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Abstract. Which plane graphs admit a straight line representation such that all faces have the shape
of a triangle? In previous work we have studied necessary and sufficient conditions based on flat angle
assignments, i.e., selections of angles of the graph that have size π in the representation. A flat angle
assignment that fullfills these conditions is called good. The complexity for checking whether a graph
has a good flat angle assignment remains unknown.

In this paper we deal with extensions of good flat angle assignments. We show that if G has a good
flat angle assignment and G+ is obtained via a planar Henneberg step of type 2, then G+ also admits
a good flat angle assignment. A similar result holds for certain combinations of Henneberg type 1
steps followed by a type 2 step. As a consequence we obtain a large class of pseudo-triangulations that
admit drawings such that all faces have the shape of a triangle. In particular, every 3-connected, plane
generic circuit admits a good flat angle assignment With several examples we show the limitations of
our method.

1 Introduction

Planar graphs and drawings of planar graphs are widely studied. Highlights in the area are Tutte’s rubber
band representations of 3-connected graphs [Tut63] and Koebe’s touching coins representations [Koe36].
More discrete but also very popular are triangle contact representations of de Fraysseix et al. [dFdMR94].
Graphs admitting a rectangle contact representation have also been widely studied [KK85, Ung53, BGPV08].
Planar graphs also have contact representations with convex hexagons (e.g. [DGH+12]).

In this paper we study a representation of planar graphs in the classical setting, i.e., vertices are presented
as points in the Euclidean plane and edges as straight line segments. We are interested in the class of planar
graphs that admit a representation in which all faces are triangles. Note that in such a representation each
face f has exactly deg(f) − 3 incident vertices that have an angle of size π in f . Conversely each vertex
has at most one angle of size π. In [AF] we have studied necessary and sufficient conditions based on flat
angle assignments, i.e., selections of angles of the graph that have size π in the representation. Flat angle
assignments that fullfill these conditions are called good. The complexity for checking whether a graph
has a good flat angle assignment remains unknown. In the second part of this introduction we give some
details of the characterization of good flat angle assignments.

Graphs with only triangular regions have also been investigated in the dual setting, i.e., vertices are trian-
gles and edges correspond to side contacts. Gansner, Hu and Kobourov [GHK11] show that outerplanar
graphs, grid graphs and hexagonal grid graphs can be represented by Touching Triangle Graphs (TTG’s).
Alam, Fowler and Kobourov [AFK] consider proper TTG’s, i.e., the union of all triangles of the TTG is
a triangle and there are no holes. They present conditions for biconnected outerplanar graphs to have
a TTG. Kobourov, Mondal and Nishat [KMN12] present construction algorithms for proper TTG’s of
3-connected cubic graphs and some grid graphs.
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In [AF] we haven given necessary and sufficient conditions for a graph to have a Straight Line Triangle
Representation (SLTR). The drawback of this characterization is that we are not aware of an efficient way
of checking whether a given graph admits a flat angle assignment that fullfills the conditions.

In this paper we will investigate the relation between pseudo-triangulations and SLT representations. In
Section 2 we start with some basic definitions and show that every SLTR is a pseudo-triangulation. In
Section 3 we will consider two construction steps and define how to extend the GFAA along these steps,
such that the resulting assignment is also a GFAA. However, there exist graphs that have a GFAA but
can not be constructed using only the two steps we give in Section 3.

2 Preliminaries

A pseudo-triangle is a simple polygon with precisely three convex angles, all other vertices of the polygon
admit a concave angle at the interior of the polygon. A pseudo-triangulation (PT) is a planar graph with
a drawing such that all faces are pseudo-triangles. An example of a PT is given in Fig. 1 (a).

A pseudo-triangulation is pointed if each vertex has an angle of size > π. A pointed pseudotriangulation
with n vertices must have exactly 2n − 3 edges. Indeed pointed pseudotriangulations have the Laman
property: they have 2n− 3 edges, and subgraphs induced by k vertices have at most 2k− 3 edges. Laman
graphs, and hence also pointed pseudotriangulations, are minimally rigid graphs. A detailed survey on
pseudo-triangulations has been given by Rote et al. [RSS08].

Pointed pseudotriangulations are defined by an assignment of big angles to vertices. Fig. 1 (a) shows an
example of a pointed pseudotriangulation whose big angles do not constitute a good flat angle assignment.
Fig. 1 (c) shows a plane Laman graph, i.e., a graph admitting big angle assignment that yields a pointed
pseudotriangulation but with the given outer face the graph has no good flat angle assignment.

A Straight Line Triangle Representation of a graph G is a plane drawing of G such that all edges are
straight line segments and all faces are triangles. Throughout this paper G = (V,E) will be a plane,
internally 3-connected graph with three suspension vertices. A plane graph G with suspensions s1, s2, s3
is said to be internally 3-connected when the addition of a new vertex v∞ in the outer face, that is made
adjacent to the three suspension vertices, yields a 3-connected graph. The three suspension vertices are
the corners of the outer face. With little effort it can be shown that a graph that admits an SLTR but is
not internally 3-connected is a subdivision of an internally 3-connected graph that admits an SLTR [AF].

A flat angle assignment (FAA) of a graph is a mapping from a subset U of the non-suspension vertices to
faces such that

[Cv] Every vertex of U is assigned to at most one face,

[Cf ] For every face f , precisely |f | − 3 vertices are assigned to f .

An FAA is called good when it induces an SLTR. In [AF] we have shown that when an FAA that is good
(GFAA), it induces a contact family of pseudosegments Σ which has the following property:

[CP ] Every subset S of Σ with |S| ≥ 2 has at least three free points.

Definition 2.1 (Contact Family of Pseudosegments). A contact family of pseudosegments is a family
{ci}i of simple curves ci : [0, 1]→ R2, with c(0) 6= c(1), such that any two curves ci and cj (i 6= j) have at
most one point in common. If ci and cj have a common point, then this point is an endpoint of (at least)
one of them.

