
The Linear-Extension-Diameter of a PosetStefan Felsner1 and Klaus Reuter21Freie Universit�at Berlin, Fachbereich Mathematik und Informatik,Takustr. 9, 14195 Berlin, GermanyE-mail: felsner@inf.fu-berlin.de2Mathematisches Seminar, Universit�at Hamburg,Bundesstrasse 55, 20146 Hamburg, GermanyE-mail: reuter@math.uni-hamburg.deAbstract. The distance between two permutations of the same set X is the numberof pairs of elements being in di�erent order in the two permutations. Given a posetP = (X;�), a pair L1; L2 of linear extensions is called a diametral pair if it maximizesthe distance among all pairs of linear extensions of P . The maximal distance will becalled the linear extension diameter of P and is denoted led(P ). Alternatively led(P )is the maximum number of incompararable pairs of a two-dimensional extension of P .In the �rst part of the paper we discuss upper and lower bounds for led(P ). Thesebounds relate led(P ) to well studied parameters like dimension and height. We provethat led(P ) is a comparability invariant and determine the linear extension diameterfor the class of generalized crowns. For the Boolean lattices we have partial results.A diametral pair generates a minimal two-dimensional extension of P or equiv-alently a maximal interval in the graph of linear extensions of P . Studies of suchintervals lead to the de�nition of new classes of linear extensions. We give three char-acterizations of the class of extremal linear extensions which contains the greedy linearextensions. With complementary linear extensions we introduce a class contained inthe set of super-greedy linear extensions. The complementary linear extension of Lis the linear extension L� obtained by taking the reverse of L as priority list in thegeneric algorithm for linear extensions. A complementary pair is a pairs L;M of lin-ear extensions with M = L� and L = M�. Iterations of the complementary mappingstarting from an arbitrary linear extension eventually leads to a complementary pair.Mathematics Subject Classi�cations (1991). 06A07, 05C12.Key Words. Poset; Linear extension; Diameter; Greedy.1 Introduction and Alternate FormulationsThe distance between permutations �; � of the same setX, denoted dist(�; �), isthe number of pairs of elements being in di�erent order in the two permutations.Given a poset P = (X;�), a pair L1; L2 of linear extensions is called a diametralpair if it maximizes the distance among all pairs of linear extensions of P .The maximal distance will be called the linear extension diameter of P and isdenoted led(P ). In [Reu96b] the linear extension graph G(P ) was de�ned as thegraph with vertices the linear extensions of P and two vertices connected by anedge if the linear extensions di�er by an adjacent transposition only. Figure 1shows the six element poset called chevron and its linear extension graph. An5. Juni 1997 1



easy fact about G(P ) is that any pair L1; L2 of linear extensions is connected inG(P ) by a path whose length equals the distance between L1 and L2. Hence,led(P ) is exactly the graph diameter of the linear extension graph G(P ).
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Figure 1: The chevron and its linear extension graph.This poset has linear extension diameter 6.The intersection of a collection A = fL1; : : : ; Lkg of linear extensions of P isa poset PA which is an extension of P . The graph G(PA) is an induced subgraphof G(P ). Interestingly subgraphs of G(P ) corresponding to extensions of P areexactly the convex subgraphs of G(P ) (see [BW91] or [Reu96b]).Let inc(P ) denote the number of incomparable pairs of P . If L1; L2 is a di-ametral pair for P then PfL1;L2g is a two-dimensional extension of P and L1; L2is a diametral pair for PfL1;L2g, i.e., led(PfL1;L2g) = led(P ). The incomparablepairs of PfL1;L2g are exactly the pairs being in di�erent order in L1 and L2,therefore, led(PfL1;L2g) = inc(PfL1;L2g) = dist(L1; L2), where inc(P ) denotesthe number of incomparable pairs of P .We call a two-dimensional extension Q of P a minimum two-dimensionalextension of P if Q has a minimal number of comparable pairs that are in-comparable in P . Dually, a minimum two-dimensional extension maximizesinc(PfL1;L2g). Together with the previous paragraph this proves the followingTheorem.Theorem 1 The linear extension diameter of P equals the number of incom-parable pairs of a minimum two-dimensional extension of P .By de�nition inc(Q) � inc(P ) for every extension Q of P . As a consequenceof the theorem we have the general boundled(P ) � inc(P ): (1)Equality in inequality (1) is a characterization of two-dimensional posets:Theorem 2 For a poset P the following two statements are equivalent:dim(P ) � 2 and led(P ) = inc(P ).2



