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This thesis is based on my research on partially ordered sets and specially inter-
val orders, that began when I came to Berlin in 1988. Professor R.H. Mdhring
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have been consulted without being cited directly, are collected in the references
of the introduction. An outline of the contents of the thesis can be found in the
preview at the beginning of the introduction. All further chapters are opened by
a section called ‘Introduction and Overview’. That special section may serve as
an extended abstract for the contents of the chapter, it also gives the relationship
to the existing literature.
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Chapter 1

Introduction

1.1 Preview

Here we only give a very brief survey of the contents of this thesis. For more
detailed information on the subject of a single chapter we refer to introductory
sections, called ‘Introduction and Overview’, there we also relate our own results
to the existing literature.

A family (Ix)yex of intervals on the real line may be used to define a partial
ordering on X. We put x <y if a € Iy and b € Iy implies a < b. A partial order
I = (X, <) thus obtained is called an interval order. In this chapter we introduce
basic terminology and facts about partial orders, linear extensions and interval
orders that are used throughout all parts. The next three chapters then deal with
problems for interval orders that are known to be NP-complete for general partial
orders.

In the next chapter we consider the jump number problem. That is, we are
looking for a linear extension of I which has a minimal number of adjacent pairs
that are incomparable in I. We introduce parameters « and 3 of an interval order
and prove a close relationship with the jump number.

(1) The jump number of an interval order is at least max( o, o+ % ).

(2) A linear extension with at most o + % jumps can always be found. This

is an approximation ratio of %

(3) There is a polynomial algorithm which decides whether the jump number

is exactly «.

(4) It is NP-complete to decide whether the jump number is exactly o+ %.

Chapter 3 deals with the dimension of interval orders. The dimension of a partial
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order is the minimal dimension of an euklidean space that admits an embedding of
the order. We first use the concept of marking intervals to obtain easy proofs for
some logarithmic bounds. Afterwards, we introduce the step-graph of an interval
order. A partition of the arcs of the step-graph into semi-transitive classes leads
to a realizer. This observation is used to give more bounds, particularly, a doubly
logarithmic bound. Motivated by the proof of the lower bound for the dimension
of interval orders we, finally, study colorings and arc-colorings of digraphs and

step-graphs.

In Chapter 4 we directly deal with colorings, namely with the chromatic num-
ber of the diagram of an interval order. It is shown that 2 + logn colors always
suffice for diagrams of hight n. On the other hand, there are interval orders of
this hight, such that the diagram requires 1 + logn colors. The construction of
good colorings relies on the existence of certain sequences of sets of colors (o-
sequences). An upper bound for the length of a-sequences is given and we show
that a-sequences of this length correspond to level accurate Hamiltonian paths
in the Boolean lattice. In Boolean lattices of order < 9 we could construct such

paths.

Chapter 5 deals with the interplay of interval dimension and dimension. We
define a transformation P — Q between partial orders, such that the dimension
of Q and the interval dimension of P agree. We provide two interpretations of
this transformation, a combinatorial one and a geometrical one. These two in-
terpretations are used for several consequences: We relate the interval dimension
of subdivisions of an order P to the dimension of P. We give a new proof for the

comparability invariance of interval dimension.

Finally, in the last chapter, we deal with tolerance graphs. The complement
of a bounded tolerance graph has an orientation as partial order of interval di-
mension 2. This order admits a square representation while general orders of
interval dimension 2 require non-square rectangels in their representation. This
observation is the starting point for our invertigations about the relations be-
tween several classes of graphs. Some of our results are: If the complement of a
tolerance graph admits an orientation as partial order, then this order has inter-
val dimension 2. We give an example of an alternatingly orientable graph that is
the complement of an order of interval dimension 2 but is not a tolerance graph.

We also characterize the tolerance graphs among the complements of trees.
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1.2 Partially Ordered Sets

In this and the next section we introduce necessary terminology and basic results
about partially ordered sets, linear extensions and interval orders.

