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We study subclasses of grid intersection graphs from the perspective of order
dimension. We show that partial orders of height two whose comparability graph
is a grid intersection graph have order dimension at most four. Starting from
this observation we provide a comprehensive study of classes of graphs between
grid intersection graphs and bipartite permutation graphs and the containment
relation on these classes. Order dimension plays a role in many arguments.

1 Introduction

One of the most general standard classes of geometric intersection graphs is the class of string
graphs, i.e., the intersection graphs of curves in the plane. String graphs were introduced to
study electrical networks [26]. The segment intersection graphs form a natural subclass of
string graphs, where the curves are restricted to straight line segments. We study subclasses
where the line segments are restricted to only two different slopes and parallel line segments
do not intersect. This class is known as the class of grid intersection graphs (GIG). An
important feature of this class is that the graphs are bipartite. Subclasses of GIGs appear
in several technical applications. For example in nano PLA-design [24] and for detecting
loss of heterozygosity events in the human genome [17].

Other restrictions on the geometry of the representation are used to study algorithmic
problems. For example, stabbability has been used to study hitting sets and independent
sets in families of rectangles [7]. Additionally, computing the jump number of a poset, which
is NP-hard in general, has been shown solvable in polynomial time for bipartite posets with
interval dimension two using their restricted GIG representation [29].
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Beyond these graph classes that have been motivated by applications and algorithmic
considerations, we also study several other natural intermediate graph classes. All these
graph classes and properties are formally defined in Subsection 1.1.

The main contribution of this work is to establish the strict containment and incompara-
bility relations depicted in Figure 1. We additionally relate these classes to incidence posets
of planar and outerplanar graphs.

In Section 2 we use the geometric representations to establish the containment relations
between the graph classes as shown in Figure 1. The maximal dimension of graphs in these
classes is the topic of Section 3. In Section 4 we use vertex-edge incidence posets of planar
graphs to separate some of these classes from each other. Specifically, we show that the
vertex-edge incidence posets of planar graphs are a subclass of stabbable GIG (StabGIG), and
that vertex-edge incidence posets of outerplanar graphs are a subclass of stick intersection
graphs (Stick) and unit GIG (UGIG). The remaining classes are separated in Section 5.
The separating examples are listed in Table 1. As part of this, we show that the vertex-face
incidence posets of outerplanar graphs are segment-ray intersection graphs (SegRay). As a
corollary we obtain that they have interval dimension at most 3.

?

GIG

3-dim BipG

UGIG

4-DORG

SegRay interval dim 3

3-dimensional

4-dimensional

3-dim GIG

bipartite permutation

Stick
3-DORG

2-DORG

BipHook

2-dimensional

interval dim 2

StabGIG

4-dim BipG

Figure 1: The inclusion order of graph classes studied in this paper.
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Class I 6⊆ Class II Example

GIG 3-dim BipG S4

3-dim BipG GIG/3-dim GIG Proposition 17
3-dim GIG SegRay PK4 , Proposition 11

3-dim BipG Proposition 17
StabGIG 3-dim GIG S4

SegRay S4

SegRay 3-dim GIG Proposition 16
StabGIG Proposition 23

UGIG 3-dim GIG S4

StabGIG Proposition 24
4-DORG C14, see [25]
SegRay S4, Proposition 7

BipHook 3-DORG Trees
Stick Proposition 20

Stick UGIG Proposition 18
4-DORG 3-dim GIG S4

StabGIG Proposition 24
SegRay S4

3-DORG S4

3-DORG BipHook Proposition 19
2-DORG 2-dim BipG S3

Table 1: Examples separating graph classes in Figure 1

1.1 Definitions of Graph Classes

We introduce the graph classes from Figure 1. A typical drawing of a representation is
shown in Figure 2. We denote the class of bipartite graphs by BipG. A grid intersection
graph (GIG) is an intersection graph of horizontal and vertical segments in the plane where
parallel segments do not intersect. Some authors refer to this class as pure-GIG. If G admits
a grid intersection representation such that all segments have the same length, then G is a
unit grid intersection graph (UGIG).

A segment s in the plane is stabbed by a line ` if s and ` intersect. A graph G is a
stabbable grid intersection graph (StabGIG) if it admits a grid intersection representation
such that there exists a line that stabs all the segments of the representation. Stabbable
representations are generally useful in algorithmic settings as they provide a linear ordering
on the objects involved, see [7, 10].

A hook is the union of a horizontal and a vertical segment that share the left respectively
top endpoint. The common endpoint, i.e., the bend of the hook, is called the center of the
hook. A graph G is a hook graph if it is the intersection graph of a family of hooks whose
centers are all on a line ` with positive slope (usually ` is assumed to be the line x = y).
Hook graphs have been introduced and studied in [3, 17], [18], and [27]. The graphs are
called max point-tolerance graphs in [3] and loss of heterozygosity graphs in [17]. Typically
these graphs are not bipartite. We study the subclass of bipartite hook graphs (BipHook).

A hook graph admitting a representation where every hook is degenerate, i.e., it is a
line segment, is a stick intersection graph (Stick). In other words, Stick graphs are the
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Figure 2: Typical intersection representations of graphs in the graph classes studied in this
paper.

intersection graphs of horizontal or vertical segments that have their left respectively top
endpoint on a line ` with positive slope.

Intersection graphs of rays (or half-lines) in the plane have been previously studied in the
context of their chromatic number [20] and the clique problem [2]. We consider some natural
bipartite subclasses of this class. Consider a set of axis-aligned rays in the plane. If the rays
are restricted into two orthogonal directions, e.g. up and right, their intersection graph is
called a two directional orthogonal ray graph (2-DORG). This class has been studied in [25]
and [29]. Analogously, if three or four directions are allowed for the rays, we talk about
3-DORGs or 4-DORGs. The class of 4-DORGs was introduced in connection with defect
tolerance schemes for nano-programmable logic arrays [24].

Finally, segment-ray graphs (SegRay) are the intersection graphs of horizontal segments
and vertical rays directed in the same direction. SegRay graphs (and closely related graph
classes) have been previously discussed in the context of covering and hitting set problems
(see e.g., [19, 4, 5]).

In the representations defining graphs in all these classes we can assume the x and the
y-coordinate of endpoints of any two different segments are distinct. This property can be
established by appropriate perturbations of the segments.

The comparability graph of a poset P = (X,≤P ) is the graph (X,E) where for distinct
u, v ∈ X we have uv ∈ E if and only if u ≤P v or v ≤P u. Every bipartite graph
G = (A,B;E) is the comparability graph of a height-2 poset, denoted QG, where A is the
set of minimal elements, B is the set of maximal elements, and for each a ∈ A, b ∈ B we
have a ≤ b in QG if and only if a and b are adjacent in G. For the sake of brevity we define
the dimension of a bipartite graph G to be equal to the dimension of QG. The freedom
that we may have in defining QG, i.e., the choice of the color classes, does not affect the
dimension. This is an easy instance of the fact that dimension is a comparability invariant
(see [31]).
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1.2 Background on order dimension

Let P = (X,≤P ) be a partial order. A linear order L = (X,≤L) on X is a linear extension
of P when x ≤P y implies x ≤L y. A family R of linear extensions of P is a realizer of P
if P =

⋂
i∈R Li, i.e., x ≤P y if and only if x ≤L y for every L ∈ R. The dimension of P ,

denoted dim(P ), is the minimum size of a realizer of P . This notion of dimension for partial
orders was defined by Dushnik and Miller [11]. The dimension of P can, alternatively,
be defined as the minimum t such that P admits an order preserving embedding into the
product order on Rt, i.e., we can associate a t-vector (x1, . . . , xt) of reals for each element
x ∈ X such that x ≤P y if and only if xi ≤ yi for all i ∈ {1, . . . , t}, which is denoted by
x ≤prod y. Trotter’s monograph [30] provides a comprehensive collection of topics related
to order dimension.