Proof. We have already seen that led(P ) = inc(P ) for two-dimensional posets.If P is one-dimensional then led(P ) = 0 = inc(P ).For the converse suppose led(P ) = inc(P ) and let L1; L2 be a diametral pair.The number of pairs being in di�erent order in L1 and L2 is inc(P ). Therefore,P is the intersection of L1 and L2 which proves dim(P ) � 2.Inequality (1) is only sharp for two-dimensional posets but as shown withthe standard examples the following inequality may be sharp in any dimensionled(P ) � inc(P )� (dim(P )� 2): (2)Proof. Take a diametral pair L1; L2 and add one by one linear extensions suchthat Tji=1 Li � Tj+1i=1 Li until fL1; : : : ; Lkg is a realizer of P . Since k � dim(P )and each Lj contributes a new incomparability to the intersection the posetPfL1;L2g has at most inc(P )� (dim(P )� 2) incomparable pairs.In the next section we give several lower bounds on the linear extensiondiameter. These bounds relate the new parameter to width, dimension andfractional dimension of the poset. In Section 3 we investigate the e�ect ofsmall changes at the poset on its linear extension diameter. We also show thatled is a comparability invariant. In Section 4 we deal with special classes ofposets. In particular we determine the linear extension diameter of generalizedcrowns. Section 5 introduces the concept of complementary linear extensionsas a heuristic for �nding pairs of linear extensions of large distance. We provesome properties of complementary linear extensions that seem to be interestingin their own right.2 Lower Bounds on the Linear Extension DiameterGiven a poset P = (X;�) and disjoint subsets A;B � X we say A is overB and write A=B in a linear extension L if a > b in L for all incomparablepairs ajjb with a 2 A and b 2 B. It is well known (see e.g. [Tro92, p. 19]) thatfor every chain C there exist linear extensions with C=X and X=C. Such apair of linear extensions has distance at leastPx2C inc(x) where inc(x) denotesthe number of elements incomparable to x. Generalizing notation by de�ninginc(C) =Px2C inc(x) for every chain C we have proven our �rst lower boundmaxC chain inc(C) � led(P ): (3)Equality holds for the chevron and for all width two posets. The value ofthis lower bound is easily computable by a maximum weighted chain algorithm.Consider a chain partitionC1; :::; Cw of P . Obviouslywidth(P )(maxC inc(C)) �Pwi=1 inc(Ci) = 2inc(P ). Hence our upper and lower bounds on led in (1) and(3) are only apart by a factor depending on the width of P ,d 2inc(P )width(P )e � led(P ) � inc(P ): (4)Another lower bound relates the linear extension diameter to the dimensiondim(P ). Take a realizer R = fL1; : : : ; Ldg with d = dim(P ) for P . Choose at3



random a pair S1; S2 of di�erent linear extensions from R, the probability thatan incomparable pair xjjy is incomparable in S1 \ S2 is at least (d � 1)=�d2�.Therefore, the expected number of incomparable pairs in S1 \ S2 is at least2inc(P )=d. This proves the boundd2inc(P )dim(P ) e � led(P ): (5)Since dim(P ) � width(P ) this bound (5) implies (4). Brightwell and Schein-erman [BS92] introduced the fractional dimension of a poset (fdim(P )) asthe least rational number df such that there is a m and a multiset realizerM = fL1; : : : ; Lmg of P , such that for every incomparable pair x; y we havex < y in Li for at least m=df of the linear extensions. If we choose at randoma pair S1; S2 of linear extensions from M the probability that an incompara-ble pair xjjy is incomparable in S1 \ S2 is at least m=df (m � (m=df ))=�m2 � =2(m(df � 1)=((m � 1)d2f ) � 2(df � 1)=(d2f ). Since fractional dimension can besubstantially smaller than dimension the next bound seems worth to be statedd2(fdim(P )� 1)inc(P )fdim(P )2 e � led(P ): (6)A class of orders where dimension and fractional dimension get far apartare the interval orders. The dimension of interval orders grows unbounded (seee.g., [Tro92]) but the fractional dimension is bounded by 4 (see [BS92]). In fact,as shown recently by Trotter and Winkler [TW96] the fractional dimension ofinterval orders can be arbitrarily close to 4. From the above bound we thusobtain that led(I) � (3=8)inc(I) for every interval order I. However, we caneasily do better. It was shown by Rabinovich ([Tro92, page 196]), that aninterval order I = (X;�) has a linear extension with A=(X nA) for every subsetA of X. Choose a random subset A of X and consider two linear extensionswith A=(X n A) and (X n A)=A. The expected number of incomparabilities inthe intersection of the two linear extensions is at least (1=2)inc(I). Hence forevery interval order I (1=2)inc(I) � led(I): (7)The next bound relates inc(P ) and the height h = height(P ). Let A1; : : : ; Ahbe an antichain partition of P and let ai = jAij. The weak order with Ai asith level is a two-dimensional extension of P . The number of incomparabilitiesis Pi �ai2 � which is at least h�n=h2 �, hence, led(P ) � n(n� h)=2h. For inc(P ) wehave the obvious bound inc(P ) � �n2�� �h2�. Therefore inc(P ) � n2=2� h2=2 =n2 � (1=2)(n2 + h2) � n2 � nh. Comparing the two inequalities we obtaind inc(P )2height(P )e � led(P ): (8)The bounds of this section compare led(P ) to certain fractions of inc(P ).Graham Brightwell (personal communication) suggested a family Pn of randomposets showing that the gap between inc(P ) an led(P ) can indeed be large.Formally, led(Pn) = o(1)inc(Pn). 4