A strict partial ordering R on a (finite) set X is a binary relation on X such
that

(1) (x,x) is not in R for any x € X.

(2) if (x,y) and (y, z) are in R then (x, z) is in R.

Condition 1 is the irreflexivity of R and Condition 2 says that R is transitive.
Note, that as a consequence of the two conditions we obtain that R is antisym-
metric, i.e., if (x,y) € R and x # y, then (y,x) is not in R.

In some situations it is appropriate to use the idea of a reflexive partial
ordering. This is a relation R which is reflexive (i.e., (x,x) is in R for each
x € X), antisymmetric and transitive. The difference between a strict and a
reflexive ordering is normally clear from the context, and the word ordering may
refer to either kind of ordering.

A set X together with a partial ordering R on X is called a partially ordered
set and denoted by (X, R). We often abbreviate ‘partially ordered set’ as either
ordered set, order or poset. The commonly used notation for a partially ordered
set P is P = (X, <) in the case of a strict ordering, and P = (X, <) if the ordering
is reflexive. We then write x < y instead of (x,y) €< and y > x to mean x < y.
There is a further abuse of notation which should be mentioned. If P = (X, <) is
a poset we sometimes write x € P or (x,y) € P instead of x € X and x < y. The
comparability graph of a poset P = (X, <), denoted Comp(P), is a graph on X,
its edges are the comparabilities of P, i.e., {x,y} is an edge if either x < y or
y <x.

A binary relation R on a set X can be represented graphically by a directed
graph (digraph for short). We represent the elements of X as points and use
arrows (arcs) to represent the ordered pairs in R. When the binary relation
is a partial ordering the graphical representation can be simplified. Since the
relation is understood to be transitive, we can omit arrows between points that are
connected by a sequence of arrows. When the graphical representation is oriented
such that all arrowheads point upwards, we can even omit the arrowheads as the
example in Figure 1.1 shows. Such a graphical representation of a poset in which

all arrowheads are understood to point upwards is also known as the diagram
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(or Hasse diagram) of the poset.

diagram

Figure 1.1: A poset and its diagram.

Let P = (X, <) be a partially ordered set. A subset of X is called a chain if
every two elements in the subset are comparable. Note that if {x1,xa,..., %}
is a chain in P, then there is some rearrangement of indices, such that x;, <
X, < oo <X We refer to the number of elements in a chain as the length
of the chain. The height of an element x € P, denoted by height(x), is the
length of the longest chain x; < xy < ... < x, i.e., of the longest chain ending in
x. The height of a poset P, denoted height(P), is the length of a longest chain
in P. A subset of X is called an antichain in the poset P = (X, <) if no two
distinct elements in the subset are related. A pair x,y of unrelated elements is
also called an incomparable pair and denoted by x||y. The width of a partially
ordered set P = (X, <), denoted width(P), is the maximal size of an antichain in
P. For example in the poset P of Figure 1.1, {a,c, g}, {b,d, g} and {a,d} are
chains, and {c, d, e, f}, {a, f} and {b, e} are antichains, the height of ¢ is 2, while
height(P) = 3 and width(P) = 4.

Let P = (X,<) be a partially ordered set. An element x in P is called a
minimal element if there is no y with y < x, the set of all minimal elements
of P is denoted by Min(P). An element x in P is called a maximal element if
there is no y with y > x, the set of all maximal elements is denoted by Max(P).
If P is the poset of Figure 1.1 then Min(P) = {a, b, e} and Max(P) = {g,h}. An
element x is said to cover another element y, denoted x > y, if x >y and there
is no element z with x > z > y. Note that the covering pairs of an order P are
exactly the edges in the diagram of P.

As an illustration of the concepts of chains and antichains in partially ordered
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sets we present two theorems that show a close relationship between them.

Theorem 1.1 Let P = (X, <) be a partially ordered set. The height of P
equals the minimum number of antichains required to cover the elements

of P.

Proof. Let C be a chain of length height(P). Since an antichain may contain at
most one element of C, a covering of P by antichains requires at least height(P)
antichains.