Definition 2.2 (Free Point). Let Σ be a family of pseudosegments and S a subset of Σ. A point p of a
pseudosegment from S is a free point for S if

1. p is an endpoint of a pseudosegment in S, and

2. p is not interior to a pseudosegment in S, and

3. p is incident to the unbounded region of S, and

4. p is a suspension or p is incident to a pseudosegment that is not in S.
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The drawback of the characterization given in [AF] is that we are not aware of an efficient way to test
whether a given graph has an FAA that is good.

A combinatorial pseudo-triangulation (CPT) is an assignment of the labels big and small to the angles
around each vertex. Each vertex has at most one angle labeled big and each inner face has precisely three
incident angles labeled small, the outer face has precisely three big angles. For an interior angle labeled
big, let the incident vertex be assigned to the incident face, and a vertex is not assigned if it has no angle
labeled big. The vertices incident to the angles labeled big in the outer face are the suspensions. Hence a
CPT satisfies Cv and Cf and therefore it is an FAA.

A CPT does not always induce a PT, Haas et al. have shown that the generalized Laman condition is
necessary and sufficient for a CPT to induce a PT [HOR+03].

Definition 2.3 (Generalized Laman Condition). Let G be the graph of a pseudo-triangulation of a planar
point set in general position. Every subset of x not assigned vertices plus y assigned vertices of G, with
x+ y ≥ 2 spans a subgraph with at most 3x+ 2y − 3 edges.

Laman graphs are minimally generically rigid graphs, a Laman graph G = (V,E) satisfies |E| = 2|V | − 3
and for all subsets H ⊆ V the induced graph G[H] has at most 2|H| − 3 edges. Haas et al. show that
PT’s such that every vertex has an angle labeled big are precisely planar Laman graphs. The Generalized
Laman Condition is a property of the embedding and the vertices chosen to be not assigned, and not of
the graph itself. However for a plane Laman graph, the Generalized Laman Condition always holds.

A plane, internally 3-connected graph admits a Flat Angle Assignment (FAA) only if there is a matching
of vertices to faces such that Cv and Cf are satisfied. We will give an upper and a lower bound on the
number of edges of a graph (and all induced subgraphs) that admits an FAA.

Proposition 2.4 (Lower Bound). A plane graph G = (V,E, F ) has an FAA if and only if |E| ≥ 2|V | − 3
and for every subset of the vertices H, with fH as outer boundary of the induced graph G[H],

|E(G[H])| ≥ 2|H| − 3− |fH |.

Proof. Let G = (V,E, F ) a 3-connected plane graph, let X the set of not assigned vertices, |X| ≥ 3 since
there are three suspension vertices. By Hall’s mariage theorem we need |V |− |X| =

∑
f∈F (|f |−3) and for

every subset H ⊆ V we have |H \X| ≥
∑

f∈FG[H](|f | − 3). Further we use the identity
∑

f∈F |f | = 2|E|
and Euler’s planarity condition.

|V | =
∑
f∈F

(|f | − 3) + |X| =
∑
f∈F

(|f |)− 3|F |+ |X| = 2|E| − 3|F |+ |X|

And then

3|E| − 3|V |+ 6 = 3|F | = 2|E| − |V |+ |X|, hence, |E| = 2|V | − 6 + |X|.

As |X| ≥ 3 we have |E| ≥ 2|V | − 3. By the same reasoning, for every subset H ⊆ V , such that fH is the
outer boundary of G[H]:

|EG[H]| ≥ 2|H| − 3− |fH |.

Proposition 2.5 (Upper Bound). Given a plane graph G = (V,E, F ) with a set X ⊆ V of not assigned
vertices, |X| ≥ 3. Then G has an FAA if and only if |E| = 2|V |+ |X| − 6 and for every subset H ⊆ V ,

|EG[H]| ≤ 3x+ 2y − 3,

where x = |X ∩H| and y = |H \X|.

Proof. Let G = (V,E, F ) an internally 3-connected plane graph. By Proposition 2.4 we have |E| =
2|V |+ |X| − 6.
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Let H ⊆ V , suppose G[H] is connected, let fH the boundary of the outer face of G[H] and assume it
contains all the edges interior to G[H] in G. Let pH the number of vertices that need not be assigned
inside G[H], thus pH = |H| −

∑
f∈FG[H]int(|f | − 3).

3|FG[H]| = 2|EG[H]| − |fH |+ 3− |H|+ pH , and , 3|FG[H]| = 6 + 3|EG[H]| − 3|H|.

Let z = |X ∩ fH | the not assigned vertices that are incident to the outer face of G[H], so z ≤ |fH | and
then we find

|EG[H]| = 3|H| − 6− |fH |+ 3− |H|+ pH

= 2|H| − 3− |fH |+ pH

≤ 2|H|+ pH − z − 3

= (3pH − 3z) + (2|H| − 2pH + 2z)− 3

= 3x+ 2y − 3

Theorem 2.6. Every FAA induces a PT.

Proof. By Prop. 2.5 every FAA satisfies the Generalized Laman Condition and by the result of Haas et
al. this is sufficient.

Figure 1 (a) shows a PT that is not an FAA. The induced FAA satisfies the generalized Laman condition
but is not a GFAA, when changing the big angles to size π angles, all vertices but the top suspension will
be between the bottom two suspensions. However this graph does have a GFAA.

(a) (b) (c) (d)

Figure 1: (a) A pseudo-triangulation that does not induce an SLTR, (b) a Laman graph that has an SLTR
but can not be constructed using only the two steps we give in Section 3, (c) a plane Laman
graph that has no SLTR for this embedding, (d) a Laman graph that has no SLTR.

Laman graphs admit a special construction, denoted with Henneberg Construction, and in the next section
we will take a closer look at the steps of this construction. A Laman graph G = (V,E) satisfies |E| =
2|V | − 3, by Prop. 2.4 this is the minimal number of edges an SLTR can have.

Not every plane Laman graph admits an SLTR, see Figure 3. To reason that a plane graph has no FAA
that is good, it is most convenient to use the notion of outline cycles. An outline cycle of G is a closed
walk that can be obtained as outline cycle of some connected subgraph of G. Outline cycles may have
repeated edges and vertices, see Fig. 2. The interior

∫
(γ) of an outline cycle γ = γ(H) consists of H

together with all vertices, edges and faces of G that are contained in the area enclosed by γ.