3 Removals and SubstitutionsConsider the removal of a point x from P . Let L1; L2 be a diametral pair forP � x, there exist linear extensions L0i of P such that removing x gives Li fori = 1; 2. The distance of L01; L02 is at least as large as the distance of L1 andL2, hence led(P � x) � led(P ). For a lower bound on led(P � x) considera two-dimensional extension Q of P such that inc(Q) = led(P ). Q � x is atwo-dimensional extension of P � x and the incomparabilities of Q are those ofQ� x plus those containing element x. The incomparabilities of Q containingx are at most as many as the incomparabilities of P containing x, i.e. inc(x).Hence, led(P � x) + inc(x) � led(P ).Theorem 3 led(P ) � led(P � x) � led(P ) � inc(x) and both inequalities canbe sharp.Proof. It remains to show that equality may occur. Equality on both sideshappens if inc(x) = 0. However, there are less trivial examples. On the leftside take as x one of the minimal elements of C or D (these are posets fromthe list of 3-irreducible posets (see e.g. [Tro92, p. 62]), D is the chevron). Onthe right side equality is attained for every two-dimensional P .Abusing notation we write P�r for the poset resulting from P after removalof a single covering relation r. P � r has more linear extensions then P , moreprecisely, G(P ) is a subgraph of G(P�r). Hence, led(P ) � led(P�r). Equalityis again possible: let P be the chevron augmented by the comparability r =(1 < 3) (see Figure 1). A lower bound for led(P � r) can be obtained from thelower bound for point removal: Let r be a relation involving x, then led(P ) �led(P � x) = led((P � r)� x) � led(P � r)� (inc(x) + 1). The example of thecrown An shows (see Section 4) that removing r can increase led by as muchas (1=2)(inc(x) + 1).Theorem 4 Let r = (x < y) be a covering relation of P , then led(P ) �led(P � r) � led(P ) + min(inc(x); inc(y)) + 1.Let P = (X;�P ) and Q = (Y;�Q) be posets on disjoint sets. Standardconstructions are the parallel composition P +Q = (X [ Y;�P [ �Q) and theseries composition P �Q = (X [ Y;�P [ �Q [(X � Y )). In both cases the ledof the composition is easily determined by the components.� led(P +Q) = led(P ) + led(Q) + jXjjY j.� led(P �Q) = led(P ) + led(Q).Let x be an element of P and let PQx be the poset obtained by substitutingQ for x in P . To be more speci�c, PQx = ((X � x) [ Y;�) with a � b i�a; b 2 X�x and a �P b or a; b 2 Y and a �Y b or a 2 X�x; b 2 Y and a �P xor a 2 Y; b 2 X � x and x �P b.Theorem 5 led(P ) + led(Q) + (led(P ) � led(P � x))(jQj � 1) � led(PQx ) �led(P ) + led(Q) + inc(x)(jQj � 1). 5



Proof. Let L1; L2 be a diametral pair for P and N1; N2 be a diametral pair forQ. Consider the linear extensions (L1)N1x and (L2)N2x . Compute the distancebetween (L1)N1x and (L2)N2x as the number of adjacent transpositions necessaryto change (L1)N1x into (L2)N2x and note that changing L1 into L2 requires atleast led(P ) � led(P � x) adjacent transpositions involving element x. Thisleads to the lower bound on led(PQx ).For the upper bound select an element y 2 Y and count the incompara-bilities of a two-dimensional extension of led(PQx ) in three parts. There are atmost led(P ) incomparabilities between two elements in X � x + y, there areat most led(Q) incomparabilities between two elements in Y and, �nally, thereare at most inc(x)(jQj � 1) incomparabilities between elements of X � x andelements of Y � y.Another interesting aspect of led is the question of comparability invari-ance. Reuter [Reu96a] observed that the linear extension graph G(P ) is not acomparability invariant. Nevertheless, as will be shown next the linear exten-sion diameter is a comparability invariant. The proof is based on the followinglemma.Lemma 6 The linear extension diameter of PQx is attained by a pair L1; L2 oflinear extensions in both of which the elements of Q appear consecutively.Proof. Let L1; L2 be a diametral pair of PQx . Let Q = (Y;�Q) and choosey 2 Y such that in PfL1;L2g element y is incomparable to the maximal numberof elements z 62 Y . Let L01 be obtained from L1 by �rst removing the elementsof Y from L1 and then reinserting them at the original