For the converse we use induction on the height of P. Let height(P) = n
and M = Min(P). Clearly, M is a nonempty antichain. Consider now the poset
P’ = (X\ M, <) and note that height(P’) = n—1. By induction, P’ can be covered

by n — 1 antichains. Thus P can be covered by m antichains. O

The dual of this theorem is given next. It is known as Dilworth’s theorem.

Theorem 1.2 (Dilworth) Let P = (X, <) be a partially ordered set. The
width of P equals the minimum number of chains needed to cover the

elements of P.

Proof. Let A be an antichain of size width(P). Since any chain may contain at
most one element of A, a covering of P by chains requires at least width(P) chains.

For the converse we use induction on |X|, the number of elements in P. Let C
be a maximal chain of P. If C nontrivially intersects every maximum antichain,
then we remove C and use induction. Otherwise, there is a maximum antichain
A disjoint from C. Set AY = {x € X | x > a for some a € A} and AP = {x ¢
X | x < a for some a € A}. Note that C C AY would imply, by maximality of
C, that the minimal element of C is in A. Similarly, C ¢ AP. Hence |AY| < |X|
and |AP| < |X|. By induction AY and AP both can be covered with |A| chains,
which have the elements of A as maximal respectively minimal elements. At
these points the chains of AY and AP can be put together. Since A is maximal,
AU UAD = X and we obtain a covering of P by |A| chains. O

The probably most important family of partial orders are the Boolean lat-
tices. The Boolean lattice By is the set of all subsets of {1,2,...,n} ordered by
inclusion, i.e., A < B iff A C B. As a nice application of chain coverings we will
now derive another classical theorem of poset theory. It is known as Sperner’s

theorem.
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Theorem 1.3 (Sperner) Let A be an antichain of subsets of an mn-set.
Then

A= ()

Proof. We use induction on n. For n = 1 the claim is trivially true.

If C= (S <S2 <...< Sy is a chain of length { > 1 in Bn_;. Then
Cl=6S1<S<...<S<Su{n})and C? = (S;U{n} <Su{n}<...<
S¢_; U {n}) are chains in Bn. Now, let {Cy, Cy,...,Ct¢} be a minimal family of

n-1
)

chains covering Bn_;. By induction t = ([n_
2

W) Note that every chain C; has

to contain a set from the antichain of P‘T’ﬂfelement sets.

Now consider the collection C consisting of the chains Cil, C%, if the length of

Cj is at least 2, together with the chains Cj, if the length of C; is one. It can be

seen that C is a chain covering of By. Moreover, every chain in C contains a set
n

of size [5] Therefore, C consists of ([21) chains and and every antichain in B
2

has at most this size. O

A poset P = (X, <) which is a chain is called a linear order. Let L = (X, <)
be a linear order, we then write L = x;,Xs,...,Xn as an abbreviation for x; <
Xo <[ ... <[ Xn. An extension Q of a poset P = (X, <p) is a poset on the
same elements with x <g y whenever x <p y. Of special importance are those
extensions of P which are linear orders, they are called linear extensions.

A linear extension L = xi,Xy,...,xn of P = (X,<) induces a partition
L = Cy,Cy,...,Cip of P into chains. The chains in this partition are maxi-
mal segments of L such that the elements in the segment are pairwise comparable
in P, consequently maxC; £ minCj, for each i. The problem of minimizing the
number of chains in a partition induced by a linear extension is the jump number
problem. In the context of this problem it is useful to view linear extensions as
the result of an algorithmic process. A generic algorithm for linear extensions is
Algorithm 1.1.

Using appropriate specifications of the subroutine choose we may obtain
every linear extension of P as output of the algorithm. With the proof of the

next lemma we give an application of this freedom of specification.