Figure 2: Three examples of outline cycles.
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In [AF] we have shown that an FAA is good if and only if each outline cycle that is not the outline cycle
of a path, has at least three combinatorially convex corner.

Definition 2.7. Given an FAA a vertex v of an outline cycle γ is a combinatorial convex corner for γ if

• v is a suspension vertex, or

• v is not assigned to a face and there is an edge e incident to v with e 6∈
∫

(γ), or

• v is assigned to a face f , f 6∈
∫

(γ) and there exists an edge e incident to v with e 6∈
∫

(γ).

Now to see that the plane graph in Figure 3 does not have an FAA that is good, consider the outline
cycles following d, e, f, k, h and h, e, j, l, k, if both have three combinatorially convex corners, then both h
and k must be assigned to the face (d, h, k, g) which contradicts Cf .

a

b
c

d

e

f

g

h

i
j

k

l

c

g

k

b

f

a

d

eh

i
l

j

Figure 3: A plane Laman graph that does not admit an SLTR (left) and a different embedding of the same
graph such that there does exist an SLTR (right).

The Generalized Laman Condition is a property of the embedding and the vertices chosen to be not
assigned, and not of the graph itself. Whether a graph has an SLTR does depend on the embedding, even
for Laman graphs, as Figure 3 shows. However, not every planar Laman graph admits an embedding
such that there exists an SLTR. The graph in Fig. 1 (d) has no SLTR, when the red (thick) cycles are
embedded as here, there must be four of the five vertices of the cycle that are assigned on the outside,
but there is only “space” for three such assignments in the neighboring faces. There is no embedding such
that both the red cycles are turned inside out.

By Prop. 2.4, Laman graphs are the graphs with the minimal number of edges such that there could
exist an FAA. Every Laman graph can be constructed from an edge by Henneberg steps [Hen11, Whi97],
therefore also a graph G = (V,E), with |E| = 2|V |−3 that admits an SLTR must have such a construction.
In the next section we will investigate how to use the Henneberg construction such that a GFAA can be
extended along the steps.

3 Construction Methods

Every graph G = (V,E), with |E| = 2|V | − 3, that has an SLTR, must be a plane Laman graph. Every
Laman graph can be constructed from an edge by Henneberg steps [Hen11, Whi97], therefore also a graph
G = (V,E), with |E| = 2|V | − 3 that admits an SLTR must have such a construction.

Henneberg Steps

• Henneberg Type 1 step (hen1, Figure 4 (a)) adds a vertex and connects it to two disjoint vertices
of the graph.

• Henneberg Type 2 step (hen2, Figure 4 (b)) subdivides an edge and connects the new vertex to a
third vertex of the graph.
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It has been shown that planar Laman graphs admit a planar Henneberg construction [HOR+03]. Since we
consider plane graphs (with a given set of suspension vertices), we consider the steps in a plane setting,
that is, each of the steps takes place in a face of the plane graph.

Henneberg type 2Henneberg type 1

u

v

u

v

x

v

u

w

u

v

wx

Figure 4: A Henneberg Type 1 step (a) and a Henneberg Type 2 step (b).

A hen2 step on a 3-connected graph, results in a 3-connected graph, a hen1 step does not. In the following
section we will proof that a GFAA can be extended after a hen2 step such that the new assignment also is
a GFAA. Hence graphs that can be constructed with hen2 steps only from a graph that admits an SLTR,
also admit an SLTR. The GFAA can be constructed along the hen2 construction of the graph.

Not all graphs that admit an SLTR can be constructed with hen2 steps only, in Figure 5 the vertices
d, e, f can not be introduced with hen2 steps only.

a

b

c

d

e

f

Figure 5: The vertices d, e, f can not be introduced with hen2 steps only in the cycle a, b, c

A GFAA can also be extended along a particular combination of n hen1 steps followed by a hen2 step in
a face. Consider the cycle (a, b, c) of Fig. 5:

1. (hen1) add d and connect it to a and c,

2. (hen1) add e and connect it to d and b,

3. (hen2) subdivide the edge cd and connect the new vertex f to e.

In Section 3.2 we will discuss and proof when such a step can be extended.

3.1 Henneberg Type 2 steps are good

Given a graph G and a GFAA ψ of G. Let uv the edge that is subdivided, x the new vertex and w the
third vertex to which x is connected (see Figure 6). The face f , incident to uv and w is splitted into fu
(the face incident to u) and fv. The other face incident to uv is denoted with fx. The resulting graph is
denoted G+. We will construct an assignment ψ+ for G+ and proof that ψ+ is a GFAA.

There are three vertices not assigned to f under ψ, we will call them corners of f . We consider two cases,
firstly fu is incident to all corners of f , secondly, fu is incident to precisely two corners of f . Note that
if w is a corner of f it will be a corner for both fu and fv. The vertices different from u, v, w, x, that are
assigned to f under ψ, will be assigned in the trivial way under ψ+, i.e. such a vertex is assigned to fu
resp. fv, if in G+ it is incident to fu resp. fv.

Case 1: fu is incident to all corners of f . If u or w is assigned to f under ψ, it is assigned to fu under
ψ+. The vertex v is assigned to fx and x to fu under ψ+.

6



Case 2: fu is incident to precisely two corners of f . If u or w is assigned to f under ψ, it is assigned to
fu under ψ+, if v was assigned to f it is assigned to fv under ψ+ and x is assigned to fx.

This yields an assignment ψ+ for G+.

f
fx

u f
fx

u

vf
vf

Case 1:

vw

u

x

v

x

u
Case 2:

Figure 6: Updating the assignment after a hen2 step. The triangles denote the corners of f , dots denote
non-corners, arrows denote assignments of a vertex to a face.

f v

f v f vf v

f u f u f u

f u

u

x

v

w

u

x

w

w

u

x

u

v

x

Case 1: Case 2:

w

v
v

Figure 7: A stretched representation of the original face, and of the results of a hen2 step in Case 1 and
Case 2.