An interval order is a partial order P = (X,<P ) admitting an interval representation,
i.e., a mapping x→ (ax, bx) from the elements of P to intervals in R such that x <P y if and
only if bx ≤ ay. The interval dimension of P , denoted idim(P ), is the minimum number
t such that there exist t interval orders Ii with P =

⋂t
i=1 Ii. Since every linear order is

an interval order idim(P ) ≤ dim(P ) for all P . If P is of height two, then dimension and
interval dimension differ by at most one, i.e., dim(P ) ≤ idim(P ) + 1, [30, page 47].

Some subclasses of grid intersection graphs are characterised by their order dimension.
For example, posets of height 2 and dimension 2 correspond to bipartite permutation graphs.
Bipartite permutation graphs have an intersection representation of horizontal and vertical
segments whose endpoints lie on two parallel lines in the plane: Drawing the first linear
extension on a line and the reverse of the second linear extension on a parallel line leads
to a segment intersection representation of the permutation graph after connecting the
corresponding points on the lines by a segment. In the bipartite case the endpoints can be
arranged on the lines such that the segments of the same color class are parallel. Another
example of a class of grid intersection graphs which is characterised by a variant of dimension
is the class of 2-DORGs.

Proposition 1 2-DORGs are exactly the bipartite graphs of interval dimension 2.

This has been shown in [25] using a characterization of 2-DORGs as the complement of
co-bipartite circular arc graphs. Below we give a simple direct proof.

To explain it we begin with a geometric version of interval dimension: Vectors a, b ∈ Rd

with a ≤prod b define a standard box [a, b] = {v : a ≤prod v ≤prod b} in Rd. Let P = (X,≤P )
be a poset. A family of standard boxes {[ax, bx] ⊆ Rd : x ∈ X} is a box representation of P
in Rd if it holds that x <P y if and only if bx ≤prod ay. Then the interval dimension of P is
the minimum d for which there is a box representation of P in Rd. Note that if P has height
2 with A = Min(P ) and B = Max(P ), then in a box representation the lower corner ax for
each x ∈ A and the upper corner by for each y ∈ B are irrelevant, in the sense that they can
uniformly be chosen as (−c, . . . ,−c) respectively (c, . . . , c) for a large enough constant c.

Proof of Proposition 1. Let G = (A,B;E) be a bipartite graph and suppose idim(G) =
2. Consider a box representation {[ax, bx]} of G in R2. Clearly, for each x ∈ A, y ∈ B we
have xy ∈ E if and only if bx ≤prod ay. To obtain a 2-DORG representation of G, draw
upward rays starting from upper corners of boxes representing A, and leftward rays starting
from lower corners of boxes representing B (see Figure 3). Then for each x ∈ A, y ∈ B we
have bx ≤prod ay if and only if the rays of x and y intersect.
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Figure 3: A representation with boxes showing that idim(G) = 2 and the corresponding
2-DORG representation.

Now, the converse direction is immediate together with the observation from the previous
paragraph.

Since the 2-DORGs are exactly the bipartite graphs of interval dimension 2, and interval
dimension is bounded by dimension, we obtain

2-dim BipG ⊆ 2-DORG.

2 Containment relations between the classes

The diagram shown in Figure 1 has 19 non-transitive inclusions represented by the edges.
In this section we show the inclusion between the respective classes of graphs. The inclusion
2-dim BipG ⊆ 2-DORG was already noted as a consequence of Proposition 1. The next 8
inclusions follow directly from the definition of the classes:

UGIG ⊆ GIG StabGIG ⊆ GIG

2-DORG ⊆ 3-DORG 3-DORG ⊆ 4-DORG

3-dim GIG ⊆ 3-dim BipG 3-dim BipG ⊆ 4-dim BipG

Stick ⊆ BipHook 3-dim GIG ⊆ GIG.

The following less trivial inclusions follow from geometric modifications of the representa-
tion. The proofs are given in the following two propositions.

BipHook ⊆ StabGIG 2-DORG ⊆ Stick.

Proposition 2 Each bipartite hook graph is a stabbable GIG.

Proof. Let G = (A,B;E) be a bipartite hook graph and fix a hook representation of G in
which vertices of A and B are represented by blue and red hooks, respectively. We reflect
the horizontal part of each blue hook (dotted in Figure 4) and the vertical part of each red
hook (red dotted) at the diagonal. We claim that this results in a StabGIG representation
of the same graph. The edges are preserved by the operation, since each intersection is
witnessed by a vertical and a horizontal segment, and either both segments are reflected or
none of them. On the other hand, the transformation is an invertible linear transformation
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Figure 4: From a BipHook to a StabGIG and from a 2-DORG to a Stick representation.

on a subset of the segments from the region below the line to the one above, hence no new
intersection is introduced. The stabbability of the GIG representation comes for free.

Proposition 3 Each 2-DORG is a Stick graph.

Proof. Given a 2-DORG representation of G with upward and leftward rays, we let ` be a
line with slope 1 that is placed above all intersection points and endpoints of rays. Removing
the parts of the rays that lie in the halfplane above ` leaves a Stick representation of G, see
Figure 4.

Pruning of rays also yields the following three inclusions:

3-DORG ⊆ SegRay SegRay ⊆ GIG 4-DORG ⊆ UGIG.

For the last one, consider a 4-DORG representation and a square of size D that contains
all intersections and endpoints of the rays. Cutting each ray to a segment of length D leads
to a UGIG representation of the same graph. This was already observed in [25].

Conversely, extending the vertical segments of a Stick representation to vertical upward
rays yields:

Stick ⊆ SegRay.

To show that every 3-DORG is a StabGIG, we use a simple geometric argument as
depicted in Figure 5 and formalized in the following proposition.

3-DORG ⊆ StabGIG.

Proposition 4 Each 3-DORG is a stabbable GIG.

Proof. Consider a 3-DORG representation of a graph G. We assume that vertical rays
point up or down while horizontal rays point right. Let s be a vertical line to the right
of all the intersections. We prune the horizontal rays at s to make them segments and
then reflect the segments at s, this doubles the length of the segments (see Figure 5). Now
take all upward rays and move them to the right via a reflection at s. This results in an
intersection representation with vertical rays in both directions and horizontal segments
such that all rays pointing down are left of s and all rays pointing up are to the right of s.
Due to this property we find a line ` of positive slope that stabs all the rays and segments
of the representation. Pruning the rays above, respectively below their intersection with `
yields a StabGIG representation of G.
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Figure 5: From a 3-DORG to a StabGIG representation

A non-geometric modification of a representation gives the 16th of the 19 non-transitive
inclusions from Figure 1:

BipHook ⊆ SegRay.

