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Abstract

A chain of a set P of n points in the plane is a chain of the dominance order
on P. A k-chain is a subset ' of P that can be covered by k chains. A k-chain (' is
a mazrimum k-chain if no other k-chain contains more elements than . This paper
deals with the problem of finding a maximum k-chain of P in the cardinality and in
the weighted case.

Using the skeleton S(P) of a point set P introduced by Viennot we describe a fairly
simple algorithm that computes maximum k-chains in time O(knlogn) and linear
space. The basic idea is that the canonical chain partition of a maximum (k — 1)-chain
in the skeleton S(P) provides k regions in the plane, such that a maximum k-chain
for P can be obtained as the union of a maximal chain from each of these regions.

By the symmetry between chains and antichains in the dominance order we may
use the algorithm for maximum k-chains to compute maximum k-antichains for planar
points in time O(knlogn). However, for large k one can do better. We describe an
algorithm computing maximum k-antichains (and, by symmetry, k-chains) in time
O((n?/k)logn) and linear space. Consequently, a maximum k-chain can be computed

in time ()(77,3/2

logn), for arbitrary k.

The background for the algorithmsis a geometric approach to the Greene-Kleitman
theory for permutations. We include a skeleton based exposition of this theory and
give some hints on connections with the theory of Young tableaux.

The concept of the skeleton of a planar point set is extended to the case of a
weighted point set. This extension allows to compute maximum weighted k-chains
with an algorithm that is similar to the algorithm for the cardinality case. The time
and space requirements of the algorithm for weighted k-chains are O(2%nlog(2¥n))
and O(2%n) respectively.
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1 Introduction

The dominance order on points in the plane is given by the relations p < ¢ if p,, < ¢, and
py < q,. Here and throughout the paper p, and p, denote the z- and y-coordinates of a
point p. The symbol P will always be an n-element set of points in the plane together
with the dominance relation. A subset ' of P is a chain if any two members p, g of
are comparable, i.e., either p < ¢ or ¢ < p. On the other hand, a set A C P with no two
different points comparable is an antichain. If a subset C' of P can be covered by k chains
it is called a k-chain. Tf C'is a k-chain but not a (k — 1)-chain we call C' a strict k-chain.
A k-chain C'is mazimum if no other k-chain contains more elements than . This paper
deals with the problem of finding such k-chains in P. Note that the “greedy method” that
repeatedly removes maximum chains may fail in computing a maximum k-chain even for
k=2 (see e.g. the point set of Figure 1).

A permutation o:{1,....n} — {1,...,n} may be represented by points (i,o(7)) in
the plane. Chains and antichains of a point set correspond to increasing and decreasing
subsequences of a permutation. Hence, finding maximum k-chains amounts to computing
maximum k increasing subsequences. Fredman [3] shows that finding a maximum increas-
ing subsequence requires (nlogn) comparisons. Of course, this also gives a lower bound
for k-chains, £ > 2. On the other hand, an algorithm to compute a longest increasing
subsequence in a permutation in time O(nlogn) pertains to mathematicians folklore. A
careful treatment of the algorithm can be found in [3], older sources are e.g. [1] or [8].

Interest in k-chains of orders goes back to Greene and Kleitman [7, 6] who discovered
a rich duality between maximum k-chains and maximum (-antichains. From this theory
we quote a theorem relating maximum k-chains to maximum f-antichains.

Theorem 1 For an order P with n elements there exists a partition o of n, such that the
Ferrers diagram F,, of o has the following properties:

(1) The number of squares in the k longest rows of F, equals the size of a mazimum
k-chain, for 1 <k <n.

(2) The number of squares in the { longest columns of F,, equals the size of a mazimum
fL-antichain, for 1 < { <mn.

The history of algorithms for maximum k-chains seems to start in some of the many
alternative proofs for the Greene-Kleitman Theorems, we mention two of these approaches.
In [13] Viennot deals with the case of permutations or point sets respectively and indicates
how to find k-chains in time O((n%/k)logn). For general orders Frank [2] uses network
flows which results in algorithms to compute maximum k-chains in an arbitrary order
in time O(n*). Gavril [4] uses a network designed specifically for k-chain computations
and improves the time bound to O(kn?). Gavril’s approach was adapted to handle the
weighted case within the same complexity by Sarrafzadeh and Tou [12]. For the case of
planar point sets Lou, Sarrafzadeh, and Tee [10, 9] propose algorithms to compute 2- and
3-chains in optimal time O(nlogn). They are motivated to consider k-chains in planar
point sets by problems in VI.SI design, e.g., multi-layered via minimization for two-sided
channels. Maximum k-chains also turn out to be useful in computational geometry, e.g.,
for counting points in triangles (see [11]).

We describe a fairly simple method to find maximum k-chains for arbitrary & in time
O(knlogn) and linear space. Our approach is based on the useful concept of the skeleton



of P introduced by Viennot [14] (see also [13]). We use a maximum (k — 1)-chain in the
skeleton to partition the plane into k regions. Taking a maximum chain from each of the
regions already yields a maximum k-chain. OQur method leads to a kind of complementary
algorithm to the O((n?/k)logn) algorithm of Viennot.

In Section 2 the notion of skeletons is introduced. We give an algorithm to compute
them and show that a point set P is determined by the skeleton S(P) and two additional
chains of marginal points. The notion of skeletons leads to a geometric interpretation of the
well known bijective correspondence between permutations and pairs of Young tableaux
(the Robinson-Schensted correspondence, see, e.g., [8]). The section ends with a brief
exposition of this connection.