Theorem 3.1. Given a 3-connected, plane graph G with a GFAA ψ. Let G+ be the result of a hen2 step
applied to G and let ψ+ be the updated assignment. Then ψ+ is a GFAA and G+ admits an SLTR.

Proof. It is trivial that ψ+ satisfies Cv and Cf and hence is an FAA.

We consider the induced families of pseudosegments, Σ and Σ+ of ψ and ψ+ respectively. Since ψ is a
Good FAA, we know that every subset of Σ has at least three free points or cardinality at most one. Let
S ⊆ Σ+ have cardinality at least two.

Case 1: Let sx resp. sv be the pseudosegment that has x resp. v as interior point and let sw the
pseudosegment containing the edge uw. If S does not contain sx, sv or sw then S is also a subset of
Σ, hence it must have three free points. Suppose S ⊆ {sx, sv, sw}, then S has three free points since
no two pseudosegments of {sx, sv, sw} touch twice and if S = {sx, sv, sw} there are precisely three
of the six endpoints covered. So suppose S contains at least one pseudosegment not of {sx, sv, sw}.
Consider the comparable set S′ of Σ, that is

• If sx ∈ S then replace sx by the pseudosegment s′x of Σ that has u and v as interior points.

• If sv ∈ S then replace sv by the pseudosegment s′v of Σ that ends in v and contains all the
edges of sv but the edge vx.

• If sw ∈ S then delete sw.

Now we have S′ ∈ Σ, thus S′ has three free points unless |S′| = 1.

• If sx ∈ S then sx contributes the same free points to S as s′x to S′.

• If sv ∈ S then if v was a free point for S′, then x is for S. Hence sv contributes the same
number of free points to S as s′v to S′.
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• If sw ∈ S and |S′| = 1 and sw contributes at least one free point to S and it covers no other
points, thus S has three free points, when |S′| > 1 then S′ has at least three free points, adding
sw does not cover any of them and therefore S has at least three free points.

We conclude that S has at least three free points.

Case 2: If w is a corner of f then there is one new pseudosegment sxw consisting of only the edge xw.
Let S ⊆ Σ+, if sxw 6∈ S then S has at least three free points, if |S| > 3 then S has at least three free
points since sxw does not cover any free point, there is no pseudosegment that covers both endpoints
of sxw and hence if |S| = 2 and sxw ∈ S the set S also has at least three free points.

Suppose w is not a corner of f . Let sx resp. sw be the pseudosegment that has x resp. w as interior
point and let sc the pseudosegment containing the edge from w to the corner of f which is incident
to fv. If S does not contain sx, sw or sc then S is also a subset of Σ, hence it must have three
free points. Suppose S ⊆ {sx, sw, sc}, then S has three free points since no two pseudosegments of
{sx, sw, sc} touch twice and if S = {sx, sw, sc} there are precisely three of the six endpoints covered.
So suppose S contains at least one pseudosegment not of {sx, sw, sc}. Consider the comparable set
S′ of Σ, that is:

• If sx ∈ S then replace sx by the pseudosegment s′x of Σ that has u and v as interior points,

• If sw ∈ S then replace sw by the pseudosegment s′w of Σ that w as an interior point,

• If sc ∈ S then if sw 6∈ S, replace sc by the pseudosegment s′w, otherwise, delete sc.

Now we have S′ ∈ Σ, thus S′ has three free points unless |S′| = 1. If |S′| = 1 then S = {sw, sc}
which contradicts the assumption that S contains at least one pseudosegment not of {sx, sw, sc},
thus |S′| > 1.

• If sx ∈ S then sx contributes the same free points to S as s′x to S′.

• If sw ∈ S then if x is covered in S, then c is covered or an endpoint of two pseudosegments in
S′. The other endpoint of sw is an endpoint of s′w, hence replacing s′w by sw leaves the number
of free points intact.

• If sc ∈ S and sw 6∈ S then sc contributes at least as many free points to S as s′w to S′, so
assume also sw ∈ S. The free points that s′w contributes to S′ are then also free points of S′ as
the endpoints of s′w are also endpoints for {sw, sc}. Hence S has at least three free points.

We conclude that S has at least three free points, hence ψ+ is a GFAA.

A graph G = (V,E) is a generic circuit if |E| = 2|V | − 2 and for all subsets H ⊆ V the induced graph
G[H] has at most 2|H| − 3 edges. The generic circuit with the smallest number of vertices is the complete
graph on four vertices (K4).

Theorem 3.2. Every 3-connected, plane generic circuit admits an SLTR.

Proof. A 3-connected, generic circuit can be constructed with hen2 steps from K4 (Berg and Tibór [BJ03])
and K4 admits an SLTR. Every plane 3-connected generic circuit can be constructed with hen2 steps from
K4 such that all intermediate graphs are plane. By Thm. 3.1 we have that every 3-connected, plane generic
circuit admits an SLTR.

3.2 A combination step: n times a Henneberg 1 step followed by a Henneberg 2
step.

A plane Henneberg Type I step (hen1) adds a vertex, v0, in a face, connecting it to two vertices incident
to the face, it splits the face in two parts. The resulting graph is 2–connected as the new vertex v0 has
only two neighbors. In order to preserve 3–connectedness, the hen1 step needs to be followed by another
step which assigns a third neighbor to v0. This could be another hen1 step, in which case we find a new
vertex v1 with only two neighbors, or a hen2 step, which results in a 3–connected graph.

Not any such combination step will preserve the possibility to stretch the graph to an SLTR, e.g. the graph
in Figure 3 can be constructed with a sequence of hen2 steps followed by one combination step. We will
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present rules for a combination step such that the GFAA ψ of the graph G can be extended to a GFAA
ψn for the resulting graph Gn.

Remark 3.3. Note that if the hen2 step subdivides an edge of the original face, then the whole step can
be replaced by a sequence of hen2 steps. As this has been proven to be extendible in the previous section,
we will not consider this as an option in this section.