Proposition 5 Each bipartite hook graph is a SegRay graph.

Proof. Consider a BipHook representation of G = (A,B;E). We construct a SegRay
representation where A is represented by vertical rays and B by horizontal segments. Let
a1, . . . , a|A| be the order of the vertices of A that we get by the centers of the hooks on the
diagonal, read from bottom-left to top-right. The y-coordinates of the horizontal segments
and the endpoints of the rays in our SegRay representation of G will be given in the following
way.

We initialize a list R = [a1, . . . , a|A|] and a set S = B of active vertices, and an empty
list Y . We apply one of the following steps repeatedly:

1. If there is an active a ∈ R such that N(a)∩S = ∅, then remove a from R and append
it to Y .

2. If there is an active b ∈ S such that vertices of N(b) appear consecutively in R, then
remove b from S and append it to Y .

Suppose that R and S are empty after the iteration. Then we can construct a SegRay
representation of G. The endpoint of the ray representing ai receives i as the x-coordinate
and the position of ai in Y as the y-coordinate. The segment representing b ∈ B also obtains
the y-coordinate according to its position in Y . Its x-coordinates are determined by its
neighbourhood. Now it is straight-forward to verify that this defines a SegRay representation
of G.

It remains to show that one of the steps can always be applied if R and S are nonempty.
Suppose that none of the steps can be applied. Then, for each b ∈ S there are active vertices
ai, ak ∈ R ∩N(b) and aj ∈ R \N(b) with i < j < k. We call (aj , b) an interesting pair. If
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a′

bi

bi+1

Figure 6: Left: b1 is not involved in a forward pair. Right: A forbidden configuration for a
bipartite hook graph.

the center of the hook aj lies before the center of b then we call the interesting pair forward,
and backward otherwise. Let b1, . . . , b|S| be the order of centers of active vertices of S. If
b1 is involved in a forward interesting pair, then each certifying aj is locked in the triangle
between b1 and ai and thus has no neighbour in S (see Figure 6), and so step 1 could be
applied. Hence every interesting pair involving b1 is a backward pair. Symmetrically, every
interesting pair involving b|s| is a forward pair. We conclude that there are active vertices
bi, bi+1, such that bi is involved in a forward interesting pair, and bi+1 in a backward one.

Let a′ ∈ N(bi) be the hook corresponding to an active vertex that encloses a 6∈ N(bi),
i.e., bi < a < a′ on the diagonal. Since a is active its hook intersects some bj with i+ 1 ≤ j.
Therefore, bi < bi+1 < a′ on the diagonal. By symmetric reasoning we also find a′′ ∈ N(bi+1)
such that on the diagonal a′′ < bi < bi+1 < a′ and a′′bi+1 ∈ E. The order on the diagonal
and the existence of edges a′′bi+1 and bia

′ implies that the hooks of bi and bi+1 intersect (see
Figure 6). This contradicts that bi and bi+1 belong to the same color class of the bipartite
graph.

3 Dimension

From the 19 inclusion relations between classes that have been mentioned at the beginning
of the previous section we have shown 16. The remaining three inclusions will be shown by
using order dimension in this section. Specifically, we bound the maximal dimension of the
graphs in the relevant classes. First, we will show that the dimension of GIGs is bounded.
It has previously been observed that idim(G) ≤ 4 when G is a GIG [6]. As already shown
in [13] this can be strengthened to dim(G) ≤ 4.

We define four linear extensions of G as depicted in Figure 7. In each of the directions left,
right, top and bottom we consider the orthogonal projection of the segments onto a directed
horizontal or vertical line. In each such projection every segment corresponds to one interval
(or point) per line. We choose a point from each interval on the line by the following rule.
For minimal elements we take the minimal point in the interval in the direction of the line,
for maximal elements we choose the maximal one. We denote those total orders according
to the direction of their oriented line by L←, L→, L↑, L↓.

Proposition 6 For every GIG G, {L←, L→, L↑, L↓} is a realizer of G. Hence dim(G) ≤ 4.

Proof. For two intersecting segments the minimum always lies before the maximum, see
Figure 7. It remains to check that every incomparable pair (s1, s2) is reversed in the realizer.
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Figure 7: A realizer of a GIG and an illustration of the correctness.

Every disjoint pair of segments is separated by a horizontal or vertical line. The separated
vertices appear in different order in the two directions orthogonal to this line, see Figure 7.

It is known that a bipartite graph is a bipartite permutation graph if and only if the
dimension of the poset is at most 2. Thus, by Proposition 6, the maximal dimension of
the graphs in the other classes that we consider must be 3 or 4. In the following we show
that BipHooks and 3-DORGs have dimension at most 3. For these results we note that
graphs with a special SegRay representation have dimension at most 3 and that the interval
dimension of SegRay graphs is bounded by 3. This latter result was shown previously by a
different argument in [6].

Lemma 1 For a SegRay graph G, dim(G) ≤ 3 when G has a SegRay representation satis-
fying the following: whenever two horizontal segments are such that the x-projection of one
is included in the other one, then the smaller segment lies below the bigger one.

Proof. Consider such a SegRay representation of G with horizontal segments as maximal
and downward rays as minimal elements of QG. The linear extensions L→, L←, and L↓
defined for Proposition 6 form a realizer of QG.

Corollary 1 For every 3-DORG G, dim(G) ≤ 3.

Proof. Consider a 3-DORG representation ofG where the horizontal rays use two directions.
We cut the horizontal rays so that they have the same length D. When D is large enough,
this yields a SegRay representation of the same graph. Note that such a representation has
no nested segments. Thus, Lemma 1 implies dim(QG) ≤ 3.

Proposition 7 For every SegRay graph G, idim(G) ≤ 3.

Proof. Suppose that the rays correspond to minimal elements of QG. By Lemma 1 the
linear extensions L→, L← and L↓ reverse all incomparable pairs except some that consist
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of two maximal elements. We convert these linear extensions to interval orders and extend
the intervals (originally points) of maximal elements in L→ far to the right to make them
intersect. In this way we obtain three interval orders whose intersection gives rise to QG.

Proposition 8 For every bipartite hook graph G, dim(G) ≤ 3.

Proof. Let A and B be the color classes of G. We construct the graph G′ by adding
private neighbours to vertices of B. Then G′ is also a BipHook graph as we can easily add
hooks intersecting a single hook in a representation of G. By Proposition 5 we know that
G′ has a SegRay representation R with downward rays representing A. By construction,
each horizontal segment in R must have its private ray intersecting it. Thus R satisfies
the property of Lemma 1 and dim(QG′) ≤ 3. Since QG is an induced subposet of QG′ we
conclude dim(QG) ≤ 3.

Since Stick ⊂ BipHook we know that dim(QG) ≤ 3 if G is a Stick graph. However, a
nicer realizer for a Stick graph is obtained by Proposition 6, since L← and L↓ coincide in a
Stick representation.

In Section 5 we will show that these bounds are tight.

4 Vertex-Edge Incidence Posets

We proceed by investigating the relations between the classes of GIGs and incidence posets
of graphs.

For a graph G, PG denotes the vertex-edge incidence poset of G, and the comparability
graph of PG is the graph obtained by subdividing each edge of G once. The vertex-edge
incidence posets of dimension 3 are characterised by Schnyder’s Theorem.

