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Let ~A be an arrangement of oriented hyperplanes, i.e., of hyperplaneswith designated good and bad sides. The ells of minimum infeasibility of ~Aare of some interest. These ells an be made feasible by removing or revert-ing the least number of inequalities. We de�ne the minimum infeasibilityMinInf( ~A) as the minimum of Inf() over all ells  of ~A.A subarrangement of ~A is a subset ~B of the hyperplanes of ~A, with thesame orientations. We denote by MaxDis( ~A) the maximum number ofdisjoint infeasible subarrangements of ~A. Given a ell  of ~A, a point x 2 and disjoint infeasible subarrangements ~B1; : : : ; ~Bk we note that eah ~Biontributes at least one to the infeasibility of x in ~A. From this observationwe obtain the following inequality.Proposition 1. For every arrangement ~A of oriented hyperplanesMinInf( ~A) �MaxDis( ~A):In this paper we investigate bounds for the ratio of the LHS over theRHS in the above inequality. The existene of suh a ratio follows fromHelly's Theorem, see Proposition 4.The main ontribution of the paper is a detailed disussion of the problemin the ase d = 2, i.e., for 2-dimensional arrangements. We prove thatMinInf( ~A) � 2 �MaxDis( ~A), in this ase. An example shows that thefator 2 is best possible. If an arrangement ~A of n lines ontains a ell ofinfeasibility n, then the fator an be improved to 3=2, whih is again bestpossible. Finally, we onsider the problem for arrangements of pseudolinesin the Eulidean plane. A ompletely independent proof is required to showthat the fator of 2 suÆes in this more general situation.The problem of investigating the gap in Proposition 1 ame to our atten-tion through a question posed by Komei Fukuda at the Monte Verit�a Con-ferene on Disrete and Computational Geometry 1998. Fukuda remarkedthat he was led to the problem by the observation that some well studiedgraph problems an be viewed as problems about minimum infeasibility ofertain arrangements. We briey disuss two suh instanes.The Maximum Ayli Subgraph problem asks for the minimum numberof ars of a direted graph D = (V;A) whose removal makes the graphayli (see e.g. [4℄). Assoiate a variable xv with vertex v and an inequalityxu � xv � 1 with eah ar (u; v). The Maximum Ayli Subgraph problemis the problem of determining Inf( ~A) for the orresponding arrangement.A minimal infeasible subarrangement orresponds to a simple yle, hene,Proposition 1 translates to the lower bound given by a maximum olletionof disjoint yles. 2



The Luhesi-Younger Theorem for direted graphs is a MinMax resultwhih an be interpreted as a situation in whih equality in Proposition 1holds (for proofs see [7, 6, 2℄). Let D = (V;A) be a direted graph with a2-onneted underlying graph GD. A diut of D is a set B of ars whihis a ut (X;Y ) for GD suh that all ars of B are oriented from X to Y .The Luhesi-Younger Theorem states that the minimum number of arsof D that have to be reversed to make D strongly onneted equals themaximum number of disjoint diuts of D. For the translation provide avariable xa for eah ar of D, now onsider the ow onstraint for eahvertex v 2 V , i.e.,Pa2in(v) xa�Pa2out(v) xa = 0, and positivity inequalitiesxa � 1. The theorem is equivalent to MinInf( ~A) =MaxDis( ~A) when ~A isthe arrangement indued by the inequalities on the (jAj � jV j)-dimensionalaÆne spae de�ned by the ow onstraints.2 Introdutory Observations and ExamplesIn this setion we ollet some general observations about infeasibility inarrangements of oriented hyperplanes. For the sake of simpliity we assumethroughout the paper that the arrangements we onsider are `in generalposition'. By this we mean that the intersetion of every set of d hyperplanesof the arrangement is a point and no point is ontained in more than d of thehyperplanes. Our results (exept Theorem 11) hold without this assumption,but the proofs would be broadened by additional details.Without proof we state the following two observations.Observation 2. An infeasible arrangement in Rd ontains at least d + 1hyperplanes.Observation 3. An arrangement in Rd onsisting of d + 1 hyperplanes isinfeasible i� its (unique) bounded ell has infeasibility d+ 1.An infeasible arrangement in Rd onsisting of d+1 hyperplanes is alleda infeasible base arrangement.Lemma 1. Every infeasible arrangement ontains an infeasible base ar-rangement.Proof. Let ~A be an infeasible arrangement. Suppose that ~A ontains noinfeasible base arrangement. This means that for eah set of d + 1 goodhalfspaes there is a point being ontained in all of them. Helly's Theorem3