Section 3 starts with the development of the combinatorial background for the algo-
rithm. The algorithm is described in fairly detailed pseudocode and its correctness is
proved. As a byproduct we provide a direct geometric proof for part (1) of Theorem 1 for
permutations. Section 4 is devoted to a complete presentation of Viennot’s O((n?/k)logn)
algorithm for k-antichains. A byproduct of the analysis is the direct geometric proof for
part (2) of Theorem 1 for permutations. The constructions from Section 3 and Section 4
both imply a result of Greene [5] stating that the shape of the Ferrers diagram F, in
Theorem 1 is just the shape of the Young tableaux corresponding to the permutation.

In Section 5 we extend the concept of skeletons to the case where a real weight w(p)
is associated with each point p in P. The algorithm of Section 3 is extended to work
with weighted planar point sets and weighted skeletons. This yields a maximum weighted
E-chain in time O(2¥nlog(2%n)) and space O(2¥n). Of course, this makes sense only for
small values of k. But note that even for constant k& no better algorithm than that of
Sarrafzadeh and Lou [12] with running time O(kn?) was known. Unfortunately, it is not
obvious how to extend the algorithm of Section 4 computing a maximum k-antichain in a
similar way to the weighted case.

2 Skeleton and Young tableaux

Let P be our planar point set with n elements. We will always assume that the points
of P are in general position, i.e., no two points have the same - or y-coordinate. Ar-
guments are simpler if we assume this generality. In the case of duplicate coordinates
we can perturb the points such that they are in general position without changing the
comparability relations. Simply change the values of the z-coordinate of points with the
same z-coordinate by definition they are comparable by a small amount such they get
increasing z-coordinates with increasing y-coordinates. Points with the same y-coordinate
are perturbed analogously. Such perturbations can be made in a single sweep, i.e., in time
O(nlogn). As is easily seen, the complexity of all algorithms in this paper remains as
claimed even if we make such a sweep whenever we start working with a new set of points.

The height of a point p € P is the size of a longest chain with p as maximal element. Of
course, two points of the same height cannot be comparable. Hence, collecting points with
the same height in the same set yields a partition A of P into antichains, the canonical
antichain partition. Qbserve that this partition is also obtained by a repeated removal
of the set of minimal elements. By definition, the number of antichains in a canonical
partition is the size of a largest chain in P, a mazimum chain (see Fig. 1). Since, obviously,



Figure 1: The canonical antichain partition and a maximum chain.

a chain and an antichain can have at most one point in common, there can be no partition
into fewer antichains than there are in A, i.e., it is a minimal antichain partition.

Following Viennot, we define the left shadow of point p as the set of all points (u, )
dominating p, i.e., with v > p, and » > p,. For a set I of points, the shadow of F is the
union of the shadows of the points of F, i.e., the set of all points ¢ dominating at least one
point of F. The right shadow of pis the set of all points (u,v) with u < p, and v > p,.
The term shadow suggests some light coming from the left below, or from the right below
in the case of a right shadow (of course, this should not be taken too verbally, since the
“shadows” have a form that is scarcely realizable physically). The right down shadow of
p is the set of all points (u,») with u < p, and » < p,. The right and right down shadows
of a set K are again defined as the union of the corresponding shadows of the points of F.

The left jump line or simply jump line, I -(F) or L(F), of a point set F is the topo-
logical boundary of the left shadow of F. The right jump line Lx (F) and the right down
Jump line I , of I are the topological houndaries of the right and the right down shadow
of K. Let the unbounded half line of the jump line extending upwards be the top outgoing
line, and let the unbounded half line extending to the right be the right outgoing line. Ad-
ditionally, we use the term left outgoing line when dealing with right or right down jump
lines. Tt is easily seen that the jump line L(A) of an antichain A is a downward staircase
with the points of A in its lower corners. Collect the points in the upper corners of L(A)
in the set S »(A) = S(A) this is the set of skeleton points or briefly the skeleton of the
antichain A. Formally, if (21,91),...,(%k, yr) are the points of A ordered by increasing
x-coordinate then S(A) consists of the points (22,y1),...,(2k, yp—1). Hence, L(A) has
exactly |A| — 1 skeleton points (see Fig. 2).

The minimal elements of a point set P form an antichain A such that the rest P — A
lies completely in the shadow of A. Hence, by removing A and treating P — A in the
same way, we recursively obtain the canonical antichain partition A = Aq, ..., Ay_; with
nonintersecting jump lines L(A;), 0 < i < X, which will be called the layers L;(P) of P.
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Figure 2: Point set P, its skeleton, and the shadow of 3rd layer.

The skeleton or left skeleton of P, denoted by S(P) or § »(P),is then defined as the union
of the skeletons S(A4;), 0 <i < A. Since, as noted above, the i-th layer L;( P) has |A;| — 1
skeleton points, the size of S(P)is |P| — A. A picture of a point set P, its skeleton S(P),
its antichain layer partition, and the shadow of antichain 2 can be found in Fig. 2. T.et us
state an easy but quite useful observation.

Lemma 1 Suppose a point set P is partitioned into k antichains A; in such a way that
the jump lines L(A;) are pairwise disjoint. Then Ay, ..., A is the canonical antichain
partition of P.