Lemma 1.1 Let P = (X,<) be a poset and x|[y. Then there is a linear

extension L of P which takes x before y, i.e., x <[ y.
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Algorithm 1.1:

LINEAR EXTENSION

L=1] (* the empty list *)
for i=1ton do
choose( x; € Min(P) )

L=L +Xi
P =P\ {xi)
output L

Proof. Specify the choice in the following way: Choose any element distinct
from y, as long as Min(P) # {y}. Using this rule y is chosen exactly when
P={z € X |y <z} Since x is not in this set we will find x somewhere before y
in L. O

Note that the intersection of two partial orderings is again irreflexive and
transitive, that is a partial ordering. With this in mind we can state another

classical theorem.

Theorem 1.4 (Dushnik and Miller)

Every poset P is the intersection of its linear extensions.

Proof. This is an immediate consequence of Lemma 1.1. O

A family of linear extensions of P such that P is their intersection is called a
realizer of P. Note that for each incomparable pair x||y in P there must be two
linear extensions L, Ly in a realizer with x <p, y and y <g, x, we then say the
pair x,y is realized by Lj,Ly. The size of the smallest realizer of P = (X, <) is
called the dimension of P and abbreviated dim(P). Some authors prefer the more
precise names order dimension or Dushnik—Mailler dimension. Nowadays,
dimension theory is a strong branch in the theory of partially ordered sets. This

is documented by the recent book of Trotter [Tr], which gives a comprehensive

survey.
Let {Ly,..., Ly} be a realizer of an order P. With every x € P we associate
the vector (x',...,xX) € R¥, where x! gives the position (coordinate) of x in L;.

This mapping of the points of P to points of RX embeds P into the componentwise
ordering of R¥. Ore defined dim(P) as the minimum k such that P embeds into
R¥ in this way. Since the projections of such an embedding on each coordinate

yield a realizer, the two definitions are equivalent (see Figure 1.2).
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Figure 1.2: A 2-dimensional poset P and an embedding of P in the plane.

Lemma 1.2 A poset P = (X, <) is two dimensional iff there is a mapping
of the elements x € X to intervals Iy on the real line, such that x <y iff

Ix C Iy.

Proof. We first claim that there is no loss of generality if we only deal with fami-
lies (Ix)yxex of intervals containing a common point. To see this, note that for any
positive number M, we may increase each interval in length by M symmetrically
about its center, without affecting the containment relation.

A geometric argument then proves the lemma. Let v € R be a point with r €
Nxex Ix. Take 1 as pivot and turn the left side of the axis up, thus transforming
the intervals into hooks. The construction is illustrated in Figur 1.3. It should

be clear how to carry out the converse construction. O

1.3 Interval Orders

Let (Ix)xex be a family of intervals on the real line. This family may be used to

define a graph and two partial orderings on X.

intersection graph: Edges correspond to pairs of intersecting intervals. That
is G = (X,E) is the intersection graph of the family if E = { {x,u}
IxN Iy #0}. A graph obtained in this way is called an interval graph.
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Figure 1.3: A two dimensional order in two representations.

containment order: The ordering on X is given by proper containment, i.e.,
x <y iff [y C Iy. As we have seen in Lemma 1.2, the class of posets

obtained in this way is exactly the class of 2-dimensional orders.

visibility order: Here we put x < y if, when looking to the right, every point
of Ix can see every point of Iy. In other words x <y iff Iy is entirely to the

left of Iy. A partial order obtained in this way is called an interval order.

In each of the three cases the collection (Ix)ycx is called an interval rep-
resentation. In many arguments we will have to refer to the endpoints of the
intervals corresponding to the elements x € X. To simplify these references let us
adopt the convention that [ax, bx] is the interval of x, i.e., ayx is the left and by
is the right endpoint.

From the definitions, we immediately obtain.

Lemma 1.3 G = (X,E) is an interval graph iff it is the cocomparability
graph of an interval order. That is, there is an interval order I = (X, <)
such that {x,y} € E iff ||y in P.

With Pred(x) = {y € X: y < x} we denote the set of all predecessors of x in
P = (X, <). Dually, Succ(x) = {y € X: x <y} denotes the set of all successors
of x.