implies the existene of a point x whih is ontained in all the good halfs-paes. By de�nition this point and, hene, his ell has infeasibility 0. Thismeans that ~A is feasible, ontradition.Proposition 4. For every arrangement ~A in RdMinInf( ~A) � (d+ 1) �MaxDis( ~A):Proof. Reursively remove infeasible base arrangements from ~A until thearrangement beomes feasible. This is possible by Lemma 1. Let x be apoint in the feasible ell. The removal of eah infeasible base arrangementshas dereased the infeasibility of x by at most d+1. Therefore,MinInf( ~A) �MinInf(x) � (d+1) �# removed subarrangements � (d+1) �MaxDis( ~A).We turn to a lower bound onstrution. Choose n points uniformly atrandom from the unit sphere in Rd . With eah point onsider the tangenthyperplane and let the bad halfspae of the hyperplane be the side ontainingthe sphere. The infeasibility of a point x in the interior of the sphere is n.Along every ray starting at x the infeasibility is monotonially dereasing.Therefore, every ell of minimum infeasibility is an unbounded ell. Theinfeasibility of an unbounded ell of the arrangement equals the number ofrandom points on the averted hemisphere. By onstrution this numberwill be approximately n=2. Sine a infeasible subsystem onsists of d + 1halfspaes, there are at most n=(d + 1) of them. On the basis of this ideathere is a rigorous proof for the next proposition.Proposition 5. For every � > 0 there are arrangements ~A in Rd withMinInf( ~A) � �d+ 12 � �� �MaxDis( ~A):As a warmup we onsider the very simple ase of 1-dimensional arrange-ments. A hyperplane in dimension d = 1 is just a point p in R and itshalfspaes are the two open intervals ℄ � 1; p [ and ℄ p;1[. A ell of anarrangement orresponds to an (open) interval. An infeasible base arrange-ment onsists of two points with disjoint good halfspaes, see Figure� 1.Let ~A be a 1-dimensional arrangement. Sine we are only interestedin the infeasibility of the ells of ~A, we disregard the exat position of thepoints (hyperplanes) and restrit the attention to their ordering and the�In �gures we mark the good side of a hyperplane with a ag.4



1 2 1Figure 1: An infeasible base arrangement in one dimension, ells are labeledwith their infeasibility.orientation information, i.e., whether the left or the right side is the goodone. From ~A onstrut a f+;�g-sequene ontaining n signs: San thepoints from left to right. If the bad side is to the right of the point write aplus-sign, otherwise, write a minus-sign. Infeasible base arrangements of ~Aare in one-to-one orrespondene to the +� subsequenes of this sequene.A +� subsequene of onseutive signs will be alled tight subarrangement.Observation 6. A 1-dimensional infeasible arrangement ontains a tightsubarrangement.Observation 7. The bounded ell of a tight subarrangement of ~A is not aell of minimal infeasibility in ~A.Observation 7 is proven by onsidering the infeasibility of one of the twoells adjaent to the ell between the points of the tight subarrangement.From this observation it follows that removing a tight subarrangement from~A dereases the infeasibility of the arrangement by one.Given an infeasible arrangement ~A, reursively remove tight subarrange-ments, as long as possible. When the proedure stops the arrangement isfeasible (Observation 6). This showsProposition 8. For every 1-dimensional arrangement ~AMinInf( ~A) =MaxDis( ~A):3 Arrangements of LinesIn this setion we disuss arrangements of lines in 2-dimensional spae. Withevery line we assume that a good and a bad halfplane are spei�ed. Aninfeasible base arrangement is shown in Figure 2.It is easy to give a more expliit example for the lower bound of Propo-sition 5 in dimension two. Consider the arrangement of lines supportedby the edges of a regular n-gon with orientations suh that all halfspaesontaining the n-gon are bad. In the even ase small perturbations are re-quired to avoid parallel lines. It is easy to see thatMaxDis( ~A) = bn=3 andMinInf( ~A) = b(n� 1)=2. An example with n = 5 is shown in Figure 3.The main result of this setion is the following theorem.5