position of y so thattheir internal order remains unchanged. Let L02 be obtained from L2 by thesame procedure. From the choice of y it follows that the distance of L01 and L02is at least as large as the distance of L1 and L2. Therefore, L01; L02 is a diametralpair and the elements of Q appear consecutively in L01 and in L02.Theorem 7 Linear extension diameter is a comparability invariant.Proof. A consequence of Gallai's work [Gal67], made explicit in [DPW85], isa simple scheme for proving the comparability invariance of a property. It hasonly to be shown that for all posets P and Q and elements x of P the propertyis unable to distinguish between PQx and PQdx where Qd denotes the dual of Q,i.e., y � y0 in Qd i� y0 � y in Q.Given a linear extension of PQx in which the elements of Q appear consecu-tively we obtain a linear extension of PQdx by reversing the order of the elementsof Q. Hence, if L1; L2 is a diametral pair linear extensions of PQx as in Lemma 6we obtain a pair attaining the same distance for PQdx . Since the converse alsoworks the linear extension diameters of PQx and PQdx are equal.4 Generalized Crowns and Boolean LatticesIn this section we �rst deal with a class of posets where we can determinethe linear extension diameter exactly. Trotter de�nes generalized crowns as a6



class of posets that interpolates between the 3-irreducible crowns An and thestandard examples Sn. For n � k � 2 de�ne Ckn as the height two poset withminimal elements f0; 1; : : : ; (n�1)g and maximal elements f00; 10; : : : ; (n�1)0g.Element i0 is larger then the elements fi�b(k�1)=2c; i�b(k�1)=2c+1; : : : ; i+bk=2cg where indices are taken modulo n.Lemma 8 can be found in [Tro92, p. 35], for the translation note that Cknequals Trotter's Sn�k�1k+1 . In particular C2n = An, Cn�1n = Sn and Ckn is kregular.Lemma 8 A linear extension L of a generalized crown Ckn can have i0 < j inL for at most �n�k+12 � pairs (i0; j).Consider a pair L1; L2 of linear extensions of Ckn. Since each linear extensionis reversing at most �n�k+12 � of the (i0; j) pairs, the poset PfL1;L2g has at most(n � k + 1)(n � k) incomparable pairs i0jjj. Adding the min/min and themax/max pairs we obtain (n� k + 1)(n� k) + n(n� 1) as an upper bound onled(Ckn). This upper bound can be attained. For L1 take the minimal elementsof Ckn in the order 0; 1;�1; 2;�2; : : : and sort in the maximal elements as earlyas possible. When all minimal elements have been used there are k maximalelements left, depending on the parity of k we have taken the maximal elementsin the order 00; 10;�10; 20; : : : (k odd) or in the order 00;�10; 10;�20; : : : (k even)continue this pattern for the remaining maximal elements. For L2 begin withthe reverse ordering on the minimal elements and again sort in the maximalelements as early as possible. The �nal k maximal elements are taken in thereverse of their order in L1. Figure 2 illustrates the drawings of generalizedcrowns resulting from this process.
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Figure 2: Drawings of the generalized crowns C28;C38;C48 and C58.Dotted lines indicate comparabilities of minimum two-dimensional extensions.Remark. A nice way of visualizing the construction is to use the diametrallinear extensions as the row and column indices for the bipartite adjacencymatrix of the Ckn. The results for C3n and C4n are displayed next. An entry � atposition (i; j0) indicates that ijjj0 in the crown but i < j0 in the two-dimensionalextension. 7
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1CCCCCCCATheorem 9 For each n � k � 2 the linear extension diameter of the general-ized crown Ckn is given by:led(Ckn) = 2n(n� k) + k(k � 1):Proof. We have shown that (n�k+1)(n�k)+n(n�1) = 2n(n�k)+k(k�1)is an upper bound on led(Ckn). As for the lower bound we have described a pairL1; L2 of linear extensions. From the above matrices it is easy to see that thesetwo linear extensions have distance (n� k + 1)(n� k) + n(n� 1).Corollary 10 For the crown An and the standard example Sn this gives� led(An) = 2(n� 1)2 = inc(An)� (n� 2) and� led(Sn) = n2 � (n� 2) = inc(Sn)� (n� 2).We now turn to the Boolean lattices. Unfortunately, we only have partial resultsfor this seemingly simple class of posets. The goal of our investigations was aproof of the following conjecture.Conjecture 1 The linear extension diameter of the Boolean lattice Bn isled(Bn) = 22n�2 � (n+ 1)2n�2:Proposition 11 led(Bn) � 22n�2 � (n+ 1)2n�2:Proof. Let L be the reverse lexicographic order on the subsets of [n], i.e.,A <L B if the smallest element of the symmetric di�erence of A and B is in B.Clearly, L is a linear extension of Bn. Now revert the order on 1; ::; n and letL0 be the corresponding lexicographic order, L0 is sometimes