Proof. Suppose the A; are ordered by increasing z-coordinates of the top outgoing lines of
the L(A;). Then P — Agis in the shadow of Ay. Hence, by the definition of the shadow,
each point of P— Ag dominates at least one of Ag and no point of Ag dominates any other
point in P, i.e., Ag are just the minimal elements of P. Repeat the procedure on P — Ajg.

|

Let us describe a simple algorithm to compute the skeleton, a maximum chain, and
the canonical antichain partition of a point set P (see Fig. 3). Essentially, this is the well-
known algorithm for longest increasing sequences of permutations (for a geometrically
inspired version see [10]). A sweep line I going from left to right halts at every point of
P. Tt contains an ordered set of markers m. A marker m on I, has a y-coordinate m, and
m is said to be above a point p if m, > p,.

Suppose I halts at some point p and the layers have been constructed for all points
to the left of L. Find the next layer with right outgoing line above p. If there is no such
layer (i.e., the marker found equals the dummy point), open a new one with p as its (yet)
sole point. If there is one, add p to this layer and generate a new skeleton point. It is
easily seen that the jump lines thus constructed cannot intersect and hence are the layers
of a canonical antichain partition, by Lemma 1. Finally, a maximum chain is obtained by



SKLETON(P)

insert dummy d,, in I at height +oo; link(d,) — nil;
E—0; 8 <10
for each p € P from left to right do
insert a new marker m’ in I, with m — py;
point(m’) — p;
m «— next marker below p on I;
link(p) — point(m);
m «— next marker above p on I;
if m = d,, then
Ap — {p}; antichain(m) — Ap; k — k+ 1;
else
add v to antichain(m);
add skeleton point (I,,m,) to 5;
remove m from I;
v — point(m), m uppermost marker on I; C' — {v};
while link(») # nil do
v — link(v); C — CU{v}
return S, C, Ag, ..., Ap_1;

Figure 3: Algorithm SKELETON

extracting a point from each of the antichains along a chain of properly established links.
With I implemented as a dynamic binary tree we have

Theorem 2 Algorithm SKELETON computes the skeleton, a mazimum chain, and the
canonical antichain partition of a point set P of size n in time O(nlog(n)) and linear
space. O

For the definition of the right skeleton Sx_(P) use the right shadow and the right jump
lines. And for the right down skeleton S ,(P) use right down shadow and right down
jump lines. Of course, with Sx (P) we obtain the canonical chain partition instead of
the antichain partition. By symmetry, a lemma corresponding to Lemma 1 but dealing
with chains instead of antichains is again true. With S (P) we again obtain an antichain
partition. A layer of this partition contains all the points with the same dual height (the
dual height of p is the length of a maximum chain that has p as its minimal element).

It is convenient to conceive the construction of the skeleton as an operator on finite
point sets consisting of points in general position, since the points of the skeleton S(P)
again have pairwise different z- and y-coordinates. Thus, we may apply operators 5 -
and Sx_to S(P). As usual, the k-fold iteration of an operator O will be denoted by LS
O means identity. S*(P) will be called the k-th skeleton of P. An interesting algebraic
property of S » and Sx_, they are commutative, is shown in [15].

One of the properties that seem to lie behind the usefulness of skeletons is the fact that
it is possible to reconstruct P from S(P) with a small amount of additional information.
Let Zmax be the maximal z-coordinate of points in P, and let ymax be defined analogously.
Then the right marginal points Mp( P) of P are the points (Zmax+ 1, 1) - - o5 (Tmax+ A, Y2 )s
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Figure 4: P is the right down skeleton of S(P)U M(P).

where A is the number of layers of P and #,..., 9\ are the y-coordinates of the right
outgoing lines of the layers ordered increasingly (see Fig. 4). Assuming z¢,...,2) to be
the z-coordinates of the top outgoing lines of the layers in increasing order the top marginal
points Mr(P) of P are (21, Ymax+ 1), - -, (%), Ymax + A) (see Fig. 4). Note that each of
Mp(P)and Mp(P)is a chain of length height of P. With M(P) we denote the collection
of marginal points of P, i.e., M(P)= Mr(P)U Mrp(P).

Theorem 3 A point set P is the right down skeleton of the skeleton S(P) together with
the marginal points of P, i.e., P =5 S(P)U M(P)).

Proof. The jump line L(A) of an antichain A nearly coincides with the right down jump
line Iy = L ,(S(AU {s,t})) of the skeleton of A with an arbitrary point s somewhere on
the top outgoing line of L(A) and some point t on the right outgoing line. More precisely,
between s and t the two jump lines are equal. As the marginal points on the top and right
outgoing lines are chosen so that they form chains, we may bend the original jump lines of
P at the marginal points and the bended lines remain nonintersecting. Each bended line
I is the right down jump line of the points of S(P)U M(P) contained in it. Moreover,
the points of S(P)U M(P) contained in each of these lines form an antichain and each
point is on one of these lines. Hence, the right down version of LLemma 1 applies and we
are done. O

A partition of an integer n is a sequence of integers A\g > Ay > --- > X,y > 0 such that
n = Ao+ ---A,_1. Such a partition may be represented graphically by a Ferrer’s diagram
also called Young shape. This is a shape as that of the two figures in Fig. 6, which consists
of p rows of rectangles or cells with A; cells in row ¢, when rows are taken from bottom to
top (also called “French notation”). If numbers' are put in these cells in increasing order

"Tn the classical theory these are the numbers 1...n which gives a correspondence between pairs of
Young tableaux and permutations. Tn the present context it is convenient to allow real entries.
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Figure 5: The first two layers Ly(P) and Ly(P) of P.

from left to right and from bottom to top we obtain a Young tableau. 1f Y is a Young
tableau we denote the cell in the i-th column from the right and j-th row from below by
Y(i,7), with i,7 > 0.