1 21 12 23Figure 2: An infeasible base arrangement in R2 , ells are labeled with theirinfeasibility.
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Figure 3: Arrangement with MaxDis( ~A) = 1 and MinInf( ~A) = 2Theorem 9. For every arrangement ~A of oriented linesMinInf( ~A) � 2 �MaxDis( ~A):This bound is best possible.There is a lass of arrangements whih allows to prove a smaller fator.Theorem 10. For every arrangement ~A of oriented lines with a ell whihis on the bad side of every lineMinInf( ~A) � d(3=2) �MaxDis( ~A)e:This bound is best possible.3.1 Proof of Theorem 9The proof is based on a reursive removal of infeasible base arrangements.The goal is to �nd a subarrangement whose removal dereases the infeasibil-ity of the remaining arrangement by at most two, we all suh a infeasiblebase subarrangement a tight subarrangement.6



For a ell  of minimum infeasibility let A() be the arrangement formedby all lines having  on their bad side. Let z() be the ell in the arrangementA() ontaining . With d we denote be the minimal distane between apoint from ell  (inluding its boundary) and a line of ~A(). The minimaldistane d is greater than 0, sine the boundary of  is not ontained in~A(). Note that d is ahieved at a orner of . Among all ells of minimuminfeasibility hoose the ell  whih minimizes d. Let p be the orner of and l be the line of A() suh that d = dist(p; l). With the following twolemmas we show that line l and the two lines l1; l2 rossing at p form a tightsubarrangement. Figure 4 illustrates the situation.
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Figure 4: The onstrution: The large 7-gon is z() and the fasiated regionis the triangle of the subarrangement l; l1; l2.Lemma 2. The subarrangement l; l1; l2 is infeasible.Proof. Lines l1 and l2 divide the plane into four open unbounded setors.Let R be the setor whih is on the good side of both lines, setor R isopposite to the setor ontaining , see Figure 5. Sine d = dist(p; l) thepoint p is the losest point to l in ell . Therefore, line l has to ross regionR and the subsystem formed by the three lines is infeasible.Lemma 3. Removing the subarrangement l; l1; l2 dereases the infeasibilityof the remaining arrangement by at most two.7
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Figure 5: The relative positions of l1; l2 and l.Proof. We have to show that there is no ell in the triangular ell formedby l; l1; l2 whih is of minimal infeasibility.Suppose � is a ell with minimal infeasibility ontained in the triangularregion of l; l1; l2. De�ne ~A(�) as above. Then l belongs to ~A(�) and weget d� � dist(�; l) < d. Sine we have hosen  as the ell of minimalinfeasibility minimizing d, the existene of suh a ell � is impossible.Sine removing a tight subarrangement dereases the infeasibility ofevery ell of minimal infeasibility by at most two we get MinInf( ~A) �2 �#removed subarrangements � 2 �MaxDis( ~A). This ompletes the proofof the inequality of Theorem 9.To omplete the proof of Theorem 9 we need a onstrution showingthat the fator 2 is best possible. Suh a onstrution will be given inSubsetion 4.2.Remark. The idea of this proof generalizes to higher dimensions. An anal-ogous distane argument allows to detet an infeasible base subarrangementwhose removal dereases the infeasibility of every minimal infeasible ell byat most d. This improves the fator of Proposition 4 and gives: For everyarrangement ~A in Rd MinInf( ~A) � d �MaxDis( ~A):3.2 Proof of Theorem 10Reall that now we deal with line-arrangements with one ell being on thebad side of every line. In this ase all ells of minimal infeasibility areunbounded and we restrit the attention to those ells whih interset theirle at in�nity.We enode the infeasibility of all unbounded ells with a f+1;�1g-sequene of length n: Let k be the minimum infeasibility of the arrangement8