Theorem 1 ([23]) A graph G is planar if and only if dim(PG) ≤ 3.

Even though some GIGs have poset dimension 4, we will see that the vertex-edge incidence
posets with a GIG representation are precisely the vertex-edge incidence posets of planar
graphs.

A weak bar-visibility representation of a graph is a drawing that represents the vertices
as horizontal segments and the edges as vertical segments (sight lines) touching its adjacent
vertices.

Theorem 2 ([28, 32]) A graph G has a weak bar-visibility representation if and only if G
is planar.

A weak bar-visibility representation of G gives a GIG representation of PG. On the
other hand, a GIG representation of PG can be transformed into a weak bar-visibility
representation of G. In particular, since the segments representing edges of G intersect
two segments representing incident vertices, they can be shortened until their intersections
become contacts. Hence PG is a GIG if and only if G is planar. We next show the stronger
result, that there is a StabGIG representation of PG for every planar graph G.
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Proposition 9 A graph G is planar if and only if PG is a stabbable GIG.

We use the following definitions. A generic floorplan is a partition of a rectangle into
a finite set of interiorly disjoint rectangles that have no point where four rectangles meet.
Two floorplans are weakly equivalent if there exist bijections ΦH between the horizontal
segments and ΦV between the vertical segments, such that a segment s has an endpoint on
t in F if and only if Φ(s) has an endpoint on Φ(t). A floorplan F covers a set of points
P if and only if every segment contains exactly one point of P and no point is contained
in two segments. The following theorem has been conjectured by Ackerman, Barequet and
Pinter [1], who have also shown it for the special case of separable permutations. It has
been shown by Felsner [12] for general permutations.

Theorem 3 ([12]) Let P be a set of n points in the plane, such that no two points have
the same x- or y-coordinate and F a generic floorplan with n segments. Then there exists
a floorplan F ′, such that F and F ′ are weakly equivalent and F ′ covers P .

Proof of Proposition 9. Consider a weak bar-visibility representation of G. The lowest
and highest horizontal segments hb and ht can be extended, such that their left as well as
their right endpoints can be connected by new vertical segments vl and vr. The segments
hb, ht, vl and vr are the boundary of a rectangle. Extending every horizontal segment until
its left and right endpoints touch vertical segments leads to a floorplan F . By Theorem 3
there exists an equivalent floorplan F ′ that covers a pointset P consisting of n points on the
diagonal of the the big rectangle with positive slope. Shortening the horizontal segments
and extending the vertical segments of F ′ by ε > 0 on each end leads to a GIG representation
of PG that can be stabbed by the line through the diagonal.

On the other hand, every GIG representation of PG leads to a weak bar-visibility repre-
sentation, and hence G is planar.

We will now show that PG is in the classes of Stick and bipartite hook graphs if and only
if G is outerplanar.

Proposition 10 PG is a Stick graph if and only if G is outerplanar.

Proof. Outerplanar graphs have been characterized by linear orderings of their vertices by
Felsner and Trotter [16]: A graph G = (V,E) is outerplanar if and only if there exist linear

orders L1, L2, L3 of the vertices with L2 =
←−
L1, i.e., L2 is the reverse of L1, such that for

each edge vw ∈ E and each vertex u 6∈ {v, w} there is i ∈ {1, 2, 3}, such that u > v and
u > w in Li.

Consider a Stick representation of PG where the elements of V correspond to vertical
sticks. Restricting the linear extensions L1 = L←, L2 = L→, and L3 = L↑ (cf. the proof of
Proposition 6) obtained from a Stick representation of PG to the elements of V yields linear
orders satisfying the property above. Thus G is outerplanar.

For the backward direction let G be an outerplanar graph. In [3] it is shown that the class
of hook contact graphs (each intersection of hooks is also an endpoint of a hook) is exactly
the class of outerplanar graphs. Given a hook contact representation of G we construct a
Stick representation of PG. To this end we consider each hook as two sticks, a vertical one
for the vertices and a horizontal one as a placeholder for the edges. For each contact of the
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horizontal part of a hook v we place an additional horizontal stick slightly below the center
of v. The k-th contact of a hook with the horizontal part is realized by the k-th highest
edge that is added in the placeholder as shown in Figure 8.

Figure 8: A hook contact representation of G transformed into a Stick representation of PG.

We continue by providing some characterizations of outerplanar graphs according to GIG
representations of vertex-edge incidence posets.

A weak semibar-visibility representation of a graph is a drawing that represents the vertices
as vertical segments with lower end at the horizontal line y = 0, and the edges as horizontal
segments touching the two vertical segments that represent incident vertices.

Lemma 2 ([8]) A graph G is outerplanar if and only if G has a weak semibar-visibility
representation.

The construction used in the previous proposition directly produces a weak semibar-
visibility representation of an outerplanar graph. Just extend all vertical segments upwards
until they hit a common horizontal line ` and reflect the plane at `, now ` can play the role
of the x-axis for the weak semibar-visibility representation.

Proposition 11 A graph G is outerplanar if and only if the graph PG has a SegRay repre-
sentation where the vertices of G are represented as rays.

Proof. Cutting the rays of a SegRay representation with rays pointing downwards some-
where below all horizontal segments leads to a weak semibar-visibility representation of G
and vice versa. Thus, Lemma 2 gives the result.

Proposition 12 A graph G is outerplanar if and only if the graph PG has a hook repre-
sentation.

Proof. If G is outerplanar then PG has a hook representation by Proposition 10. On
the other hand, assume that PG has a hook representation for a graph G. According to
Proposition 5 we construct a SegRay representation with vertices as rays and edges as
segments. This representation shows that G is outerplanar by Proposition 11.

Proposition 13 If G is outerplanar, then the graph PG has a SegRay representation where
the vertices of G are represented as segments.
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Proof. Consider a hook representation R′ of PG. According to the proof Proposition 5
we can transform PG into a SegRay representation with a free choice of the colorclass that
is represented by rays. Choosing the subdivision vertices as rays leads to the required
representation.

Figure 9: A SegRay representation of PK2,3 .

In contrast to Proposition 11, the backward direction of Proposition 13 does not hold:
Figure 9 shows a SegRay representation of PK2,3 with vertices being represented as horizontal
segments, but K2,3 is not outerplanar. Together with Proposition 11 this also shows that
the class of SegRay graphs is not symmetric in its color classes.

In the following we construct a UGIG representation of PG for an outerplanar graph G.

Proposition 14 If G is outerplanar then PG is a UGIG.

Proof. We construct a UGIG representation of PG for a maximal outerplanar graph G =
(V,E) with outer-face cycle v0, . . . , vn. The vertices of V are drawn as vertical segments.
Starting from v0 we iteratively draw the vertices of breadth-first-search layers (BFS-layers).
Each BFS-layer has a natural order inherited from the order on the outer-face, i.e., the
increasing order of indices. When the i-th layer Li has been drawn the following invariants
hold:

1. Segments for all vertices and edges of G[L0, . . . , Li−1], all vertices of Li, and all edges
connecting vertices of Li−1 to vertices of Li have been placed.

2. The upper endpoints of the segments representing vertices in Li lie on a strict mono-
tonically decreasing curve Ci. Their order on Ci agrees with the order of the corre-
sponding vertices in Li. Their x-coordinates differ by at most one.

