union is the
bipartite complement of R.

We believe that it is worthwhile to study local variants of Ferrers dimen-
sion.
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Interval orders and shift graphs. In Proc. Sets, graphs and numbers,
volume 60 of Colloq. Math. Soc. János Bolyai, pages 297–313. North-
Holland, 1992.
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