and let x be a point with infeasibility k on the irle at in�nity. Let y bethe antipodal point of x. Note that the infeasibility of y is n�k. Traversingthe lines at in�nity lokwise from x to y we write +1, if x is on the goodside of a line, and we write �1 if x is on the bad side.The infeasibility of every unbounded ell  is enoded by this sequene.Let the unbounded ells be numbered 0; 1; : : : ; 2n�1 in lokwise order, suhthat ell 0 ontains x. If  is the i-th ell with i � n, then the infeasibility of is k plus the sum of the �rst i numbers of the sequene. Otherwise, if i > n,use its antipodal ell � to alulate the infeasibility as Inf() = n�Inf(�).By the hoie of x as a point of minimal infeasibility (and thereby y asa point of maximal infeasibility) the resulting sequene has a total sum ofn � 2k and the property that every pre�x and post�x has a non-negativesum.The next lemma desribes how the sequene represents infeasible basesubarrangements. We abbreviate +1 and �1 with + and �.Lemma 4. Infeasible base arrangements are represented in the +;� se-quene by +�+ or �+� subsequenes.Proof. Fix an infeasible base arrangement. Then x is either ontained inone of its regions with infeasibility 1 or infeasibility 2. Construting thesequenes transforms the base arrangement to +�+ in ase of x lying in aregion of infeasibility 1 and �+� otherwise.Conversely, let +�+ be a subsequene of the sequene. With respet tox there are only two possibilities for the relative position of its three lines.The indued orientation of + � + leads to the two on�gurations show inFigure 6. The left on�gurations in fat is an infeasible base arrangement.The right on�guration is not possible, sine no point lies in all three badhalfplanes. The same reasoning applies to �+� subsequenes.To omplete the proof of Theorem 10 we need a ombinatorial lemmaabout deompositions of sequenes of plus- and minus-signs.Lemma 5. Let S be a f+;�g-sequene ontaining n � k plus-signs and kminus-signs with the property that every pre�x and post�x of S has a non-negative sum. Then S ontains at least b2k+13  disjoint subsequenes of theform +�+ or �+�.Proof. We abstrat the string S to a a zig-zag path with steps (1; 1) and(1;�1) starting at (0; k) and ending at (n; n � k), always staying in they-interval [k; n� k℄, see Figure 7. 9



x + �+y
x + �+yFigure 6: The two arrangements de�ned by +�+.

kn� k
Figure 7: The zig-zag path for the string +�++�+��+++�++.A level of S is the set of symbols orresponding to a step in the zig-zagpath with y-oordinates between i and i + 1, for some i. Note that eahlevel ontains either zero or an odd number of symbols.We prove the lemma by indution on the length of the string. If thestring ontains only one symbol it is + and thus#disjoint alternating triples = 0 = j2 � 0 + 13 k:We distinguish several reduing operations on the sequene.1. There is a level whih ontains exatly one symbol:This symbol must be +. Removing it leads to a shorter valid stringwith the same number of negative entries. By indution this shortersequene ontains b2k+13  disjoint alternating triples.2. There is a level whih ontains exatly three symbols:These three symbols form the substring +�+. Removing them leavesa shorter valid string with k � 1 negative symbols. By indution#disjoint alternating triples � j2(k � 1) + 13 k+ 1 � j2k + 13 k:10



3. There is a level ontaining at least six symbols:The �rst six symbols of this level form the substring + � + � +�,whih onsists of two alternating triples. Removing all six symbolsleaves a shorter valid string with k � 3 negative symbols. Thus#disjoint alternating triples � j2(k � 3) + 13 k+ 2 = j2k + 13 k:4. If non of the above ases holds, then every level ontains exatly �vesymbols.� If there is only one level, then n = 5, k = 2 and the �rst threesymbols form a substring +�+. Hene,#disjoint alternating triples = 1 = j2 � 2 + 13 k:� If there are at least two levels, then onsider the 10 symbols ofheight k and k+ 1. This substring has the shape of one of the 6 asesshown in Figure 8. The �gure indiates how the �rst nine symbols ofeah string an be deomposed into three disjoint alternating triples.Removing the ten symbols leaves a valid string with k � 4 negativesymbols. Thus#disjoint alternating triples � j2(k � 4) + 13 k+ 3 � j2k + 13 k:Sine, by onstrution the parameter k was the infeasibility of the ar-rangement, the lemma givesMaxDis( ~A) � b23MinInf( ~A)+ 13. This impliesd32MaxDis( ~A)e �MinInf( ~A), i.e., the formula stated in the theorem.The tightness of the fator 3/2 is shown via the arrangement of the n-gon. Consider the arrangement of lines supported by the edges of a regular(6r + 5)-gon oriented so that all halfspaes ontaining the polygon are bad.Then MaxDis( ~A) = 2r + 1 and MinInf = 3r + 2 = d32MaxDis( ~A)e.4 Arrangements of PseudolinesA pseudoline is a urve in R2 whose removal from the plane leaves twounbounded onneted omponents. In other words a pseudoline is a simple11