3. No segment intersects the region above Ci.

We start the construction with the vertical segment corresponding to v0. The curve C0

is chosen as a line with negative slope that intersects the upper endpoint of v0.
We start the (i+ 1)-th step by adding segments for the edges within vertices of layer Li.

Afterwards we add the segments for edges between vertices in layer Li and Li+1 and the
segments for the vertices of layer Li+1. The construction is indicated in Figure 10.

First we draw unit segments for the edges within layer Li. Since the graph is outerplanar
such edges only occur between consecutive vertices of the layer. For a vertex vk of Li which
is not the first vertex of Li we define a horizontal ray rk whose start is on the segment of

14



Ci+1

CiCiCi

a) b) c)

rl

rm

vl

vk

vm

Figure 10: One step in the construction of a UGIG representation of PG: a)The situation
before the step. b) The edges between layer Li and Li+1 and within layer Li are
added. c) The vertices of layer Li+1 are added.

the predecessor of vk on this layer such that the only additional intersection of rk is with
the segment of vk. The initial unit segment of ray rk can be used for the edge between vk
and its predecessor.

All segments that will represent edges between layer Li and Li+1 are placed as horizontal
segments that intersect the segment of the incident vertex vk ∈ Li above the ray rk. We
draw these edge-segments such that the endpoints lie on a monotonically decreasing curve C
and the order of these endpoints on C corresponds to the order of their incident vertices
in Li+1.

Now the right endpoints of the edges between the two layers lie on the monotone curve
C and no segment intersects the region above this curve. Due to properties of the BFS for
outerplanar graphs, each vertex of layer Li+1 is incident to one or two edges whose segments
end on C and if there are two then they are consecutive on C. We place the unit segments
of vertices of Li+1, such that their lower endpoint is on the lower segment of an incident
edge with the x-coordinate such that they realize the required intersections.

With this construction the invariants are satisfied.

There are graphs G where PG is a UGIG and G is not outerplanar, for example G = K2,3

as shown in Figure 11. On the other hand there exist planar graphs G, such that PG is not
a UGIG as the following proposition shows.

Proposition 15 PK4 is not a UGIG.

Proof. Suppose to the contrary that PK4 has a UGIG representation with vertices as vertical
segments. By contracting vertical segments to points one can obtain a planar embedding
of K4 from such a representation. As K4 is not outerplanar, there is a vertex v that is
not incident to the outer face in this embedding. For the initial UGIG representation this
means that v is represented by a vertical segment which is enclosed by segments representing
vertices and edges of K4 − {v}. Notice that these segments represent a 6-cycle of PK4 .
However, the largest vertical distance between any pair of horizontal segments in this cycle
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is less than 1. Thus, there is not enough space for the vertical segment of v, contradiction.

Figure 11: A UGIG representation of PK2,3 .

5 Separating examples

In this section we will give examples of graphs that separate the graph classes in Figure 1.
For this purpose we will show that the classes we have observed to be at most 4-dimensional
indeed contain 4-dimensional graphs. This is done in Subsection 5.1 using standard examples
and vertex-face incidence posets of outerplanar graphs. The remaining graph classes will be
separated using explicit constructions in Subsection 5.2 and Subsection 5.3.

Using the observations of Section 4 about vertex-edge incidence posets we can immediately
separate the following graph classes.

StabGIG 6⊂ BipHook StabGIG 6⊂ 3-DORG

SegRay 6⊂ 4-DORG Stick 6⊂ 2-DORG.

In [25] it is shown that the graph C14 (cycle on 14 vertices) is not a 4-DORG, and
in particular is not a 3- or 2-DORG. In other words, PC7 is not a 4-DORG. Since C7 is
outerplanar, by the propositions of the previous section we know that PC7 is a SegRay,
a StabGIG and a Stick graph. This shows the three seperations involving DORGs. For
the first one let G be a planar graph that is not outerplanar. Then PG is a StabGIG
(Proposition 9) but not a BipHook graph (Proposition 12).

5.1 4-Dimensional Graphs

First of all, some graph classes are already separated by their maximal dimension. The
standard example Sn of an n-dimensional poset, cf. [30], is the poset on n minimal elements
a1, . . . , an and n maximal elements b1, . . . , bn, such that ai < bj in Sn if and only if i 6= j.
To separate most of the 4-dimensional classes from the 3-dimensional ones, the standard
example S4 is sufficient. As shown in Figure 12 it has as a stabbable 4-DORG representation.
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Figure 12: The poset S4 and a stabbable 4-DORG representation of it.

From this it follows that:

StabGIG 6⊂ BipHook StabGIG 6⊂ 3-DORG

4-DORG 6⊂ 3-DORG StabGIG 6⊂ 3-dim GIG

Since the interval dimension of Sn is n we get the following relations from Proposition 7.

StabGIG 6⊂ SegRay 4-DORG 6⊂ SegRay

We will now show that the vertex-face incidence poset of an outerplanar graph has a SegRay
representation. In [15] it has been shown that there are outerplanar maps with a vertex-face
incidence poset of dimension 4. Together with Proposition 16 below this shows that there
are SegRay graphs of dimension 4. We obtain

SegRay 6⊂ 3-dim GIG.

Proposition 16 If G is an outerplanar map then the vertex-face incidence poset of G is a
SegRay graph.

Let G be a graph with a fixed outerplanar embedding. First we argue that we may assume
that G is 2-connected. If G is not connected then we can add a single edge between two
components without changing the vertex-face poset. Now consider adding an edge between
two neighbours of a cut vertex on the outer face cycle, i.e., two vertices of distance 2 on this
cycle. This adds a new face to the vertex-face-poset, but keeps the old vertex-face-poset as
an induced subposet. Therefore, we may assume that G is 2-connected.

f

v2

v1

v2 v1
fv1 v2

f

Figure 13: Illustration for the induction step in Proposition 16

By induction on the number of bounded faces we show that G has a SegRay representation
in which the cyclic order of the vertices on the outer face agrees with the left-right order
(cyclically) of rays representing these vertices. If G has one bounded face then the claim is
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straight-forward. If G has more bounded faces then consider the dual graph of G without
the outer face, which is a tree. Let f be a face that corresponds to a leaf of that tree. Define
G′ to be the plane graph obtained by removing f and incident degree-2 vertices from G.
Then exactly two vertices v1, v2 of f are still in G′, and they are adjacent via an edge at
the outer face of G′. Note that G′ is 2-connected. Applying induction on G′ we obtain a
SegRay representation in which the two rays representing v1 and v2 are either consecutive,
or left- and rightmost ray.

In the first case we insert rays for the removed vertices between v1 and v2 with endpoints
being below all other horizontal segments. Then a segment representing f can easily be
added to obtain a SegRay representation with the required properties of G, see the middle
of Figure 13.

If the rays of v1 and v2 are the left- and rightmost ones, then observe that the endpoints
of both rays can be extended upwards to be above all other endpoints. We can insert the
new rays to the left of all the other rays and the segment for f as indicated in Figure 13 on
the right. This concludes the proof.

Propositions 16 and 7 also give the following interesting result about vertex-face incidence
posets of outerplanar maps which complements the fact that they can have dimension 4 [15].