There are several important characterizations of interval orders, we combine

some of them in the next theorem.
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Figure 1.4: An example of an interval order with an interval representation. In
most of our figures we indicate the intervals by rectangles.

Theorem 1.5 (Interval Order Characterization)
Let P = (X, <) be a partial order. The following statements are equivalent:

(1) P is an interval order.

(2) P does mot contain a 242 as induced suborder, that is, a subset
{u,v,x,y} of X with u < v, x <y and no more comparabilities (see
Figure 1.5).

(3) For all x,y € X the sets of predecessors are related by Pred(x) C
Pred(y) or by Pred(x) D Pred(y), i.e., the sets of predecessors are
linearly ordered with respect to inclusion.

(4) The sets of successors are linearly ordered with respect to inclusion.

Proof. First, let us inspect that an interval order can not contain a 2+2. Note
that in an interval representation of a 2-chain x < y we necessarily have by < ay.
Now let u < v and x < y be two 2-chains and consider the ordering of the
numbers by, ay, bx and ay. From by < ay and bx < ay we conclude that either
by < ay or by < ay and hence u < y or x < v. In any case the set {u,v,x,y}
can not induce a 24-2.

To see that (2) implies (3) suppose that (3) does not hold. Then we find v
and y such that there are elements u € Pred(v) and x € Pred(y) with x ¢ Pred(v)
and u ¢ Pred(y). The 4 element set {u,v,x,y} is thus recognized as a 2+2.

Essentially the same argument can be used to show that (4) implies (3). If

(3) does not hold we find a 242 with chains u < v and x < y. The sets Succ(u)
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and Succ(x) then are not related by inclusion. The dual argument shows that (3)
implies (4).

We finally prove that (3) implies (1). Let Py C P, C ... C Py be the chain of
sets of predecessors. For x € X let ay € {1,...,u} be such that Pred(x) = Pq,
and let by be the least index with x € Py, if such an index does not exist, i.e.,
if x € Max(P), we define bx = p + 1. Note that since x ¢ Pred(x) we always
have ay < bx. We claim that the open intervals (ax,bx) for x € X represent
P. If x < y then x € Pred(y), hence by < ay and the interval of x precedes
the interval of y. On the other hand, if x||y then x ¢ Pred(y) implies ay < by
and y ¢ Pred(x) implies ax < by. Therefore, the intervals of x and y intersect.
This representation of an interval order by open intervals with integer endpoints

is called the canonical representation. O

Of course, if we would have applied the dual construction to prove that (4)
implies (1), the resulting interval representation would be the same, i.e., the
canonical representation. As a consequence we obtain that the number of different
sets of predecessors agrees with the number of different sets of successors, this
number, denoted by u, is called the magnitude of the interval order.

If we replace the open intervals (ax,bx) of the canonical representation by
the (possibly degenerate) intervals [ax, by — 1] we obtain a closed representation
with endpoints in {1,..., u}. Therefore, every finite interval order has open and
closed representations. In fact the magnitude u of an interval order I is the least
positive integer n for which I has a closed representation with integer endpoints
in {1,...,n}.

With an interval order I = (X, <) we can associate two special linear orderings.
In the (increasing) Pred—order we have x < y iff Pred(x) C Pred(y) or Pred(x) =
Pred(y) and Succ(x) C Succ(y), elements with equal holdings, i.e., elements with
identical sets of predecessors and of successors, are ordered arbitrarily. In the
(decreasing) Succ-order we have x < y if iff Succ(y) C Succ(x) or Succ(y) =
Succ(x) and Pred(y) C Pred(x), elements with equal holding are again ordered
arbitrarily. Note that Pred—order and Succ—order are linear extensions. In general,
the Pred—order of I and the Succ—order of I need not be the same.

An interval order I = (X, <) is called a semi-order iff I has an interval
representation ([ax, bx])xex such that by — ax = 1 for all x € X. We close the

introduction with mentioning the characterization theorem for semi-orders.
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Figure 1.5: The partial orders 242 and 143

Theorem 1.6 (Semi-Order Characterization)

Let I = (X,<) be an interval order. The following statements are equiva-

lent:

(1) T is a semi-order.