�1 �3+1+2 +1�2�3+3 +2+ +1�1+1+2�3+3�3�2+2++3�3�2�3�1+1 +1 +3+2 +2 + +1+2�3�1+1 �3�2+2+�3 �3 +1 +2�1�2+2+1 +1 +3+2 + �1+1+2�2�3+3 �3+Figure 8: The six possible patterns of two levels, eah of 5 symbolsurve whih goes to in�nity on both sides. An arrangement of pseudolines isa family of pseudolines with the property that eah pair of pseudolines has aunique point of intersetion, where the two pseudolines ross. Arrangementsof pseudolines are a natural generalization of arrangements of straight lines,they have been studied in a wide variety of ontexts. Gr�unbaum [5℄ is a nielittle monograph olleting results and many problems about arrangementsof both straight-lines and pseudolines. A more reent overview is given byGoodman [3℄.Let A be an arrangement of pseudolines. Choose an orientation for eahpseudoline, or equivalently, assign a good and a bad side to eah pseudoline.For the oriented arrangement ~A there are natural notions of infeasibility forpoints, ells and subarrangements. Hene, questions regarding the relationbetween MinInf( ~A) and MaxDis( ~A) an be asked in this more generalsetting. Let us review the results for 2-dimensional arrangements of linesand see what an be adapted to pseudolines. The validity of Propositions 1in the new ontext is obvious. The upper bound of Proposition 4, i.e.,MinInf( ~A) � 3 �MaxDis( ~A), holds, beause of an analog of Helly's The-orem for pseudo-halfspaes. What about pseudoline analogs of Theorems9 and 10? In the ase of Theorem 10 the answer is easy. The proof givenin Subsetion 3.2 is ompletely ombinatorial, it makes no use of straight-ness. Therefore, the result remains valid in the setting of arrangements ofpseudolines:Theorem 11. For every arrangement ~A of pairwise rossing oriented pseu-12



dolines with a ell whih is on the bad side of every pseudolineMinInf( ~A) � d(3=2) �MaxDis( ~A)e:This bound is best possible.The statement of this theorem gets false without the assumption that thepseudolines are pairwise rossing. There are sets ~A of n pairwise paralleloriented pseudolines suh that MinInf( ~A) = n � 1 and MaxDis( ~A) =bn=2.The proof of Theorem 9 in Subsetion 3.1 makes use of a metri argu-ment. Therefore, the question whether the fator of 2 remains valid for ar-rangements of pseudolines annot be answered on the basis of the old proof.The main result of this setion is a proof of the following generalization ofTheorem 9.Theorem 12. For every arrangement ~A of oriented pseudolinesMinInf( ~A) � 2 �MaxDis( ~A):This bound is best possible.In the next subsetion we ollet preparing fats about arrangements ofpseudolines. Along the way we learn some ombinatoris of yli arrange-ments and use this to produe the lower bound example for Theorem 9.Subsetion 4.3 ontains the main body of the proof for Theorem 12.4.1 Basi FatsGiven an arrangement A of pseudolines, hoose a unbounded ell ̂ andimagine that ̂ ontains the northpole. The omplementary ell � is theunbounded ell separated from ̂ by all the pseudolines of the arrangement.Label the pseudolines so that traversing the irle at in�nity ounterlok-wise from ̂ to � they are met in the order 1; 2; : : : ; n. This results in amarked arrangement of pseudolines.On the set of all (ombinatorially di�erent) marked arrangements of npseudolines onsider a graph Gn whose edges orrespond to triangular ips,see Figure 9. To be preise, the pair ( ~A; ~B) is an edge of Gn i� there arethree pseudolines i < j < k in ~A suh that:� There is a triangular ell bounded by the tree pseudolines i; j; k.� The northpole is separated from the rossing of pseudolines i and k bypseudoline j. 13
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Figure 9: A ip at the shaded triangular ell.� Arrangement ~B is equivalent to the arrangement obtained from ~A bypulling pseudoline j below the rossing of i and k.Various aspets of the graph Gn have been studied [1, 10℄. We will need thefollowing properties of Gn.(1) There is a unique arrangement C of n pseudolines, so that the indegreeof C in Gn is zero. The arrangement C is the yli arrangement, it willbe studied in more detail in the next subsetion.(2) Gn is the diagram of a ranked poset. (This poset is the \higher Bruhatorder" B(n; 2) introdued in [8℄ and further studied in [10℄.)The general idea for the proof of Theorem 12 is as follows. In a �rst stepwe show the fator of 2 for all orientations of the yli arrangement. Thisis done in Subsetion 4.2. To prove the same fator for a marked orientedarrangement ~A onsider a path C = A0;A1; : : : ;Ar = A in Gn, whih startsin the yli arrangement C and ends in the unoriented version A of ~A. Theexistene of suh a path follows from the two properties of Gn mentionedabove, the original soure for the onnetivity of Gn is Ringel [9℄.Let ~Ai be the orientation of Ai where line j is oriented as in ~A. Theidea for the indutive proof is to show that MinInf( ~Ai) � 2 �MaxDis( ~Ai)implies MinInf( ~Ai+1) � 2 �MaxDis( ~Ai+1). Atually the proof given inSubsetion 4.3 is a bit more ompliated.4.2 Cyli ArrangementsThe marked yli arrangement C of n lines is haraterized by the propertythat for any three lines i < j < k the rossing of i and k is separated fromthe northpole by line j. A straight-line realization of this arrangement anbe obtained by hoosing n di�erent tangents to the parabola y = x2, the14