called the reverseantilexicographic order and can be described byA <L0 B if the largest elementof the symmetric di�erence is in B. Reverse lexicographic and antilexicographicorder are hereditary, i.e., if X � [n] then L restricted to the subsets of X is thereverse lexicographic order of these sets.Let X be the �rst half of elements of L0, i.e., the set of subsets of [n] notcontaining n. and let Y be the complement of X. We count the incomparablepairs of PL;L0 in three parts. The number of incomparable pairs (A;B) withA 2 X and B 2 X is led(Bn�1) = 22n�4 � n2n�3 by induction. The sameis true for the pairs (A;B) with A 2 Y and B 2 Y . It remains to count theincomparable pairs (A;B) with A 2 X and B 2 Y , since A precedes B in L0we count pairs A;B with n 62 A, n 2 B and B <L A. This number is �2n�12 �since A <L B i� A <L B � n. 8



Figure 3: The drawing of B4, B5 and B6 obtained from reverse lexicographicand reverse antilexicographic linear extensions.Lemma 12 Reverse lexicographic and reverse antilexicographic linear exten-sions are a diametral pair of Bn for n � 4.Proof. For n � 3 this is trivial. Let n = 4 we know that at least two of theincomparabilities of the standard example S4 contained in B4 are comparable inthe two-dimensional poset corresponding to a diametral pair. In the standardlabeling of B4 with binary vectors we may assume that these two relations are(0100) < (1011) and (0010) < (1101). Let fB4 denote the poset after additionof these two relations.Consider the following nine induced subposets of fB4: The �rst is the sub-poset induced by (0001); (1000); (0110); (1001); (1110); (0111). The other eightare denoted Qi;j and are obtained by inserting i at position j in each of thevectors (001); (010); (001); (110); (101); (011) for i 2 f0; 1g and j = 1; 2; 3; 4.Each of these 9 posets is a 3-crown and it is easily checked that no two of thesecrowns have a critical pair in common. It follows that in any two-dimensionalextension of B4 at least one of the 3 critical pairs of each 3-crown is comparable.This gives a total of 2 + 9 additional comparabilities in any two-dimensionalextension of B4, i.e., led(B4) � inc(B4)�11 = 44. The construction of Proposi-tion 11 gives a two-dimensional extension of B4 with 44 incomparabilities whichis thus optimal.We have not been able to generalize the proof of the previous lemma tothe general case. There is, however, an easy property that should be true fordiametral pairs that would imply the Conjecture 1. We �rst state the propertyas a conjecture. Then we prove the implication in Lemma 13. A more detaileddiscussion of properties of diametral pairs will be subject of the next section.Conjecture 2 Let L;L0 be a diametral pair of a poset P then at least one ofthe two linear extensions L;L0 reverts a critical pair of P .Lemma 13 Conjecture 2 implies Conjecture 1.9



Proof. Let L;L0 be a diametral pair for Bn. We may assume (Conjecture 2)that L0 reverts the critical pair (f1; ::; n � 1g; fng). As in the construction welet X and Y be the sets of the �rst and second half of L0. Again X is the setof subsets of [n] not containing n. The number of incomparable pairs (A;B) inPL;L0 with A 2 X and B 2 X is at most led(Bn�1). The same holds for pairswith A 2 Y and B 2 Y .It remains to estimate the number of incomparable pairs (A;B) with A 2 Xand B 2 Y that are reversed by L, i.e., pairs (A;B) with n 62 A, n 2 B andB <L A. Let (A;B) be such a pair and let mate(A;B) = (B � n;A+ n), notethat B � n 2 X and A + n 2 Y . Since mate is an involution mate de�nes apairing of the pairs (A;B) 2 X�Y . At most one of (A;B) and mate(A;B) canbe reversed by L, otherwise, B <L A <L A+n <L B�n <L B a contradiction.A pair ((A;B);mate(A;B)) that may contribute a reversal is characterized byA;B � n and these are di�erent subsets of [n � 1]. Therefore, the number ofreversals contributed by pairs (A;B) 2 X�Y is at most �jXj2 � = �2n�12 �. Puttingthings together led(Bn) � 2led(Bn�1) +  2n�12 !:Induction completes the proof.5 Intervals in G(P ) and Diametral PairsFor two linear extensions M;N of P let the interval [M;N ] in G(P ) consist ofall linear extensions on shortest path between M and N , put di�erently it isthe set of linear extensions of PfM;Ng. We call M;N an extremal pair if there isno interval [M 0; N 0] properly containing [M;N ]. Note that [M 0; N 0] � [M;N ]implies dist(M 0; N 0) � dist(M;N). Hence, diametral pairs are extremal. Alocally extremal pair is a pair M;N such that [M;N ] is not properly containedin [M 0; N 0] with M 0 a neighbor of M or M 0 = M and N 0 a neighbor of N orN 0 = N . Figure 4 illustrates the de�nitions. It is immediate that for pairsM;N of linear extensions the following implications holddiametral =) extremal =) locally extremal.