Since we will often refer to the number of layers of P, let us adopt the following
notation. Tet u(P) be minimal with S#P)(P) = §. Then \;(P), 0 < i < u(P), denotes
the number of layers of S”T(P). It is convenient to assume A;(P) = 0 for i > u(P).

Lemma 2 Let P be a point set then Mo(P) > M(P) > ---> Aupy—1 > 0, and Sk(P)| =
Ek<i<u Ai( P), where i = p(P). In particular A\o(P), \i(P), ..., Ay py—1 > 0 is a partition
of n.

Proof. By Theorem 3, the number of antichains in a minimal antichain partition of
S(P)U M(P) is the same as Ag(P), the size of the canonical antichain partition of P.
Hence, A(P), the size of a minimal antichain partition of S(P) is at most Ag(P). The
same argument shows the other inequalities. The sum over the X;(P) is computed easily

S(P)| = |P| — Ao(P) and induction. -

Let P be a planar set of n points. We associate two tableaux P(P) and Q(P) (the P-
and Q-symbol of P) with P in the following way. The k-th row of P(P), k > 0, are the
y-coordinates of the right outgoing lines of S*(P) in increasing order. The k-th row of

by using

Q(P), k> 0, are the z-coordinates of the top outgoing lines of §¥(P) in increasing order.
Compare the outgoing lines of the first two layers of Fig. 5 with the first two rows of the
Young tableaux in Fig. 6. According to Lemma 2, P(P) and Q(P) have X;(P) cells in
their i-th row from below and | P| cells altogether. Hence, the shape of the tableaux P(P)
and Q(P) is a Young shape. We denote the number of cells in the i-th column (from left)
with AZ(P). Obviously, A\§(P) > A{(P) > ---> A7 ((P)and Y ..., AX(P) = | P|, where
0= Xo(P). The A*(P) are the conjugate partition of the X;(P) for the integer | P|.

Our first observation about the P- and Q-symbol concerns the inverse P~ of P,
which is the point set that is obtained from P by the transposition (z,y) — (y,z), i.e., by
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Figure 6: The P- and Q-symbol of point set P of Fig. 5.

reflection on the diagonal line z = y. Obviously, the corresponding P- and Q-symbols are

simply interchanged.

Theorem 4 For the inverse P~ of a point set P, P(P™") = Q(P) and Q(P~') = P(P).
O

Theorem 5 (Robinson-Schensted) The tableaus P(P) and Q(P) of a point set P are
Young tableaux. Moreover, for any two Young tableauxr P and Q with the same shape there
exists a point set P with P = P(P) and Q = Q(P), i.e., there is a bijection between point
sets and pairs of Young tableau with the same shape.

The reader interested in the proof of this theorem and in a more comprehensive treat-
ment of geometric approaches to the theory of Young tableaux is referred to Viennot [14]

and Wernisch [15].

3 Maximum k-chains

Suppose a subset C'g of the skeleton S(P) of a planar point set P is given and let Cy, ..., C}
be the canonical chain partition of C's. The existence of such a chain partition implies that
Cs is a k-chain (the converse is false, a k-chain can have a partition into fewer chains).
We define the i-th region of Cg, for 2 < 2 < k, to be the intersection of the right shadow
of (;_y with the complement of the right shadow of (;, i.e., the region between the jump
lines of C;_1 and (;, containing the jump line of C;_y but excluding that of C; (see Fig. 7).
The first region is the complement of the right shadow of 'y and the (k + 1)-st region is
the right shadow of ;. These k 4 1 regions partition the whole plane.

A description of the main steps of an algorithm computing k-chains can be given with
this concept of the region (a more detailed description can be found in Fig. 9). The reader
may want to visualize the following steps on Fig. 7.

1. Compute the skeleton S(P) of a planar point set P.

2. Compute recursively a (k — 1)-chain Cy_¢ of S(P).

3. For all regions R defined by (4, extract a maximum chain from P intersected with
R. The union of all chains is a maximum k-chain for P.



Figure 7: Three regions defined by a maximum 2-chain of the skeleton each containing
one chain.

To demonstrate the correctness of the approach we need another definition. An anti-
chain A of P and its jump line are said to cross region R wellif RNL(A)= RNL(ANR).
That is, A crosses R well exactly if the jump line L(A) enters R vertically and leaves R
horizontally (see Fig. 8).

The next lemma expresses the key property of well crossing antichains that makes
them useful for our purposes.

Lemma 3 Let R be a region of Cs C S(P) and let Ay, ..., A\ be the canonical antichain
partition of P. If T is the set of all indices 1 such that A; is crossing R well, then the
collection {A; N R | i € T} is the canonical antichain partition of the underlying point set

Uier 4iN R.

Proof. Tet R be the (-th region and let p = L(A;) N Ix(Cy) and p' = L(A;) N Ix (Cy)
with ¢ < j. Note that any two points on Ix (Cy) are comparable. Since L(A;) is in the
shadow of I(A;) we cannot have p’ < p, hence p < p'. Since A; is crossing R well, the line
segment of L(A; N R) that ends in p is vertical. The same holds for L(A; N R) and p’. As
the two jump lines are disjoint we obtain p, < pl.. Therefore, we can extend L(A; N R)
and L(A; N R) by vertical half lines without introducing an intersection.