speial north-ell ̂ is the ell ontaining the parabola. Figures 11 and 12show yli arrangements.An orientation of the yli arrangement, i.e., an assignment of good andbad sides to all lines, an be enoded by a sequene S of + and � signs.Take the lines in the order of their labels and write a + if the northern sideis bad and � if the northern side is good. Figure 10 illustrates the followingobservation. +�+Figure 10: Infeasible base arrangement in a yli arrangement.Observation 13. Let ~C be an oriented yli arrangement. Infeasible basearrangements of ~C orrespond one-to-one to the +�+ subsequenes in thesequene S of the orientation.Given the sequene S of an orientation of ~C we want to alulate theinfeasibility of a ell . The infeasibility of the north-ell ̂ equals the numberof plus-signs in S. The infeasibility of a ell  di�erent from the north-ellis obtained by reverting in S the signs of all the lines above  and thenounting the number of plus-signs.Assoiate with every ell  of the yli arrangement C of n lines assoiatethe set of lines above , i.e., the set of those lines separating  from thenorthpole. This gives a bijetive mapping from the ells of ~C to intervals[i; : : : ; j℄ with 1 � i � j � n, together with ;. Figure 11 exempli�es theorrespondene.We are ready, now, to provide the lower bound example for Theorems 9and 12.Proposition 14. There is an orientation ~C of the yli arrangement Cwith 4k + 1 lines, suh that MaxDis(~C) = k and MinInf(~C) = 2k.Proof. Consider the orientation ~C of the yli arrangement orrespondingto the sequene +[�+�+℄k of length 4k + 1. Figure 12 shows an examplewith k = 2. 15



543211,21,2,31,2,3,4 1,2,3,4,5
2,3 2,3,4 2,3,4,53,4 3,4,54,5;