Throughout this section, we denote the face in which we are placing the hen1n2 step with f , hence all
vertices incident to f are vertices of G, the starting graph. The corners of a face are again the vertices
incident to a face but not assigned to this face.

The rules The hen1n2 step denotes a sequence of n hen1 steps followed by one hen2 step, such that the
following rules are satisfied.

1. All the steps take place in a bounded (n+ 1)–face f .

2. The starting hen1 step, [10], adds vertex v0 between two neighbors (x0 and y0) of f .

3. The i–th hen1 step, [1i], 0 < i < n, takes place in the allowed face of vi−1 and it adds vi between
vi−1 and zi such that zi is on f and a neighbor of xi−1 or of yi−1. If zi a neighbor of xi−1, set xi = zi
and yi = yi−1, otherwise set xi = xi−1 and yi = zi. Note that this yields that after n hen1 steps all
vertices of f have been assigned a new neighbor.

4. The hen2 step, [2], takes place in the allowed face of vn−1, denoted with fan−1 , such that both new
faces are incident to at least one corner of fan−1

, not vn−1.

y0

x0

vi

vi

vi −1

zi
−1yi

−1xi

vn −1

vn

xn

yn

0[1  ] [1 ]i zi

−1

−1
fa

f
−1a iv0

0

f
−1an

[2]

Figure 8: The three elements of a hen1n2 step. The triangles in the rightmost figure denote the corners
of fan1

, note that also vn−1 is a corner as it is not yet assigned, but it will be assigned inside
fan−1

.

Note that the last rule depends on the assignment after the hen1 steps not on the steps itself. This rule
is introduced to simplify the proof that the new assignment is correct. Later we will proof that for any
sequence that obeys the first three rules, the assignment until the hen2 step can be chosen so, that the
last rule is obeyed (Lemma 3.5).

The Assignment Given a graph G with a GFAA ψ. Let Gn be the result of a hen1n2 step applied to G
and let ψn be the updated assignment, also we denote with Gi and ψi the resulting graph and updated
assignment after the i-th part of the hen1n2 step.

The vertices different from xi, yi, vi, that are assigned to fai−1
under ψi−1, will be assigned in the trivial

way under ψi, i.e. the new face it is incident to in Gi.

In Figure 9 a visual representation of the assignment is given, in the first column the assignement after
the first hen1 step [10], the second column after the i-th hen1 step [1i] and the assignment after the
hen2 step [2] in the rightmost column. In a [1i] step such that the corners of the previous allowed face
(fai−1

) are well distributed over the the allowed face and the not-allowed face1, as in the bottom figure
of the [1i] column of Figure 9 we consider two different methods for the assignment. Note that this only
occurs when zi is not a corner. We denote the methods with old-first-method and new-first-method.
The old-first-method prefers to assign vertices of the original face (f) to not-allowed faces, and the

1Faces in which we do not continue are denoted not-allowed
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Figure 9: Updating the Assignment during a hen1n2 step.

new-first-method, prefers to assign new vertices (i.e. vi−1 in step i) to not-allowed faces. Recall that
the corners of a face are the vertices not assigned to the face2 the are presented as triangles in Fig. 9.

[10] Let v0 denote the new vertex, connected to x0 and y0, which are neighbors, splitting the face f in
a 3-face f0 and an (n − 2)-face, fa0

. If x0 or y0 was assigned to f , it will now be assigned to fa.
We call fa0 the allowed face and in the next step this face will be splitted and v0 will be assigned to
either of the new faces.

[1i] Let vi denote the new vertex connected to vi−1 and zi, zi is a neighbor of xi−1 or yi−1 and zi is
incident to f . The current allowed face fai−1

is splitted, the face in which we continue is called fai
,

the new allowed face, and the other new face is called fi. In the next step fai
will be splitted and

vi will be assigned to either of the new faces.

If fai is incident to all corners of fai−1 then vi−1 is assigned to fai , if zi was assigned to fai−1 then
it is now assigned to fai

.

2After each hen1 step, the allowed face has four corners, as the previously added vertex will be assigned one step after it
has been added.
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If fai incident to at most three corners of fai−1 and zi was not assigned to fai−1 we assign vi−1 to
fi.

Otherwise, we distinguish between the methods. When using the old-first-method, zi is assigned
to fi and vi−1 is assigned to the face incident to three of the four corners of fai−1

. When using the
new-first-method, vi−1 is assigned to fi and zi is assigned to the face incident to three of the four
corners of fai−1 .

[2] Let vn denote the new vertex introduced by the subdivision of an edge, vn is connected to vn−1.
The face fan−1

is splitted into fb, the new face incident to at least three corners of fan−1
and fs.

The face that is also incident to the subdivided edge is denoted fn. Assign vn to fn and vn−1 to fb.

The Correctness

Theorem 3.4. Given a 3-connected, plane graph G with a GFAA ψ. Let Gn be the result of a hen1n2

step applied to G and let ψn be the updated assignment. Then ψn is a GFAA and Gn admits an SLTR.

Proof. It is trivial that ψn satisfies Cv and Cf after the hen2 step and thus ψn is an FAA.

We consider the induced families of pseudosegments, Σ and Σi of ψ resp. ψi (i = 0, . . . , n), where ψi

denotes the assignment after step i. Since ψ is a GFAA we know that every subset of Σ has at least three
free points or cardinality at most one. Obviously ψi satisfies Cv and it also satisfies Cf in all faces but
the allowed face fai .

In every step we consider a subset S of Σi, with |S| ≥ 2, and show that S has at least three free points.
In step i, (0 < i ≤ n), we rely on the fact that we have already shown that every subset of Σi−1 has at
least three free points or cardinality at most one.

A covering denotes a vertex which is interior to one pseudosegment and an endpoint for another, we say
that v is a covering in S if there exist pseudosegments s, t ∈ S such that v is interior to s and an endpoint
of t.