(2) T does mot contain a 143 as induced suborder, that is, a subset

{u,v,w;x} of X with u < v <w and no more comparabilities (see
Figure 1.5).

(3) The Pred—order and the Succ-order of I are identical.

References for Chapter 1

IAN ANDERSON, Combinatorics of Finite Sets, Oxford University Press,
1987.

P.C. FisuBURN, Interval Orders and Interval Graphs, Wiley, New-York,
1985.

R.H. MOHRING, Algorithmic aspects of comparability graphs and inter-
val graphs, in . Rival (ed.), Graphs and Order, Reidel Publishing Company,
1985, 41-101.

R.H. MOHRING, Computationally tractable classes of ordered sets, Al-
gorithms and Order, in . Rival (ed.), Reidel Publishing Company, 1989,
105-193.

W.T. TROTTER, Combinatorics and Partially Ordered Sets: Dimen-
sion Theory, John Hopkins Press, 1991.

D.B. WEsT, Parameters of partial orders and graphs: packing covering
and representation, in . Rival (ed.), Graphs and Order, Reidel Publishing
Company, 1985, 267-350.



Chapter 2

The Jump Number of Interval
Orders

2.1 Introduction and Overview

Let L = Xq,X2,...,Xn be a linear extension of P. Two consecutive elements
Xi,Xj,; of L are separated by a jump iff x; is incomparable with xj,; in P;
sometimes we call this the ‘jump after x;’. If x; < xi,, the pair x;,x;,, is called
a bump. The total number of jumps of L is denoted by sp(L) or s(L). The jump

number s(P) of P is the minimum number of jumps in any linear extension, i.e.
s(P) = min{sp(L) : L is a linear extension of P}

A linear extension L of P with sp(L) = s(P) will be called optimal.

The jump number has been introduced by Chein and Martin [CM]. The
minimization problem, ‘determine s(P) and find an optimal linear extension’, has
been shown to be NP-hard even for bipartite orders (Pulleyblank [Pu], Miiller
[Mii]). Nevertheless, efficient methods for jump-minimization have been found
for large classes of partially ordered sets such as N-free orders (Rival [Ri]), cycle-
free orders (Duffus, Rival, Winkler [DRW]) or orders with bounded decomposition
width (Steiner [St]). In this chapter we consider the jump number problem on
interval orders.

In the next section it is shown that the jump number problem can be reduced
to a choice problem: find an appropriate first element for an optimal lin-
ear extension. We then give some algorithms using different choice rules. In

particular the greedy rule and some derivates of the greedy rule are investigated.

17
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The third section deals with lower bounds for the jump number of interval
orders. These bounds are derived from a so-called auxiliary list, which is a rep-
resentation of interval orders which is close to a linear extension.

The auxiliary list is used in section four for the analysis of two algorithms.
First we study the T-greedy algorithm (Felsner [Fel]), which has a performance
ratio of 3/2. That is, if P is an interval order and L is the linear extension of
P generated by the T-greedy algorithm, then s(P) < %SP(L). Approximation
algorithms with the same performance bound have recently been proposed by
Systo [Sy] and Mitas [Mi2].

We then give an algorithm based on bipartite matching which recognizes defect
optimal interval orders. Mitas [Mil] obtained the first polynomial recognition of
defect optimal interval orders. Earlier, a subclass of defect optimal interval orders
has been characterized by Faigle and Schrader [FS2].

In general, approximation algorithms are the best we can hope for. This
results from the NP-competeness of the jump number problem on interval orders
(Mitas [Mi2]). In section five we give a modified proof of her result, which nicely
fits into the theory developed before.

A different light is shed on the complexity of the jump number problem on
interval orders by a recent result of de la Higuera [Hi]. He shows, that the jump

number problem is polynomial on the class of semi-orders.