Figure 11: Cyli arrangement, n = 5, ells are labeled by lines above them.There are only 2k + 1 plus-signs in the sequene and every +� + sub-sequene requires two, therefore, there an be at most k disjoint + � +subsequenes. Obviously, there are as many and MaxDis(~C) = k.Reverting the signs in an interval of S an derease the number of plus-signs by at most one. Therefore, the infeasibility of every ell in that ar-rangement is at least 2k.Cyli arrangements an be realized as straight-line arrangements, there-fore, the statement of the next proposition is a onsequene of Theorem 9.Here we give a new proof whih has the virtue of being purely ombinatorial.Proposition 15. Given an orientation ~C of the yli arrangement withMaxDis(~C) = k, then there is a ell  with Inf() � 2k.Proof. The orientation ~C is enoded by a sequene S with no more then kdisjoint +�+ subsequenes. We have to show that there is an interval suhthat reverting the signs of this interval results in a sequene with at most2k plus-signs.De�ne the span of a subset T of signs of S as the length of the shortestinterval ontaining all the signs of T . The span a family of k disjoint +�+subsequenes of S is the sum of the spans of its k triples.Let F be a family of k disjoint + � + triples of S suh that the spanof F if minimal among all suh families. In S olor the 3k signs from thetriples in F red and all the remaining signs blue. Sine, the blue signs arenot allowed to ontain an additional + �+ subsequene, the indued bluesequene is desribed by the regular expression [�℄�[+℄�[�℄�.For the reversal we hoose the smallest interval ontaining all the blueplus-signs. Let S0 be the sequene after reversal of the signs in this interval.16
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Figure 12: Cyli arrangement with MaxDis(~C) = 2 and MinInf(~C) = 4.In S0 there is no blue plus-sign. Let T be one of the k red +�+ triples ofF and let T 0 be the orresponding triple in S0. We laim that T 0 ontains atmost two plus-signs. Sine all plus-signs of S0 are red the laim immediatelyyields an upper bound of 2k for the number of plus-signs in S0, whih provesthe proposition.Suppose T is a triple in F violating the laim. This means, that themiddle symbol, the �, of T has been reversed, while the other two symbolsremained unhanged. By the hoie of the interval for reversal we �nd thatthe �rst and the last blue plus-sign together with the � from T form a +�+subsequene T � in S. The span of T � is less then the span of T . Therefore,F � T + T � is a family of k disjoint +�+ subsequenes and span less thenthe span of F , ontradition.Remark. The notion of a yli arrangement is not restrited to the plane.Let Co be the orientation of suh an arrangement given by alternating se-quene of plus- and minus-signs. In even dimension d it an be shown thatMinInf(~C) � d+22 MaxDis(~C) � d2 . This is a slight improvement over thelower bound of Proposition 5. In odd dimensions the gain is smaller. Com-17



pared to Proposition 5 ~C has the advantage of providing a deterministionstrution for the fator (d+ 1)=2 and saving the �.4.3 Proof of Theorem 12By the skethy outline of the proof given on page 14 it is suÆient to provethe laim: If ~A and ~B are related by a triangular ip as in Figure 9 the in-equality for ~A implies the inequality for ~B. In the ourse of the argument weneed indution, so we assume the the inequalityMinInf( ~A) � 2MaxDis( ~A)holds for ~A and also for all arrangements with fewer lines than ~A.Given that the impliation holds for every pair of ip-adjaent arrange-ments we an apply this to all pairs of a path C = A0A1:::Ar = A onnetingthe yli arrangement with A. The proof of the above laim follows.Let  be the triangular ell in ~A whih is ipped to get ~B and let T bethe triple of pseudolines bounding . We distinguish three ases:� Cell  is on the good side of the three pseudolines of T in ~A, abusingterminology we haraterize this ase by saying T is feasible.� The subsystem indued by T is infeasible, i.e.,  is on the bad side ofall three pseudolines in ~A .� The subsystem indued by T in ~A is neither feasible nor infeasible,then we all it neutral.First onsider the ase that subsystem indued by T is neutral. Sine rota-tions and areful loal deformations do not a�et the ombinatorial naturethe ip is desribed by th left to right arrow or by the right to left arrowin Figure 13. in either ase after performing the ip the subsystem remainsneutral. SineMinInf( ~A) andMinInf( ~B) are both at most i�2, this valueis not a�eted by the ip. Moreover, a subsystem of ~A is infeasible i� it isinfeasible in ~B. Therefore, MaxDis( ~A) = MaxDis( ~B) and the inequalityMinInf( ~B) � 2 �MaxDis( ~B) follows from the orresponding inequality for~A. Next suppose that the subsystem indued by T is feasible, i.e., in ~A ell is on the good side of the lines in T . Let ~B� be the arrangement obtainedfrom ~B by deleting the three pseudolines of T . Reall that by indutionMinInf( ~B�) � 2 �MaxDis( ~B�):Sine T is an infeasible base system of ~B we haveMaxDis( ~B�) + 1 �MaxDis( ~B):18
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Figure 13: A neutral ip.To relate the minimum infeasibility of ~B and ~B� onsider a ell min of ~Bwith Inf(min) = MinInf( ~B). Let 0 be the triangular ell of B boundedby the lines in T . Sine min 6= 0 the infeasibility of all points in min anderease by at most two upon removal of the three lines of T . Therefore,MinInf( ~B) �MinInf( ~B�) + 2:Combining the inequalities leads to the desired result for ~B:MinInf( ~B) �MinInf( ~B�) + 2 � 2 �MaxDis( ~B�) + 2 � 2 �MaxDis( ~B):The last ase is that the subsystem indued by T is infeasible. Af-ter the ip the subsystem beomes a feasible subsystem of ~B. ClearlyMinInf( ~A) � MinInf( ~B). If MaxDis( ~A) = MaxDis( ~B) we immediatelyobtain the result:MinInf( ~B) �MinInf( ~A) � 2 �MaxDis( ~A) = 2 �MaxDis( ~B):The more omplex situation is when MaxDis( ~A) � 1 = MaxDis( ~B). Inthis ase the three lines of T form an infeasible subsystem of ~A whih isontained in every maximal set of disjoint infeasible subsystems of ~A. Todeal with this situation we need the following lemma:Lemma 6. Let ~A be an oriented arrangement of pseudolines with an in-feasible triangular ell  whose boundary lines form an infeasible system Twhih is ontained in every maximal set of disjoint infeasible subsystems of~A. Then(1) every pseudoline g with  on the bad side is ontained in every maximalset of disjoint infeasible subsystems of ~A, and(2) there is no infeasible base system R disjoint from T in ~A suh that  isontained in the bounded region of R.19