[10] Let sx and sy denote the two pseudosegments ending in v0 incident to x0 resp. y0. Let s+ the
pseudosegment that is incident to both x0 and y0. If S does not contain sx, sy or s+, the free
points of the comparable set in Σ are the free points of S, hence S has three free points. Any
subset of {sx, sy, s+} of cardinality at least two, has three free points. So let S contain at least one
pseudosegment not of {sx, sy, s+}. Now consider the comparable set S′ of Σ, that is, delete sx, sy, s

+

from S and add the pseudosegment of Σ incident to both x0 and y0, denoted with s. Since |S′| > 1,
S′ has three free points.

– If sx ∈ S then v0 is free for S and the other endpoint of sx is also an endpoint of s and it is
free for S only if it is free for S′.

– If sy ∈ S then v0 is free for S and the other endpoint of sx is also an endpoint of s and it is
free for S only if it is free for S′, if both sx, sy ∈ S then together they contribute at least one
free point more to S (namely v0) than s contributes to S′.

– If s+ ∈ S and sx, sy 6∈ S then s+ contributes at least as many free points to S as s to S′.
Suppose an endpoint of s+ is not free for S, then either, it is also an enpoint of s and not free
in S′, or it is covered by sx (or sy) in which case the related endpoint of s is free for S′ implies
that this endpoint is contributed as a free point to S by sx (or sy).

It follows that if s contributed free points, then the deleted pseudosegment(s) of S contribute as
many free points for S. Hence S has at least three free points.

Note that, when |S| > 2 and sx, sy ∈ S then S has three free points different from v0.

[1i] Let si−1 denote the pseudosegment that has vi−1 as an interior point and si the other pseudosegment
with vi as an endpoint. We have now named two pseudosegments bounding the not allowed face, let
s+ be the third. Consider the set S.

Any subset of {si, si−1, s+} of cardinality at least two, has three free points. So let S contain at
least one pseudosegment not of {si, si−1, s+}.
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Suppose zi is a corner of fai−1 , then vi−1 is the only possible new covering. Suppose vi−1 is a free
point for the comparable set S′, but not for S, then si−1 ∈ S and vi is a “new” free point.

On the other hand, when zi is not a corner of fai−1
, then zi is a free point for the comparable set S′

only if it is also a free point for S.

Hence as all S′ ∈ Σi−1, |S′| ≥ 2 have at least three free points and there is no new covering possible
that does not induce a “new” free point, it must hold that all S ∈ Σi, |S| ≥ 2 have at least three
free points.

Note that, when |S| > 2 and si, si−1 ∈ S then S has three free points different from vi, since the
comparable set under Σi−1 has three free points different from vi−1.

[2] Note that |Σn−1| = |Σn|, i.e. no new pseudosegment is introduced. Since all vertices of the original
face f have gotten precisely one new neighbor during the hen1 steps, we know that the face fan , in
which the hen2 step takes place has precisely one edge in common with f . This is not the subdivided
edge. There is only one new incidence introduced, the pseudosegment for which vn−1 is an interior
point (s′n−1) and the pseudosegment for which vn is an interior point (s′n) have vn as a common
point. We will first show that these two pseudosegments touch only once in Σn.

Claim: every pseudosegment of Σn−1 touches f at most once.

Proof. We want to show that every pseudosegment s shares at most one (connected) path with f .
Suppose otherwise. If s is inside f , see Figure 10 (a), s touches f in two disjoint points. Let a, b
the two points on f that are also in s and consider outline cycles, γ(h1), γ(h2), of the two halves of
f , h1 and h2, both bounded by a part of f and (part of) s. Let γ(h1) have three convex corners,
say a, b and some point not incident to h2. Now if a, b are also convex corners for γ(h2), all convex
corners of f are used, hence γ(h2) has at most two, contradiction. Suppose a is not convex for f ,
then, if a is assigned inside h2, at most one more convex corner of f can contribute to γ(h2), but
again, γ(h2) has at most two. On the other hand, if a is assigned inside h1 and we assumed γ(h1)
has at least three convex corners, we may conclude that the third convex corner of f contributes
only to γ(h1) and again, γ(h2) has at most two convex corners. Similarly if b is not convex for f we
find that γ(h2) has at most two convex corners, hence there is no such pseudosegment s.

b
h

h

1

2
a

b

h
1

a

(b)(a)

Figure 10: The dotted line represents a pseudosegment that touches f twice.

Secondly suppose s touches f twice and lies outside of f , see Figure 10 (b). Note again that a, b can
not be vertices of the same pseudosegment, as then we find two pseudosegments that touch twice.
Consider the outline cycle of h1 ∪ f , two convex corners of f will be convex for this outline cycle but
the third convex corner of f lies inside. Hence this outline cycle has at most two convex corners.
Therefore, every pseudosegment of Σn−1 touches f at most once.

Suppose that the pseudosegments s′n−1 and s′n touch twice in Σn, consider the comparable pseu-
dosegments sn−1, sn, of Σn−1, which contain vn−1 resp. the subdivided edge. For s′n−1 and s′n
touch twice in Σn, the comparable pseudosegments sn−1 and sn must have a common point p. We
distinguish three cases, p lies outside f , inside f or, on the boundary of f .

– (p strictly outside f) Then both sn−1 and sn must continue outside f , hence they both have
an edge in common with f (as two edges incident to a vertex but not neighboring edges in the
cyclic order around the vertex, can not belong to the same pseudosegment). Then there are
two comparable pseudosegments of Σ that are on f and touch in p strictly outside f . As f is
incident to precisely three pseudosegments of Σ, which pairwise have a point on f in common,
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we conclude that we have two pseudosegments in Σ that touch twice, a contradiction. So p is
not strictly outside f .