A similar argument shows that the y-coordinates of ¢ = L(A;) N Ix (Cy—q) and ¢’ =
L(A;) N Ix(Cy ) are related by ¢, < ¢,. Hence, the corresponding right half lines do
not cross. Altogether the jump lines L(A; U R) are pairwise disjoint and, by Lemma 1,
{A;N R |iée T} is the canonical antichain partition of the underlying set. a

Lemma 4 Let Cs C S(P) and let A be an antichain of the canonical partition of P. If
m is the number of skeleton points on A that are in C'g then the number of regions of (g
crossed well by A is at least m + 1.

10



Figure 8: I, crosses some region R well in the section between ¢ and ¢.

Proof. Let ¢ be a point of C's on the jump line I, of A. T.et p and ¢ be the points of A to
the left and below ¢ that define it (see Fig. 8). Then it is obvious that I, leaves the region
containing p horizontally and enters that of ¢ vertically. Of course, the top outgoing line
of I is vertical and the right outgoing line is horizontal.

Note that if I. leaves one region vertically the region of the next point of A to the right
is entered vertically too. Now consider the m + 1 sections of I from left to right before,
between, and after its m points in C's (possibly m equals 0). Since in each such section A
enters its first region vertically and leaves its last region horizontally, there must be some
region crossed well by A in between. O

Lemma 5 Let Cs be a (k — 1)-chain in the skeleton S(P) of P and let X be the height
of P. Taking a mazimum chain of PN R in each region R of Cg yields a k-chain of P of
Csl+ A

size at least

Proof. T.et Aq,..., Ay be the canonical antichain partition of P. Each point of Cg is a
skeleton point of exactly one antichain A;. If m; is the number of skeleton points of A; in
(g, for 1 <1 < A, then, according to LLemma 4, the antichains A; cross the regions well in
altogether at least Y| . .\(m; + 1) = |Cs| 4+ A sections. On the other hand, by Lemma 3,
each such section crossing well some region contributes one more point to the maximum

chain of that region. O

Note that Lemma 5 does not require the (k — 1)-chain C's to be maximum. We now
show a kind of reverse to LLemma 5.

Lemma 6 Let C' be a k-chain in P. There exists a (k — 1)-chain in the skeleton S(P)
C| — X, where X\ is the height of P.

with size at least

Proof. By Theorem 3, P is the right down skeleton of S(P)U M(P). The chains Mp(P)
and M7 (P) of marginal points both have size A. Hence, we may reason similarly as in

11



the proof of LLemma 5 after reflection of all points on the diagonal x = —y, i.e., after
the transformation T'(z,y) = (—x, —y) of the plane. The right down skeleton P is thus
transformed to a skeleton T'(P) of T(S(P)UM(P)). Theimage T(C') of the k-chain C' C P
is a k-chain in the skeleton T'(P) defining k + 1 regions. Observe that T(Mpg) lies in the
first region and T (M7) lies in the (k + 1)-st region of T'(C') and that both are maximum
chains of length A. We apply Lemma 5 and obtain a (k + 2)-chain C5in T(S(P)U M(P))
with |C§] > |C
T(Mp) and T(M7) are in C's. When these two chains are removed from C% we obtain a
(k—1)-chain C's C T(S(P)) of size at least || — XA and T(Cs) C S(P)is the (k— 1)-chain

searched for. O

+ A. According to the above observation, we may further assume that

We denote the k-chain in P obtained from a (k — 1)-chain Cg in S(P) according to
Lemma 5 by o(Cs).

Theorem 6 Let Cy be a mazimum chain of S*~1(P) and C; = o;(C;_1), for 2 <i <k,
then C'y, is a maximum k-chain in P.

Proof. By induction, suppose that Cr_y is a maximum (k — 1)-chain in S(P) and let A
be the height of P. If there were a k-chain ¢' C P with more points than o, (Cg_1) then
' would have more than

Cr_1] + A points, according to LLemma 5. Hence, by Lemma 6,
Cr—1]in S(P), a contradiction. O

there would be a (k — 1)-chain of size larger than

Note that the proof of the above theorem also shows that the number of additional
points in each application of o, to a maximum (£ — 1)-chain of S¥~**1(P) is equal to the
height of S¥=*(P), for 2 < £ < k. Hence, we obtain the following corollary that is part (1)
of Greene’s Theorem for permutations (see Theorem 1).

Corollary 1 A maximum k-chain of a point set P has size Y ;. Ai( P) where \;(P) is
the height of S'(P). - O

We are now prepared to provide an algorithm MAXMULTICHAIN (see Fig. 9) that,
given a point set P and some k, computes a maximum k-chain of P. Some remarks about
this algorithm are in order. To dispose P means to release any memory space holding
the points of P, which is necessary to keep the space requirement small. Recall that a
maximum (k — 1)-chain may consist of fewer than k — 1 chains. This happens if C's equals
S and can be partitioned into less than & — 1 chains. Hence, there may be fewer than k
regions of C'g. If C's is empty (e.g., when k£ = 1), we assume that Ry is the whole plane.

The partitioning of P according to the regions R; of C's can be done with a single sweep
from left to right halting at every point of P. The sweep line . contains its intersection
with all the right layers of C's and is initialized to the y-coordinates of the left outgoing
lines of these layers. Now a point p € P is easily assigned to its region. If the skeleton point
immediately above p isin (g then the height of the intersection point of the corresponding
right layer with the sweep line has to be adapted.