Corollary 2 The interval dimension of a vertex-face incidence poset of an outerplanar map
is bounded by 3.

We have separated all the graph classes which involve dimension except for the two
classes of 3-dimensional GIGs and stabbable GIGs. As indicated in Figure 1 it remains
open whether 3-dim GIG is a subclass of StabGIG or not. More comments on this can be
found at the end of Subsection 5.3.

5.2 Constructions

In this subsection we give explicit constructions for the remaining separations of classes not
involving StabGIG.

In the introduction we mentioned that every 2-dimensional order of height 2, i.e., every bi-
partite permutation graph, is a GIG. We show now that this does not hold for 3-dimensional
orders of height 2.

Proposition 17 There is a 3-dimensional bipartite graph that is not a GIG.

Proof. The left drawing in Figure 14 defines a poset P by ordering the homothetic triangles
by inclusion. Some of the triangles are so small that we refer to them as points from now on.
Each inclusion in P is witnessed by a point and a triangle, and hence P has height 2. To see
that it is 3-dimensional we use the drawing and the three directions depicted in Figure 14.
By applying the same method as we did for Proposition 6 we obtain three linear extensions
forming a realizer of P .

We claim that P is not a pseudosegment intersection graph1, and hence not a GIG. Sup-
pose to the contrary that it has a pseudosegment representation. The six green triangles
together with the three green and the three blue points form a cycle of length 12 in G.

1The intersection graph of curves where each pair of curves intersects in at most one point.
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Figure 14: The drawing on the left defines an inclusion order of homothetic triangles. This
height-2 order does not have a pseudosegment representation.

Hence, the union of the corresponding pseudosegments in the representation contains a
closed curve in R2. Without loss of generality assume that the pseudosegment representing
the yellow point lies inside this closed curve (we may change the outer face using a stere-
ographic projection). The pseudosegments of the three large blue triangles intersect the
yellow pseudosegment and one blue pseudosegment (corresponding to a blue point) each.
The yellow and the blue pseudosegments divide the interior of the closed curve into three
regions. We show that each of these regions contains one of the pseudosegments representing
black points.

Each purple pseudosegment intersects the cycle in a point that is incident to one of the
three bounded regions. Now, each black pseudosegment intersects a purple one. If such an
intersection lies in the unbounded region, then the whole black pseudosegment is contained
in this region. This is not possible as for each of the black pseudosegments there is a blue
pseudosegment representing a small blue triangle that connects it to the enclosed yellow
pseudosegment without intersecting the cycle. Thus, the three intersections of purple and
black pseudosegments have to occur in the bounded regions, and in each of them one. It
follows that each of the three bounded regions contains one black pseudosegment.

Now, the red pseudosegment intersects each of the three black pseudosegments. Since
they lie in three different regions whose boundary it may only traverse through the yellow
pseudosegment, it has to intersect the yellow pseudosegment twice. This contradicts the
existence of a pseudosegment representation.

In the following we give constructions to show that

Stick 6⊂ UGIG UGIG 6⊂ Stick

BipHook 6⊂ 3-DORG BipHook 6⊂ Stick

Proposition 18 The Stick graph shown in Figure 15 is not a UGIG.
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Figure 15: A stick representation of a graph that is not a UGIG.

Proof. Let G be the graph represented in Figure 15. Let v and h be the two adjacent
vertices of G that are drawn as black sticks in the figure. There are five pairs of intersecting
blue vertical and red horizontal segments v1, h1, . . . , v5, h5. Each vi intersects h and each hi
intersects v. Four of the pairs vi, hi form a 4-cycle with a pair of green segments qi, ri.

Suppose that G has a UGIG representation. We claim that in any such representation
the intersection points pi of vi and hi form a chain in <prod after a suitable rotation of the
representation. Note that one quadrant formed by the segments v and h (without loss of
generality the upper right one) contains at least two of the pi’s by the pigeonhole principle.
Assume without loss of generality that p1 and p2 lie in this quadrant. If p1 and p2 are
incomparable in <prod, then the horizontal segment h1 of the lower intersection point has a
forbidden intersection with the vertical segment v2 of the higher one, see Figure 16 left.

h

v2

h2

v

v1

vi

v1

v1

hj

v2

hi

h1

h1
h2

v
v2

h

qj

rj

vj

v

h

h1

h2

Figure 16: Left: The intersection points p1, p2 in the upper right quadrant form a chain in
<prod. Middle: pi does not dominate p2 in <prod. Right: The green segments
qj , rj for the middle pair of segments hj , vj cannot be added.

So p1 and p2 are comparable in <prod. We may assume that v2, h2 is the pair of segments
whose intersection point is dominated in <prod by all other intersection points in the upper
right quadrant. We observe that the lower endpoint of v2 lies below the lower endpoint
of v, and the left endpoint of h2 lies to the left of the left endpoint of h as shown in the
middle of Figure 16. It follows that if an intersection point pi does not dominate p2, then pi
lies below h2 and to the left of v2, but not in the upper right quadrant by our choice of p2
(see Figure 16 for an example). It is easy to see that the remaining two intersection points
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pj (j 6∈ {1, 2, i}) then have to dominate p2 in <prod, as otherwise we would see forbidden
intersections among the blue and red segments.

We conclude that, in each case, four of the points p1, . . . , p5 lie in the upper right quadrant
and that they form a chain with respect to <prod. Thus at least one pair of segments vj , hj
with pj being in the middle of the chain has neighbours qj , rj . However, as indicated in the
right of Figure 16, qj and rj cannot be added without introducing forbidden intersections.
Hence G does not have a UGIG representation.

We now show that there is a 3-DORG that is not a BipHook graph. We will use the
following lemma for the argument.

Lemma 3 Let G be a bipartite graph and G′ be the graph obtained by adding a twin to each
vertex of G (i.e., a vertex with the same neighbourhood). Then G′ is a hook graph if and
only if G is a Stick graph.

Proof. Suppose that G′ has a hook representation. Consider twins v, v′ ∈ V (G) and
the position of their neighbours in a hook representation. Suppose that there are vertices
u,w ∈ N(v), such that the order on the diagonal is u, v, v′, w. One can see that this order
of centres together with edges uw and v′u would force the hooks of v and v′ to intersect,
which contradicts their non-adjacency. Thus either no neighbour of v occurs before v or no
neighbour of v′ occurs after v′ on the diagonal. This shows that the hook of v or v′ can be
drawn as a stick, and it follows that G has a Stick representation.

Conversely, in a stick representation of G twins can easily be added to obtain a stick
representation of G′.

Proposition 19 The 3-DORG in Figure 17 is not a Stick graph.

v

w

a1 a3

b2

w

va1

b1

b2

b3
a2

a2

b3

g1

b1
g2

a3

g1

g2

w

v

Figure 17: A 3-DORG that is not a Stick graph.

Proof. Suppose to the contrary that a Stick representation of the graph exists. We may
assume that v is a vertical and w a horizontal stick. Observe that w has to lie above v
on the diagonal: Otherwise, two of the ai’s have to lie either before v or after v, however,
for the outer one of such a pair of ai’s it is impossible to place a stick for bi that also
intersects v. Hence, the Stick representation of v, w and the ai’s and bi’s have to look as in
Figure 17. By checking all possible positions of g1, i.e., permutations of {a1, a2, a3} and the
correspondingly forced permutation of {b1, b2, b3} in the representation, it can be verified
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that the representation cannot be extended to a representation of the whole graph. The
cases are indicated in Figure 17.