– (p strictly inside f) Consider Figure 11 (a). The allowed face of vn−1, i.e. fan−1
, shares precisely

one edge with f . Since p is strictly interior of f , p must have been introduced at some hen1

step and it has a neighbor on f . Let n1, n2 be the points where sn−1 resp. sn touch fan−1
for

the first time after leaving p. There is no possibility for a vertex between n1 and n2 to have a
neighbor on f unless sn−1 or sn touches f . A pseudosegment shares at most two points with f ,
therefore there are at most two points q1, q2 between n1, n2, which have a neighbor on f incident
to sn−1 or sn. Both n1 and n2 also need a neighbor on f , this is not the neighbor q1 resp.
q2, hence it must be either the first point of sn−1 resp. sn towards p, or the third neighbor of
n1 resp. n2. If both of them have their neighbor on f also in fan−1

there can not be a vertex
vn−1 in fan−1 that is interior to sn−1, contradiction. Since every vertex strictly inside f has
degree three, we know that at least sn−1 touches f towards p. But since p has to be assigned as
well, either sn must touch f in the neighbor of p on f or n1, n2 are neighbors, the first implies
that either sn or sn−1 touches f twice, contradiction. So assume n1, n2 to be neighbors, sn−1
touches f towards p and the neighbor of p on f is interior to sn−1 as in Figure 11 (b).

r

q

1n

1q

2q

n

sn

f ap

sn−1 f

n 2

1

vn−1

p

sn−1 f

n 2

vn−1

sn

f n−a n−

(a) (b) t

*

1 1

Figure 11: Point p is strictly inside f .

Consider the region R bounded by p and the parts of sn−1, sn from p to f , R contains n1 and
n2 (grey area of Figure 11 (b)). There must be at least three convex corners on its boundary,
say p, q and r. Trivially p is a convex corner. If q and r are both incident to fan−1

, then fan−1

has five vertices (namely, q, r, n1, n2 and vn−1) not assigned to it under ψn−1, contradiction.
Suppose either q or r is not a convex corner for fan−1 , then there must be a convex corner t of R
incident to the ∗ region in Figure 11 (b) and to f . Since all the interior vertices of f have degree
3 (except for vn−1), any such t must have a neighbor strictly inside f . But then r must have
been assigned to a face in the ∗ region as otherwise there is a face (containing at least r, vn−1,
a neighbor of vn−1 interior to sn−1 and a neighbor of r on the boundary of f) bounded by four
different pseudosegments under ψn−1. As this is not the allowed face, we have a contradiction.
Suppose there is another convex corner t′, then similarly as above, we find that t is not a corner
for f . It follows that there can be at most one convex corner of R incident to the ∗ region and
not to fan−1

, and this is possible only if r is not a convex corner of R yet it is a convex corner
of fan−1

.

Since r must be a convex corner at least for fan−1
and also q must be a convex corner for R,

fan−1 must have five vertices not assigned to it under ψn−1, this is a contradiction. Therefore
p is not strictly inside f .

– (p on f) Since p is on f , sn−1 and sn can not touch f on the other side. There are four
pseudosegments bounding fan−1

, one of them shares an edge with f , say s4, see Figure 12. Now
the meeting point, t, of sn with s4, must have a third neighbor in f , and since t is assigned, it
will be an interior point of s4 or sn.
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Figure 12: Point p is on f .

Consider the region R, the grey colored area in Figure 12, it must have at least three convex
corners, c1, c2 are two of them and the third is not t. Vertex t has its third neighbor outside
fan−1

and t is assigned, therefore there must be a convex corner u on f . Since t is assigned,
it will continue s4 or sn, hence cannot be the v0 vertex3 (otherwise s4 or sn touches f twice).
Then there exists a t1 neighbor of t which is introduced in a hen1 step. But then t1 must be
assigned and it cannot continue s4, sn to f hence it is assigned otherwise, but then it can not
be v0 and there must exist a t2. Since this sequence t, t1, t2, . . . will not contain v0, at some
point there must be a vertex which has one neighbor on f and a neighbor w which is an interior
point of sn or s4.

Since t can not be a neighbor of u, there is no vertex between t and f on s4, hence w must
be interior to sn. Also w can not be q or t. If w lies between q and t, it has no neighbor on
f , contradiction. If w lies between q and f then q has no neighbor on f , contradiction. Hence
there is no point w, which implies that there is no vertex u and R does not have three convex
corners under ψn−1, which is a contradiction and therefore p is not on f .

We conclude that there is no point p in which sn and sn−1 touch.

Consider any set S ⊆ Σn. Suppose s′n, s
′
n−1 6∈ S then the comparable set under Σn has three free

points, none of which are covered in the hen2 step, hence S has the same set of free points under
Σn. If s′n ∈ S and s′n−1 6∈ S also nothing has changed.

Let s′n, s
′
n−1 ∈ S and consider the comparable set S′ of Σn−1, i.e. replace s′n−1 with sn−1 and s′n ∈ S

with sn. Let s+ the pseudosegment that ends in vn−1. If s+ ∈ S then the comparable set has
three free points different from vn−1 and those must also be free points for S. So suppose s+ 6∈ S.
Consider S ∪ s+, this set has three free points and s+ contributes at most one. But since s+ and s′n
touch, either an endpoint of s+ is covered by s′n, or an endpoint of s′n is covered by s+ or they share
an endpoint, in either case, removing s+ from S ∪ s+ leaves the number of free points unchanged
and hence S must have three free points.

Left to show is that there exists an assignment which obeys the last rule. That is, the hen2 step splits
a face fan−1

into two faces, which are both incident to at least one of the not-assigned vertices of fan−1

different from vn−1.

Lemma 3.5. Given a 3-connected, plane graph G = (V,E) with a GFAA ψ. For every hen1n2 step in a
bounded (n + 1)-face f of graph G, let G′ = (V ′, E′) the resulting graph and let ψn−1 the intermediate
assignment after all hen1 steps that follows the old-first-method and ψ+

n−1 the one that follows the

new-first-method. Then if neither ψn−1 nor ψ+
n−1 is such that the last rule of the hen1n2 step is obeyed,

then ψn−1 or ψ+
n−1 is such that vn−2 and zn−1 are not assigned to the same face in step n − 1. In the

latter the assignment of vn−2 and zn−1 can be swopped, hence we have a sequence of old-first-steps
followed by one new-first-step (or the other way around), such that the last rule is obeyed.

3The vertex v0 is the first introduced vertex, recall that it is connected to two neighbors on f , x0 and y0.
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Proof. We consider the complete hen1n2 step to be known when the assignment is updated. Consider
ψn−1, if now the last rule of the hen1n2 step is obeyed, we are done. So suppose not. Let fb the face
which is incident to all corners of fan−1

and fs, the face incident to none under ψn−1.