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Figure 4: The N and its linear extension graph. The pair (1243,2134) is locallyextremal, the unique extremal pair is (1234,2413).10



Those diametral pairs we understand best are the minimal realizers of two-dimensional posets. Kierstead and Trotter [KT89] observed that the linearextensions of such a 2-realizer are super-greedy. The de�nition of greedy andsuper-greedy can be based on the following generic algorithm for linear exten-sions.Linear Extensionfor i = 1 to n dochoose xi 2Min(P � fx1; ::; xi�1g)output x1; x2; : : : ; xn� For greedy linear extensions xi is chosen from Min(P � fx1; ::; xi�1g) \succ(xi�1) whenever this set is nonempty.� For super-greedy linear extensions xi is chosen fromMin(P�fx1; ::; xi�1g)\succ(xj) where j < i is maximal such that this set is nonempty.Lemma 14 Let P be a poset and L a super-greedy linear extension. Either Pis a chain or L reverses a critical pair.Proof. We may assume that P has more then one minimal element. Let xi bethe minimal element of P that comes last in L = x1; : : : ; xn. Since L is super-greedy P � fx1; ::; xig = succ(xi) and, hence, succ(xi�1) � succ(xi). Sincepred(xi) = ; � pred(xi�1) the pair (xi; xi�1) is a critical pair reversed by L.5.1 Extremal Linear ExtensionsCall M an extremal linear extension if there is a linear extension N such thatthere is no interval [M 0; N ] properly containing [M;N ]. Interestingly, extremallinear extension are exactly the linear extensions participating in locally extremepairs.Proposition 15 For a linear extension M the following is equivalent:� M is an extremal linear extension.� There exists a linear extension N such that M;N is locally extremal.Proof. Let M be an extremal linear extension with witness N . We de�ne apartial order on G(P ) with respect to a linear extensionM as follows: L �M L0if the set of pairs of L0 which are in reverse order relative to M contains thecorresponding set for L. This is equivalent to saying that the interval [M;L0]contains the interval [M;L]. If we choose N 0 as a maximal element above Nwith respect to �M , then M;N 0 is a locally extremal pair. M is extremal withrespect to N 0 because N 0 �N 0 N �N 0 M �N 0 M 0 implies [M;N ] � [M 0; N ].Since, N is a witness for M 's extremality this requires M = M 0. The otherdirection is obvious from the de�nitions.With the next proposition we characterize extremal linear extensions. Re-call that a jump in a linear extension L = x1; x2; : : : ; xn is a pair xi; xi+1 of11



consecutive elements in L that are incomparable in P . If xi; xi+1 are compara-ble in P we call the pair a bump of P . The bump decomposition of L is obtainedby cutting L in each bump. This gives an ordered partition L = �1; �2; : : : ; �ksuch that each block �i is a maximal interval of elements xij ; ::; xij+1�1 suchthat consecutive elements in �i form a jump.Example. Let P be the chevron labeled as in Figure 1. In M = 132456 thereare three jumps and two bump, the bumps are (24) and (56)). The bumpdecomposition is �1 = 132, �2 = 45, �3 = 6.Proposition 16 A linear extension L of P is extremal i� every block �i of thebump decomposition �1; �2; : : : ; �k of L induces an antichain in P .Proof. Let N be such that L;N is a locally extremal pair. Assume that someblock �i does not induce an antichain and let x; y 2 �i with x < y in P . Notall the adjacent pairs of �i can be in reverse order to N , because this wouldimply y < x in N . Hence some adjacent pair can be switched in �i to increasethe distance to N , a contradiction.In order to prove the other direction let N be the word resulting from Lby reversing every block of the bump decomposition of P . If all blocks induceantichains in P , then N is a linear extension of P . Moreover, L is extremalwith respect to N , since only the switch of an adjacent pair of some block yieldsa neighboring linear extension of L. But such a linear extension is closer to Nas L is.Corollary 17 Every greedy linear extension is extremal.Proof. If L is not extremal, then there exist x; y in some block �i of L with xbeing covered by y in P . Observe that x and y cannot be adjacent in �i. Now,L is not greedy, since y is a candidate to be chosen right after x.In general, however, the class of extremal linear extensions contains non-greedy linear extensions. Even both linear extensions of a locally extremalpair may be