Theorem 7 Algorithm MAXMULTICHAIN( P, k) computes a maximum k-chain for a point
set P of size n in time O(knlogn) and linear space.

12



MAXMULTICHAIN( P, k)
Csg—0; C—0;
if £ > 2 then
S — skeleton( P);
M — marginal points(P);
dispose P;
C's — MAXMULTICHAIN(S, k — 1);
P — right down skeleton(S' U M);
Ry, ..., Ry — regions(Cyg);
partition Pinto P, — PN R;, 1 <i<I;
for2— 1to!l do
C — C U mazximum chain(P;);
return C;

Figure 9: Algorithm MAXMUTLTICHATN

Proof. According to Theorem 2, the skeleton, marginal points, and the canonical chain
partition of a point set of size n can be computed in O(nlogn) time. The partitioning
of P described above takes the same amount of time. The computation of the maxi-
mum chains in each region take, again by Theorem 2, time 0(2221 | P;| Tog(]| P;])) which
is O(nlogn). Since these estimations hold true in each recursive step, we have an overall
time O(knlogn).

As far as the space requirement is concerned, the main problem is the computation of a
new skeleton in each recursive step. But P is disposed and only its skeleton together with
the marginal points is retained. The number of marginal points in the i-th step equals
twice the number A;( P) of layers of the i-th skeleton S*(P), 0 < i < k. Thus, the amount
of space that is needed for k recursions is O(2 Ef:o M(P)+|S®(P)|) which, by Lemma 2,
is O(|P|). a

4 Maximum k-antichains

In this section we prove some assertions made by Viennot [13] leading to an algorithm
that efficiently computes k-antichains of a point set P.

Let Ag be a k-antichain in the skeleton S(P) and let Agq,..., Agy be the canonical
antichain partition of Ag. It is easily seen that the intersection of P with the right down
jump line I /(Ag;) is an antichain in P. Let us denote the k-antichain Uf:1 L, (As;)NP
of P by A(As) (see Fig. 10). On the other hand, given a k-antichain A with canonical
partition Ay, ..., Ap we define the k-antichain 6(A) = Uf:1 L(A;) N S(P) of S(P). Recall

that a strict k-antichain is one that cannot be covered by less than k& antichains.

Lemma 7 Let P be a planar point set.

1. If As is a strict k-antichain of S(P) then A(Ag) is a k-antichain of P of size at
least |Ag| + k.

13



Figure 10: The A-operator.

2. If A is a strict k-antichain of P then §( A) is a k-antichain of S(P) of size at least

1A] — .

3. If Ag is a strict maximum k-antichain then equality holds in 1 and A(Ag) is a strict

mazximum k-antichain, too.

Proof. let Agy,...,Asi be the canonical right down antichain partition of Ag. Fach
skeleton point s € S(P) has two defining points pr(s),pn(s) € P, one with the same y-
coordinate to the left, the other with the same z-coordinate below. If we walk along a right

down jump line I ,(Ag;) from left to right we find between any two consecutive skeleton

points sy, 52 of Ag; at least one of the defining points pp(s1) or pr(s2) on the jump line.
Otherwise, the defining point pp(sy) would have y-coordinate smaller than that of s5 and

point pr(s2) would have z-coordinate smaller than that of
s1. But this implies that two layers of the canonical layer
structure of P intersect, which is impossible (see Fig. 11).
Since the left and down defining point pr(s7,) and pp(sg)
of the leftmost and rightmost skeleton points s7, and sg of
Ag,; are always on the right down jump line, PN 1L _(Ag;)
contains at least one point more than Ag;. Summing over all
Ag; we get the first inequality of the lemma.

The second inequality is obtained similarly. One may ex-
tend P by the two marginal chains and use the transforma-
tion T(x,y) = (—2,—y). By Theorem 3, T(P) is the skele-
ton of T(S(P)U M(P)). Hence, by the above argument,

Li S1
L _ 52

Figure 11: Intersecting lay-
ers.

|6(A) > |A(T(A))| — 2k > |T(A)| — k since the two chains T(My) and T(Mpg) contribute
at most 2k points to the k-antichain A(T(A)) in T(S(P)U M(P).

Suppose Ag is astrict maximum k-antichain and let A(Ag) be a strict &’-antichain with
E < k. Then 6(A(Ag)) is a k-antichain, hence k-antichain, of size at least |A(Ag)| — & >
|As|+k—Fk in S(P)and k' = k since Ag is maximum. Consequently, if A" is a k-antichain
of P, |A(As)| — k > |As| > 6(A") > |A’| — k, which implies that A(Ag) is a maximum

Ek-antichain.

14
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MAXMULTTANTICHAIN(P, k)

A — number of layers of (P);
if A <k then
return (P, \);
else
S — skeleton( P);
M — marginal points(P);
dispose P;
(Asg, M) — MAXMULTTANTICHAIN(S, k);
P — right down skeleton(S' U M);
A — A(Aq),
if M < k then
add & — X arbitrary points of P to A;
return (A, k);

Figure 12: Algorithm MAXMUTLTTANTICHATN

Theorem 8 Let P be a point set and let k < Xo(P). There is an £ with 0 < £ < p(P) and
Mg (P) <k < M(P). The {-th skeleton S*( P) contains a strict mazimum k-antichain A,
S+ B = S N (P).