First suppose the new-first-method assigns the vertices in fb to fb, i.e. now fb is the face that is not
incident to a corner of fan−1

. Note that this implies that |fan−1
| ≥ 7 after the hen1 steps. Before the

hen2 step both ψn−1 and ψ+
n−1 satisfy C+

o (Part of the proof of Theorem 3.4).

Claim 1.: If fan−1 is interior to outline cycle γ, then γ has three convex corners in V ′\{vn−1, vn} under
both ψn−1 and ψ+

n−1. Suppose not, γ has vn−1 as third convex corner. Consider a Henneberg type 2 step
that does satisfy the last rule of the hen1n2 step, then vn−1 is assigned inside of γ, hence no longer a
convex corner, but the assignment is an SLTR by Theorem 3.4. Hence γ must have at least three convex
corners in V ′\{vn−1, vn}.
We consider the outline cycles of hs and hb as in Figure 13 (a) resp. (b), both have at least three convex
corners, under both assignments.

R R

fb fb
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n−1
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n−1

f
n−1

v
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f

fs

v
bva

a

(a) (b)

vn vnh
hs

b

Figure 13: Definition of hs and hb, thick lines represent edges, thin lines denote that there may be more
vertices on this path.

Consider hb under the old-first-method assignment, then vn−1 is a convex corner, but by Claim 1. there
are at least three convex corners in V ′\{vn−1, vn}. One of which may be za, another zn1

and the third
one lies between za and zi and is also a convex corner for f . Secondly consider hb under the new-first-
method assignment, then there must be three convex corners on f , one of which may be zb, the other two
must also be convex corners for f . Since f only has three convex corners, both za and zb must be convex
for hs and hb respectively, but not for f , therefore they are assigned inside the region R that is not in hb
nor in hs. Looking at the region R seperately, it is clear that za assigned inside under old-first-method
implies that zb must be assigned outside in this case (since R only has four possible corners, including
za, zb). But then we consider both hb∪R and hs∪R under their respective assignments (see Figure 14) to
see that there must be at least one more convex corner on f , hence f must have had four corners before
this step, which is a contradiction.
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Figure 14: The possible corners of hb and hs united with the region R.

Assume both methods assign the vertices in fs to fs. First note that the face fn−1, which is closed when
introducing vn−1, must be a 4-face consisting of vertices zn−1, zn−2, vn−1, vn−2 (in every step the current
allowed face is divided into a 4-face and a “rest”, since fan−1

is not a 4-face, fn−1 must be). Secondly, vn−1
is not yet assigned, hence precisely one of zn−1, zn−2, vn−2 must be assigned to fn−1. If in both methods
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zn−2 is assigned to fn−1, we must have three convex corners of f incident to fan−1 , but fan−1 is incident
to precisely two vertices of f . Hence zn−2 is assigned to fn−1 in at most one of the two methods. If zn−1
is a convex corner of f we may conclude that one of ψn−1 and ψ+

n−1 must obey the last rule, hence assume

zn−1 is not a convex corner. Now one of ψn−1 and ψ+
n−1 does not assign zn−2 to fn−2, hence either vn−2

or zn−1 is assigned to fn−2 (and the other one is assigned to fs under both methods). But since zn−2 now
is a convex corner of fan−2

the assignment of a vertex to fn−2 is one where we follow one of the methods.
Hence we now choose the different method for the last step and assign the other one of vn−2 or zn−1 to
fn−2. We end with an assignment that does obey the last rule.

Since Theorem 3.4 considers any assignment and not necessarily one that follows either the old-first or
new-first method only, we conclude that Theorem 3.4 together with Lemma 3.5 proof that this particular
combination step obeys.

There are plane Laman graphs that admit an SLTR but can not be constructed with the two steps. For
example the graph in Figure 1 (b). This graph requires a hen1l2 step in an n-face with l < n. But if for
such a construction step the assignment could be extended along this step, then the graph in Figure 1 (d)
would have an SLTR.

4 Conclusion and Open Problems

We have given two construction steps such that a GFAA can be extended along these steps and the
extended assignment is also a GFAA. However, this does not define the class of Laman graphs that have
an SLTR. Therefore the problem: Is the recognition of graphs that have an SLTR (GFAA) in P? is still
open, even for graphs in which all non-suspension vertices have to be assigned.

It would be interesting to be able to decide whether a graph has a Henneberg type 2 construction.
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Figure 15: A graph that does not admit an SLTR but a Henneberg 2 extension of the graph does.

In Figure 15 two graphs are shown, the left graph does not admit an SLTR (consider the outline cycles
following g, f, e, i, h and h, l, k, f, i, if both have three combinatorially convex corners, then both h and
i must be assigned to the face (d, h, i, e) which contradicts Cf ). Then apply a Henneberg type 2 step,
subdivide (d, g), add m and connect m to a, to find the right graph which admits an SLTR and a Henneberg
type 2 construction (starting with the triangular prism graph). A reverse Henneberg 2 step may result in
a graph that does not have a Henneberg type 2 construction while the graph before the reverse step does.

The class of 3-connected quadrangulations is well-defined, e.g. Brinkmann et al. give a characterization
using two expansion steps [BGG+05]. Adding a diagonal edge in the outer face of a plane, 3-connected
quadrangulation yields a Laman graph. One of the expansion steps (denoted P3 in [BGG+05]) is a
Henneberg Combination step, hence a GFAA can be extended along this step. It would be interesting to
know if a GFAA could also be extended along the other expansion step (denoted P1 in [BGG+05]). If so,
can all Laman graphs that admit an SLTR be constructed with the three steps P1, hen1n2 and hen2?
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Adding an edge in a plane graph that has a GFAA requires only minor changes to the GFAA of the
original graph to obtain a GFAA for the resulting graph. An interesting question arises: Does every graph
that admits an SLTR in which not every non-suspension vertex admits a straight angle, have a spanning
Laman subgraph that admits an SLTR?
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