non-greedy. Take for example the 3-crown C23 on f0; 1; 2; 00 ; 10; 20g(element i0 is larger then i; i � 1) the pair (2; 1; 0; 00; 20; 10), (0; 1; 2; 10 ; 20; 00) isextremal but neither is greedy. Due to their vast amount extremal pairs seemto be rather useless for heuristics or approximations of the linear extensiondiameter. In the next subsection we discuss a much stronger property.5.2 Complementary Linear ExtensionsLet L be a linear extension of P and specify the choice function in AlgorithmLinear Extension so that in each round xi is the last element of Min(P ) inL, i.e., take the reverse of L as preference list for the construction of a newlinear extension M . We call M the complementary linear extension of L anddenote the complementary mapping by �, i.e., � : L ! M = L�. The k folditerated complementary map of L is L�k.Example. Let P be the chevron labeled as in Figure 1. If L = 132456 thenL� = 315624. 12



The intuition is that L� tends to have many pairs in the reverse order of L,hence, the distance from L to L� should be large.Proposition 18 Complementary linear extensions are super-greedy.Proof. Let y1; ::; yt be an initial segment of L�. For element x 2 Min(P �fy1; ::; ytg) let i(x) = max(i : x > yi). We have to prove that yt+1 is an elementx0 with i(x0) maximal. Suppose not, yt+1 = x0 but i(x0) = r < i(x) = s. Thechoice of x0 implies that x <M x0. Consider the situation when ys was chosenand note that at this time x0 was available. Since ys < x we have ys <M x0contradicting the choice of ys.Corollary 19 For linear extensions the following implications holdcomplementary =) super-greedy =) greedy =) extremal.As it is the case with super-greedy linear extensions complementary linearextensions may be constructed by an algorithm based on a stack. To constructthe complementary linear extension of L begin with an empty stack S. Pushthe elements of Min(P ) onto S in the order induced by L on this set. Fori = 1; ::; n repeat: xi  pop(S) and push the new minimal elements, i.e., theelements of the set Ci = Min(P � fx1; ::; xig) �Min(P � fx1; ::; xi�1g) ontoS. The order in which elements of Ci are pushed is again the order inducedby L on this set. The complementary linear extension L� of L is x1; : : : ; xn,i.e., the elements ordered by the time of their pop. The formal proof that thestack algorithm applied to L constructs the complementary linear extension L�is very similar to the proof of Proposition 18.We illustrate the two procedures for complementary linear extensions withthe following example (Table 1). Let P be the chevron with the labeling ofFigure 1 and let L = 132456. In the left column of the table we have L withelements already used for L� removed. Underlined elements are the elements ofMin(P � fx1; ::; xi�1g) and bold are the elements of Ci, i.e., the new minimalelements. The next three columns correspond to the stack based constructionand explain themselves. Finally, there is a column with the growing L�. Welike to remark that yet another way of interpreting the construction of L� is asa certain depth-�rst-search on the diagram of P with a least element 0 added.The corresponding spanning tree consist of the edges (xi; y) for y 2 Ci.L Stack pop Ci L�1 3 2 4 5 6 13 3 ; 31 2 4 5 6 1 1 f2; 5g 3 12 45 6 25 5 f6g 3 1 52 4 6 26 6 ; 3 1 5 62 4 2 2 f4g 3 1 5 6 24 4 4 ; 3 1 5 6 2 4Table 1: Demonstrating the construction of a complementary linear extension.13



A complementary pair is a pair L;M of linear extensions with M = L� andL = M�. Continuing with the example L = 132456 we saw L� = 315624 andcompute L2 = 125346 and L�3 = 315624. Since L�3 = L� the pair L�; L�2 is acomplementary pair. In this case it is a diametral pair as well.Proposition 20 A realizer L;L0 of a two-dimensional poset is a complemen-tary pair.Proof. In L0 the elements of Min(P ) are in the reverse of their order in L.Therefore, L0 and L� are equal in the �rst element x. Since L� = x+ (L� x)�and L� x;L0 � x is a realizer of P � x induction shows L0 = L�.From the de�nition it is not obvious that every poset has a complementarypair this, however, is an immediate consequence of the following `convergence'theorem.Theorem 21 Let P be a poset of height h and L be a linear extension thenL�2h�1 = L�2h+1, in other words L�2h�1; L�2h is a complementary pair of P .The proof of the theorem will be based on two lemmas.Lemma 22 Let I be a down-set of P . The