Proof. Let l1; l2; l3 be the pseudolines of the system T . Suppose there is apseudoline g whih has  on the bad side and is not used by some maximalsystem of disjoint infeasible subsystems. Up to relabeling the situation isas shown in Figure 14. Replaing the triple T = l1; l2; l3 by g; l2; l3 gives amaximal system of disjoint infeasible subsystems not ontaining T , a on-tradition. gl1l2l3Figure 14: The infeasible triangular ell  and an extra line g with  on itsbad side.For the proof of part 2, suppose there is an infeasible base subarrange-ment R ontaining  in its bounded region. Let g1; g2; g3 be the pseudolinesof R. We may assume that the arrangement indued by l1; l2; l3 and g1 isagain as shown in Figure 14.Suppose that the rossing of g2 and g3 is on the bad side of l1. In this asethe triples l2; l3; g1 and g2; g3; l1 form two disjoint infeasible subarrangementsfrom the six lines of T and R.If g2 and g3 ross on the good side of l1 then the situation is as desribedby Figure 15. l2g3 l3 l1 g2g1
Figure 15: Lines g1 and g2 ross on the good side of l1.Suppose that the rossing of l2 and g3 is on the good side of l1 and heneon the bad side of l3. In this ase the triples l2; l3; g3 and l1; g1; g2 form twodisjoint infeasible subarrangements. Otherwise, the rossing of l2 and g3 is20



on the bad side of l1. In this ase the triples l1; l2; g3 and l3; g1; g2 form twodisjoint infeasible subarrangements.In all ases we an form two new infeasible base arrangements from thesix lines of T and R. This ontradits the assumption that T is ontainedin every maximal set of disjoint infeasible subsystems of ~A.We now estimate the infeasibility of the the triangular ell  de�ned byT in ~A. Let F be a maximal system of disjoint infeasible subsystems in~A. Beause of Lemma 6.(2) every subarrangement T 0 6= T in F ontains in a region of infeasibility at most 2. By Lemma 6.(1) this aounts for allpseudolines having  on the bad side. Therefore,Inf() � 2 � (MaxDis( ~A)� 1) + 3Sine the infeasibility of ell  is dereased by 3 through the ip, we haveMinInf( ~B) � Inf() � 3 � 2 � (MaxDis( ~A)� 1):This ompletes the proof for the ase where MaxDis( ~B) =MaxDis( ~A)� 1and, hene, the proof of Theorem 12.ConlusionWe have investigated bounds of the LHS over the RHS in the inequalityMinInf( ~A) �MaxDis( ~A):For the 2-dimensional ase we gave tight results both for arrangements oflines and pseudolines. In d dimensions we have seen that the best possiblefator is between (d+1)=2 and d+1. Based on the ideas of this paper thesebounds an be improved to (d + 2)=2 and d. For d = 2 these lower andupper bounds math, but for higher d there remains a wide gap. It wouldbe interesting to know on whih side of the interval the truth hides.Referenes[1℄ S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Dis-rete Applied Mathematis, 109 (2001), pp. 67{94.[2℄ A. Frank, How to make a digraph strongly onneted., Combinatoria,1 (1981), pp. 145{153. 21
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