As a consequence, there is a 3-DORG that is not a bipartite hook graph. Indeed, if we
add a twin to each vertex of the graph shown in Figure 17 then the obtained graph is still
a 3-DORG. It can not be a BipHook graph as otherwise by Lemma 3 we would conclude
that the graph in Figure 17 is a Stick graph.

We next show a construction of a bipartite hook graph that is not a Stick graph. A
related construction was also presented in [18].

x

y

Figure 18: The graph Φ and the two possible positions of x and y in a Stick representation
of G.

Proposition 20 There is a bipartite hook graph that is not a Stick graph.

Proof. The proof is based on the graph Φ shown in Figure 18. The vertices x and y are
the connectors of Φ. Let G be a graph that contains an induced Φ and a path pxy from
x to y such that there is no adjacency between inner vertices of pxy and the 6-cycle of Φ.
Observe that the Stick representation of the 6-cycle is essentially unique. Now it is easy to
check that in a Stick representation of G the sticks for the connectors have to be placed like
the two blue sticks or like the two red sticks in Figure 18, otherwise the sticks of x and y
would be separated by the 6-cycle, whence one of the sticks representing inner vertices of
pxy and a stick of the 6-cycle would intersect. Depending on the placement the connectors
are of type inner (blue) or outer (red).

Consider the graph Φ4 depicted in Figure 19 together with a hook representation of
it. Suppose for contradiction that Φ4 has a Stick representation. It contains four copies
Φ1, . . . ,Φ4 of the graph Φ with connectors x1, . . . , x5. By our observation above, the con-
nectors of each Φi are either of inner or outer type. We claim that for each i ∈ {1, 2, 3},
connecters of Φi and Φi+1 are of different type. If the type of both connectors of Φi and
Φi+1 is inner, then such a placement would force extra edges, specifically an edge between
the two 6-cycles of Φi and Φi+1. And if both are outer then such a placement would separate
xi and xi+2, see Figure 20 on the left.

It follows that the connector type of the Φi’s is alternating. In particular, there is i ∈ {1, 2}
such that the connectors of Φi,Φi+1,Φi+2 are of type inner–outer–inner in this order. The
right-hand side of Figure 20 illustrates how Φi and Φi+1 have to be drawn in a Stick
representation. Since xi+2 is one of the inner type connectors of Φi+2, there is no chance
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Figure 19: A bipartite hook graph (with hook representation) that is not a Stick graph.

xi+2
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xi

xi

xi+2
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Figure 20: Stick representations of Φi and Φi+1 with connecters of type inner–inner (left)
and inner–outer (right).

of adding the sticks for Φi+2 to the drawing without intersecting sticks representing Φi and
Φi+1. This is a contradiction and hence Φ4 is not a Stick graph.

5.3 Stabbability

We proceed to show that

SegRay 6⊂ StabGIG 4-DORG 6⊂ StabGIG.

As an intermediate step we prove that there are GIGs that are not stabbable. Techniques
used in the proof will be helpful to show the two seperations.

Proposition 21 There exists a GIG that is not a StabGIG.

Proof. Consider a GIG representation of a complete bipartite graph Kn,n. The GIG repre-
sentation forms a grid in the plane. Now we add segments such that for every pair of cells
in the same row or in the same column there is a segment that has endpoints in both of
the cells. Furthermore, those segments can be drawn in such way that a horizontal and a
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vertical segment intersect if and only if both intersect a common cell completely, that is,
they do not have an endpoint in this cell. Denote the resulting GIG representation by Rn

and the corresponding GIG by Gn.
Suppose for contradiction that Gn has a stabbable GIG representation R′n for all n ∈ N.

By the Erdős-Szekeres theorem for monotone subsequences, for every k ∈ N there exists
n ∈ N such that in Rn there are subsets H and V consisting of k horizontal and k vertical
segments that represent vertices of the Kn,n in Gn, such that they appear in the same order
(up to reflection) as segments in Rn representing the same set of vertices. In Rn those
segments induce a subgrid to which we added the blue segments depicted in Figure 21.
That is, for each cell c in the subgrid we have a horizontal segment hc and a vertical one vc
such that hc and vc intersect only each other and the segments building the boundary of c.

Figure 21: Partial representation of Rn on the left. Replaced cell segments in R′n on the
right.

It is easy to see that this partial representation in Rn is not stabbable if k is large. Since
the segments of the subgrid appear in the same order (up to reflection) in R′n, we only have
to consider the placement of cell segments hc and vc. We restrict our attention to cells not
lying on the boundary of the grid and fix a stabbing line ` for R′n. There are two possibilities
for the placement of hc and vc in R′n. One case is that the intersection point pc of hc and
vc lies in c or in one of the eight cells surrounding c. Then the segments hc and vc can only
be stabbed by ` if at least one of those eight cells around c is intersected by `. The cells
intersected by ` in R′n are only O(k) many, so their neighbouring cells are only O(k) many
as well. This shows that Ω(k2) intersection points pc have to lie outside of the grid in R′n
(as depicted in Figure 21 on the right). However, we show that this is possible for only O(k)
of them.

If an intersection point lies outside of the grid it is assigned to one quadrant, i.e., pc lies
above or below and left or right of the interior of the grid. Every quadrant contains at most
O(k) points pc: We index each cell by its row and column in the grid so that the bottom-
and leftmost cell is c1,1. If the intersection points corresponding to cells cu,v and cx,y lie in
the upper left quadrant, then u < x implies y ≤ v. This is illustrated in Figure 21 where it is
shown that otherwise the cell segments of the colored cells produce a forbidden intersection.
It follows that at most O(k) intersection points of cell segments can lie in one quadrant,
and hence O(k) of them lie outside of the grid. We conclude that Gn has no stabbable GIG
representation for a sufficiently large n.
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For SegRay graphs we give a similar construction that shows that there are SegRay graphs
which do not belong to StabGIG. First we will construct a graph that cannot be stabbed
in any SegRay representation.

Lemma 4 Let R be a SegRay representation of a cycle C with 2n vertices. For the vertices
in C being represented as rays it holds that their order in C is up to reflection and cyclic
permutation equal to the order of the rays representing them in R .

Proof. Let L be a horizontal line below all horizontal segments in R. Contracting each ray
to its intersection point with L yields a planar drawing of a cycle C ′ with n vertices such
that the vertices lie on L and edges are drawn above L. This is also known as a 1-page
embedding of C ′. It is easy to see that edges in C ′ have to connect consecutive vertices on
L or the two extremal ones. Now the conclusion of the lemma is straightforward.

Proposition 22 There exists a SegRay graph that has no stabbable SegRay representation.

Figure 22: A SegRay graph with no stabbable SegRay representation.