complementary linear extension ofthe restriction of L to the suborder induced by P on I equals the restriction ofL� to I. With LjX denoting the restriction of L to a subset X of P this can bewritten as (LjI)� = L�jI.Proof. The proof is by induction on n = jP j. Let x be the last minimal elementof P in L and note that x is the �rst element of L�. Consider P � x. WithM = Lj(P � x) we have L� = xM�.If x 62 I then M jI = LjI andL�jI =M�jI = (M jI)� = (LjI)�with the second equality being the induction hypothesis. Else, if x 2 I thenL�jI = xM�j(I � x) = x(M j(I � x))� = (LjI)�with the second equality being the induction hypothesis.Lemma 23 Let P be a poset, A � Max(P ) and Q = P � A. If L is a linearextension of P with L�jQ = L�3jQ then L�3 = L�5.Proof. For t � 1 let L�t = xt1; xt2; : : : ; xtn and use the superscript t to denotestructures involved in the stack based construction of L�t. For example theelements of the set Cti =Min(P �fxt1; ::; xtig)�Min(P �fxt1; ::; xti�1g) are theelements pushed onto stack St after the pop of xti.By Lemma 22 L�jQ = L�3jQ implies that L�jQ;L�2jQ is a complementarypair for Q. If xti 62 Q then obviously Cti = ;. Hence, for t; t0 of the same parity(both odd or both even) the same sets are pushed in the same order onto the14



stacks St and St0 . More formally, if qti denotes the index of the ith element ofQ in L�t then Ctqti = Ct0qt0i for t = t0 mod 2 and 1 � i � jQj. Using the simpli�ednotation Cti = Ctqti (with calligraphic C) we restate this fact.Fact. Cti = Ct0i for t = t0 mod 2 and 1 � i � jQj.The linear extension L�t is completely determined by the evolution of the stackSt. From Cti = Ct0i we could conclude that L�t only depends on the parity of t ifthe order in which the elements of Cti are pushed onto St remained unchangedor equivalently if the order of the elements of Cti in L�t remained unchanged.This will be proved for t � 3.Let Dij = C1i \ C2j = Coi \ Cej for o odd and e even and note that there is anorder �ij of the elements of Dij such that in the sequence L�t the order of theseelements alternates between �ij for t odd and the reverse of �ij for t even.Claim. Let j < k and y 2 Dij, x 2 Dik. For t � 3, t odd, x precedes y in L�t.Proof of Claim. Assume the existence of o � 3 odd such that y precedes xin L�o, we shorten notation writing y <o x for this fact. Since x; y 2 Coi weconclude that x <o�1 y. Let e = o� 1 and recall j < k and y 2 Cej and x 2 Cek.Hence, y was pushed onto stack Se earlier then x and since x <e y element ywas still buried in Se when x was pushed. Inspection shows that there was az 2 Cej with z < x and z was pushed after y onto Se. It follows that the orderof x; y; z in L�e�1 is y <e�1 z <e�1 x.From x; y 2 Ce�1i = Coi and y <e�1 x we obtain that x was pushed before yonto Se�1. Since z < x element z was pushed onto Se�1 before x and y.To obtain y <e�1 z <e�1 x the stack Se�1 would thus get the elementspushed in order z; x; y and pop them o� in order y; z; x. This, however, corre-sponds to a 3-element permutation that cannot be realized with a stack. Thiscontradiction concludes the proof of the claim. 4It follows that for t � 3, t odd the order of the elements of Coi in L�t is�i;n�1 <t �i;n�2 <t : : : <t �i;1. This completely determines the evolution of thestack, hence, L�3 = L�5 = L�7 : : :.Proof (Theorem 21). Let A1; A2; : : : ; Ah be the canonical antichain partition ofP with height(P ) = h, i.e., Ai+1 = Min(P � A1 � : : : � Ai) and Sh1 Ai = P .Let A�k = A1 [A2 [ : : : [Ak and note that A�k is a down-set.Claim. L�2k�1jA�k = L�2k+1jA�k for k = 1; : : : ; h.Proof of Claim. By Lemma 22 it su�ces to prove (LjA�k)�2k�1 = (LjA�k)�2k+1.For k = 1 this is trivially true. Since Ak �Max(A�k) we can use Lemma 23with L = L�2k�4jA�k for the induction step. 4Since A�h = P this implies the theorem.Proposition 24 If M;N is a complementary pair, then the interval [M;N ] islocally extreme in G(P ).Proof. Assume that there is neighbor N 0 of N such that [M;N ] � [M;N 0].Let (x; y) be the unique pair with x <N y and y <N 0 x. Since N = M� andboth x and y were minimal elements when x was chosen we �nd that y <M x.15



This implies that N 0 is on a shortest path from M to N , a contradiction to[M;N ] � [M;N 0]. Similar arguments disprove the other cases.A diametral pair need not be a complementary pair. An example is givenin Figure 5.
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