7

and N(Ay) is a mazimum k-antichain of P of size

Proof. Since, by Lemma 2, the A;(P) are decreasing in 7 and A,p)(P) = 0, there is an
{ such that the inequalities are satisfied. S™'(P) itself is a strict maximum Ay 1(P)-
antichain and A(SMH(P)) is a strict maximum Aypq(P)-antichain of SZ(P). The size of
A(ST(P))is |[S™Y(P)| 4+ Ag1(P) by Lemma 7. Take a maximum chain (' in §°(P); it
has size Ay(P). Since A(SMH(P)) intersects C' in at most Ay((P) points and SK(P) has
size | S (P)|+ Ao(P), there is no point of S*( P) outside C' UA(S(P)) and we may add
k— Ao (P) arbitrary points of §°(P) to A(§1(P)) to get a strict maximum k-antichain
Ay in SY(P) of size |S™'(P)| + k. Now induction and application of Temma 7 shows the
theorem. O

An algorithm computing a maximum k-antichain of P for given P and k is now easy
to provide. For algorithm MAXMUTTTANTICHAIN see Fig. 12.

Theorem 9 Algorithm MAXMULTTANTICHAIN( P, k) computes a mazimum k-antichain
for a point set P of size n in time O((n*/k)logn) and linear space.

Proof. Since the algorithm simply mimics the proof of Theorem 8, it certainly computes a
maximum k-antichain. The computation of the skeleton, marginal points, and the number
of layers takes time O(nlogn). The A operator is implemented straightforwardly. For a
sweep line going from right to left computing the right down layers of Ag may halt at
points of P, too, and check whether they lie on a layer or not. Hence, the time needed
for one recursive step is O(nlogn). According to Theorem 8, a maximum k-antichain has
size |Sﬁ+1| + k¢ < n. Thus, the number £ + 1 of recursions is bounded by n/k + 1. That
the amount of space needed remains linear is seen as in the proof of Theorem 7. O
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5 Maximum weighted k-chains

Given some weight w: P — R on the points of a set P, we define the weight of a k-chain as
the sum of the weights of its points. A mazimum weighted k-chain has maximum weight
among all weights of k-chains of P. Such maximum weighted k-chains can be found in a
similar way as maximum k-chains. Unfortunately, the corresponding algorithm is efficient
only if k is small.

In the following assume that the weights w are positive integers. With this assumption
the weighted case can be simulated by the unweighted one. Though the algorithms work
on the weighted point set itself the proofs of correctness are based on the following idea.
We expand each point p € P into a tiny chain C'(p) of w(p) points, where tiny means that
the chain is contained within a tiny box of sidelength € where ¢ is less than the minimum
distance in 2- or y-coordinates of the points of P (recall that we assume all points to have
different 2- and y-coordinates). Denote the expanded set of points by P’. Now consider
the skeleton S(P’) of P'. Let p, ¢ be two points of P with p, < g,. Tt is easily seen that if
there are any skeleton points in S(P’) having their defining points in the tiny chains C(p)
and C'(q) then all skeleton points with this property again fit into a box B of sidelength
e. In this case, locate a weighted skeleton point between p and ¢ (i.e., at (p,, q,)) and give
it a weight equal to the number of skeleton points contained in box B. The resulting set
of weighted skeleton points is the weighted skeleton S(P,w).

The weighted skeleton S( P, w) can also be obtained without resorting to set P’ of mul-
tiplied points. We translate the actions of Algorithm SKELETON (see Fig. 3 of Section 2)
that constructs the skeleton S(P’) of P’ with sweep line I/ into actions of an Algorithm
SKELETON-WEIGHTED (see Fig. 13) that constructs the corresponding weighted skeleton
S(P,w) of P with sweep line L. As a byproduct Algorithm SKELETON-WEIGHTED also
computes a maximum weighted chain of P.

If the y-coordinates of a set M of markers on I/ differ by an amount smaller than ¢ then
they correspond to a weighted marker m on I with weight W(m) = |M|. The insertion
of a point p € P with weight w(p) in I corresponds to the w(p) insertions of points from
C(p) C P into I'. Tet m be the next marker above p. Tf
number W(m) of markers on I’ that correspond to m then W(m) new skeleton points

C(p)| is greater or equal to the

in S(P’) are generated. Hence, we have to generate a new skeleton point in S(P,w) of
C(p)| > W(m) there remain W = |C(p)| — W(m)

points of C'(p) for insertion. Hence, the next marker on I, is searched and the procedure is

weight W(m) and remove marker m. If

repeated until there is no further marker on I or there is one marker mg with W(mg) > W.
Comparing with the corresponding situation in P’ we find the necessary action. A skeleton
point of weight W is generated and the weight of marker mq is updated to W(mg) — W.
With this kind of considerations it can be verified that Algorithm SKELETON-WEIGHTED
yields the weighted skeleton of (P, w).

For the maximum weighted chain computation observe that either all or none of the
points of C'(p), for some p € P, are contained in a maximum chain in P’. Thus, a maximum
chain in P’ corresponds to a maximum weighted chain in P and vice versa. As will be
seen later the same holds true of maximum weighted k-chains in P and maximum k-chains
in P’

The weighted skeleton thus computed has many points with equal z- or y-coordinate
and we want to compute the weighted skeleton of a skeleton repeatedly. Thus, we perturb

16



SKELETON-WEIGHTED( P, w)

insert dummy d,, in I with W(d, ) — 400 at height +o0;
link(d,) < nil;
S —
for each p € P from left to right do
insert a new marker m’ in I, with m) « p,;
W(m') — w(p);
point(m’) — p;
m «— next marker below p on I;
link(p) — point(m);
m «— next marker above p on I;
W — w(p);
while W > W(m) do
add skeleton point (., m,) with weight W(m) to 5;
W — W — W(m);
remove m from I;
m «— next marker above p on I;
if m # d, and W > 0 then
add skeleton point (., m,) with weight W to 9;
W(m) — W(m)—-W;
v — point(m), m uppermost marker on I; C' — {v};
while link(») # nil do
v — link(v); C — CU{v}

return S, C';

Figure 13: Algorithm SKELETON-WEIGHTED

them according to the simple procedure mentioned in section 2 before we use them in any
further computation. Consequently, we may assume that all coordinates of points of the
input instance are different.