Proof. Consider the graph defined by the SegRay representation R in Figure 22. Let R′

be an arbitrary SegRay representation of this graph. The order of the rays in R′ is up to
reflection and cyclic permutation equal to the one in R by Lemma 4. Hence without loss of
generality the rays of the left half in R appear consecutively in R′. Now observe that the
two yellow segments below the red segment in the left half of R also have to be below the
red segment in R′. Similarly, the two yellow segments above the red segment in R must lie
above the red segment in R′. Furthermore, these two yellow segments have to lie below the
top of the red vertical ray in R′. It follows that, as in R, the red segment and the red ray
seperate the plane into four quadrants in R′ such that each quadrant contains exactly one
of the considered yellow segments. Any line in the plane can intersect at most three of the
quadrants and thus will miss a yellow segment in R′. Therefore, R′ is not stabbable and
the conlusion follows.

We add a vertex h to the graph in Figure 22 that is adjacent to all rays. This graph is still
a SegRay graph. We call this graph a bundle and the set of horizontal segments its head.
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The bundle is not stabbable in any SegRay representation by the proposition above. This
means, in any StabGIG representation of a bundle there is one horizontal segment above the
segment representing h and one below. Indeed, otherwise the representation of the bundle
can be modified by extending vertical segments to rays in one direction to obtain a stabbed
SegRay representation. Using this property of a bundle we can show the following.

Proposition 23 There exists a SegRay graph that is not a stabbable GIG.

Proof. Similar to the construction in Proposition 21, consider a SegRay representation of
a complete bipartite graph Kn,n. In this representation we see a grid with cells. We place
in each of the cells the head of a bundle as indicated in Figure 23. Now, for each pair of
cells in the same row of the grid, add a spanning horizontal segment with endpoints in the
given cells. We do it in such a way that the rays of a bundle are intersected by the segment
if the head of the bundle lies in a cell between the two given cells.

Denote by Rn the resulting SegRay representation and let Hn be the SegRay graph
defined by Rn. Suppose that Hn has a stabbable GIG representation R′n. As in the proof
of Proposition 21, given an integer k ≥ 1 it follows by the Erdős-Szekeres theorem that
for sufficiently large n there is a subgrid of size k in R′n, where the order of the horizontal
and vertical segments is either preserved or reflected with respect to Rn. Assume that it is
preserved. Now we restrict our attention to the relevant bundles and horizontal segments
of Rn according to the cells of the subgrid. In Rn again this looks like in Figure 23, but
this time with respect to the fixed subgrid.

Let us now consider the placement of the bundles and blue segments in R′n. Given
a cell c in the subgrid, let yc be the horizontal grid segment bounding c from below. By
Proposition 22 and its consequences, the bundle lying in cell c contains a horizontal segment
that lies above yc in R′n. We denote this segment by hc and let xc be an arbitrary ray of
the bundle intersecting hc. Consider now the left side of Figure 24 showing a 3× 3 box and
a ray x of the subgrid that lies strictly to the left of the box in the representation Rn. Let
c1, c2, c3 be the three shaded cells. Then we claim that at least one of hc1 , hc2 , hc3 is placed
to the right of x in R′n.

Suppose to the contrary that all lie to the left. If we use the fact that hci is above xci
in R′n for each i ∈ {1, 2, 3}, then it is straightforward to see that hc1 , hc2 , hc3 , xc1 , xc2 , xc3
and the three short blue horizontal segments depicted on the left of Figure 24 have to be
placed in R′n as shown on the right of Figure 24 (segments hci are colored purple). But

Figure 23: Illustration of a SegRay graph that is not a StabGIG
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x x

y

Figure 24: For at least one grey cell c, the purple segment hc lies to the right of x in R′n.

then the segment y, which is the long blue one on the left, cannot be added to the partial
representation without creating forbidden crossings. This shows our subclaim.

In the next step we consider the green box of the fixed subgrid shown on the left of
Figure 25. Using our subclaim we have that each of the three shaded 3× 3 boxes contains
a cell c such that hc is placed to the right of x in R′n. Now we apply the symmetric version
of this claim to deduce that one of these three segments also lies to the left of x′ in R′n. We
conclude that there is a segment that is strictly contained in the green box in R′n.

In the final step we consider four copies of the green box that are placed in the fixed
subgrid of Rn as shown on the right of Figure 25. Since each copy strictly contains a
segment in R′n, each line in the plane will miss at least one of the four segments. This shows
that R′n is not stabbable for sufficiently large n and completes the proof.

x x′

Figure 25: There is a cell c in the green box such that hc is drawn inside the box in R′n.

Proposition 24 There exists a 4-DORG that is not a stabbable in any GIG representation.

Proof. Since the ideas here are similar to those used for Propositions 22 and 23, we only
provide a sketch of this proof. Consider the following construction. Take a 4-DORG repre-
sentation of a complete bipartite graph Kn,n. Similarly to previous constructions this yields
a grid with cells. For each cell we add four rays starting in this cell, one in each direction
and such that a vertical and a horizontal ray intersect if and only if they entirely intersect
a common cell. Call this representation Rn and the corresponding intersection graph Gn.
We claim that for sufficiently large n there is no stabbable GIG representation of Gn.

Suppose to the contrary that there exists a StabGIG representation R′n of Gn. Again by
applying the Erdős-Szekeres theorem we may assume that there is a large subgrid of size k
in R′n, such that the order of the grid segments in R′n agrees with the order in Rn (up to
reflection).
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Given the representation R′n, we want to partition the cells of the subgrid according to
the placement of the four segments representing the rays that start in a given cell of our
construction. Note that these four segments intersect in such a way that they enclose a
rectangle in R′n. Therefore, we can distinguish the following cases: the rectangle (1) is
contained in a grid cell, (2) it does not intersect a grid cell, (3) it contains some but not
all grid cells, and (4) it contains all of the grid cells (see Figure 26 for the cases from left
to right). Each of these cases again can be split into at most four natural subcases. For
instance, if the rectangle contains some of the grid cells, then it also has to contain a corner
of the grid, which gives rise to four subcases.

Figure 26: Four different situations for the blue cell and its segments in R′n

Using similar arguments as in previous proofs of the paper and the assumption that R′n
is stabbed by a line, one can show that each partion class contains at most O(k) cells.
Thus, for large enough n and k we get a contradiction since our subgrid has k2 cells. This
observation completes the proof.

It remains open whether there exists a 3-dimensional GIG that is not stabbable. It is
tempting to look for an example that produces again a large grid in every representation
(to get non-stabbability), but it turned out that all these examples seem to have dimension
4. We also tried with SegRay graphs satisfying the properties of Lemma 1 since they have
dimension 3. However, we didn’t succeed with finding such a SegRay that is not stabbable.

6 Conclusion

We have shown that Figure 1 provides the correct inclusion order of the given subclasses of
GIG. An overview of the separating examples is given in Table 1.

The notion of order dimension was helpful in particular to exhibit examples that separate
classes. As a byproduct we have new insights regarding the interval dimension of vertex-face
posets of outerplanar maps (Corollary 2).

Another direction of research regarding these graph classes is recognition. Currently the
recognition complexity of some of the graph classes remains open, see the table below. We
hope that our results help bringing these open problems closer to a solution.
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Class recognition complexity reference

GIG NP-complete [21]
UGIG NP-complete [22]
3-dim BipG NP-complete [14]

3-dim GIG Open
StabGIG Open
SegRay Open
BipHook Open
Stick Open
4-DORG Open
3-DORG Open

2-DORG Polynomial [25],[9]
bipartite permutation Polynomial [11]
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