Computing the weighted skeleton S(P,w) with algorithm SKELETON-WEIGHTED
takes time O((|P| 4+ |S(P,w)|)log(|P| + |S(P,w)|)). In contrast to the unweighted case,

the weighted skeleton may contain more points than the original point set. Fortunately,

there cannot be much more such points.

Lemma 8 The number of weighted skeleton points in S( P, w) is at most twice the number
of points in P.

Proof. Tf a skeleton point s € S(P,w) has no other skeleton point s’ above it is assigned
to its defining point p € P below. Otherwise, it is assigned to its defining point to the
left. Note that in the second case skeleton point s was generated under the condition
W > W(m), hence, m was removed and, consequently, there is no skeleton point s’ to the
right of s. A point p € P gets assigned the highest skeleton point above it or the furthest
skeleton point to its right or both. Therefore, no point p gets assigned more than two
skeleton points. O
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Figure 14: This cannot happen, a jump line of Cs separating C'(p). Gray areas do not
contain points of P’ or S(F’).

The interesting fact now is that Algorithm MAXMULTICHAIN (see Fig. 9 of Section 3)
may be used nearly without changes to compute a maximum weighted k-chain. The only
problem is that we have not yet defined what the marginal points of a weighted point set
should be. But we can do without marginal points if we resign to dispose any set of points.
This does no harm since the space requirement will be high anyway.

Theorem 10 et Cs be a maximum weighted (k — 1)-chain in S(P,w). Then taking
a maximum weighted chain of points P N R in each of the k regions R of Cs yields a
mazximum weighted k-chain of P.

Proof. By induction, a maximum weighted (k£ — 1)-chain Cs of S(P) corresponds to a
maximum (k — 1)-chain C§ of the skeleton S(P’) of P’. The selection of a maximum chain
in the point sets P’ N R for each region R of the k regions of C'5 would give a maximum
k-chain of P’. This does not immediately yield a maximum weighted k-chain of P since
some points of the chain C'(p) C P’ replacing a point p of P might fall in one region and
some in another. We claim that this cannot happen. Since there is no skeleton point in
the € box containing C'(p), it is separated either by a vertical or horizontal segment of a
jump line of some chain. Tt cannot be vertical, for there is no skeleton point below C(p).

Now suppose that a horizontal segment between two skeleton points s and sy separates
C(p) (see Fig. 14). The y-coordinate of sy equals the y-coordinate of some point p; € C(p).
Let py be be the immediate predecessor of py in C'(p). Since there is no skeleton point to
the left of C'(p) the point s has to be dominated by p, and by sq, the skeleton point on
the outgoing line of py. Also sy < s1, hence, Cg U {sa} is a (k — 1)-chain. If sy is not a
member of C'g this contradicts the maximality of C's. On the other hand, s cannot be
a member of Cg, since C'g has a decomposition into (k — 1) noncrossing jump lines, one
of them joining s and sy. A jump line containing sy however has to leave sy upwards and
hence crosses the jump line of s and s4.

We have thus proved that there is a correspondence between the regions R. of C%
and the regions R; of Cg, for 1 <4 < k, in such a way that a chain C(p) is completely
contained in R’ iff p is contained in R,. Applying Theorem 6 to the expanded point set,
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we obtain that all maximum weighted chains from regions R; together form a maximum
weighted k-chain. O

In analogy to the unweighted case, we set SO(P) = P and let §*(P) = S(S*=1(P), w)

be the k-th weighted skeleton of P. We denote the weighted k-chain in P obtained from a
weighted (k — 1)-chain Cg in S(P,w) according to Theorem 10 by pz(Cs).

Theorem 11 Let Cy be a mazimum weighted chain of SE=V(P) and Cy = py(Co_y), for

ur

2 < <Ek, then (Y is a mazimum weighted k-chain in P. O

Theorem 12 A maximum weighted k-chain of a weighted point set P can be obtained in
O(2%| P|1og(2%| P|)) time and O(2%|P|) space.

Proof. As was already pointed out, to construct the weighted skeleton for a weighted point
set P takes time O(|P|log|P|). The point location of points P in the regions defined by a

(k — 1)-chain C's can be done with the help of a sweep line in time O(|P|log |Cs|+|Cs]|)).
This amounts to a total running time of O3, c.cp. 2| P|log(2!| P])), since |57 | < 2¢|P| by
Lemma 8. The bound on the space is given by O(Y, cicp. 2°| P])- O

A maximum weighted k-chain of a point set P with rational or real weights can he com-
puted by the very same algorithm. The proof of correctness then requires some additional
standard rescaling and approximation arguments.

As the algorithm of this section makes sense only for small values of k it would have
been nice to have a complementary method for large k. Unfortunately, we have not been
able to extend the algorithm of Section 4 to the weighted case so that the running time
remains independent from the weights.
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