2.2 Greedy Linear Extensions and Starting El-
ements

In the context of the jump number problem it is useful to view linear extensions
as being constructed by the generic algorithm, (Algorithm 1.1 on page 11). Note,
that the choice made for the i'" element determines whether the pair x; |, x;
is a jump or a bump. This suggests the idea of guiding the choices, such that,
elements producing bumps are preferred. This idea leads to the greedy algorithm,
Algorithm 2.1.

Linear extensions constructed by the greedy algorithm are called greedy linear
extensions. Part of the interest in greedy linear extensions has its origin in the

following theorem.
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Algorithm 2.1:

GREEDY ALGORITHM

L=T[]
for i=1ton do
if Min(P) N Succ(x;_;) # 0 do
choose( x; € Min(P) N Succ(xi_) )
else
choose( x; € Min(P) )
L=L+x

P =P\ {x}
output L

Theorem 2.1 (Rival, Zaguia)

Every poset P has a greedy linear extension which is optimal.

Proof. Call an element x; nongreedy in L = x1,Xs,...,xn, if for Q = P\
{x1,%2,...,%{_1} we have Min(Q)NSucc(x;_;) # 0 and x; & Min(Q)NSucc(x;_;).
Note, that linear extensions without nongreedy elements are exactly the greedy
linear extensions.

Now assume that P has no optimal greedy linear extensions. For a linear
extension L of P let ng(L) be the least index of a nongreedy element in L (if L is

greedy let ng(L) = n + 1). Our assumption implies
r = max{ng(L) : L optimal } <n.

Now let L = yi,Ya,...,Yn be an optimal linear extension with ng(L) = r. Define
L' =vy!,v), ..., U}, as follows.

e yi=yjfori<r

e Choose z € Min(P\ {y1,...,Yr_1}) N Succ(yr_1) and let Yy} =z

o Ifz=yp thenyli=y;, forr<i<k

e yi=yjfori>k

The linear extensions L and L' only differ in three consecutive pairs, namely,
(Yr—1,Yr), (Yk_1,Yx) and (Y, Y1) have been replaced by (yr_1,2), (z,yr) and
(Uk—1)Uk41)- At least two of the pairs in L are jumps, the pair (yr_1,yr) and
since Yy is minimal in P\ {y;,...,yr 1} also the pair (yx_;,yx). On the other
hand at least the pair (yr_1,z) in L' is a bump, therefore, s(L') < s(L), and L’
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is optimal. But ng(L') > ng(L) = r, contradicting our assumption and, hence,

proving the theorem. a

Rival [Ri] proved that any greedy linear extension of P is optimal if P is an N—
free order. Since then a great amount of work has been invested into investigations
of the interplay between greedy and optimal linear extensions. Ghazal et al.
[GSZ], for example, characterized greedy interval orders, i.e., interval orders with
the property that any optimal linear extension is greedy.

From the algorithms of this section and Theorem 2.1 we conclude that the
optimality of a linear extension only depends on a good choice of x € Min(P).
Faigle and Schrader [FS1] defined the set Start(P) C Min(P) of starting elements
of P as the set of good choices, i.e., Start(P) = {x € P : x is the first element in
some optimal linear extension of P}.

The following two lemmas are valid for the starting elements of arbitrary
partial orders. If P = (X,<), we will use the abbreviation Pq to denote the
induced order on the set X\ {a}.

Lemma 2.1 If a € Min(P) and s(P) = s(Pq) + 1, then a € Start(P).

Proof. Take any optimal extension L' of Pq. Since a is a minimal element of P
the concatenation L = a + [’ is a linear extension of P. Counting jumps proves
the optimality of L. a

Lemma 2.2 If a € Start(P) and s(P) = s(Pq), then a has a successor which
is a starting element of P, i.e, Succ(a) N Start(Pq) # 0.

Proof. Let L = a+ b+ [’ be any optimal linear extension of P starting with
a. If b & Succ(a), or equivalently if a,b is a jump, then s(Pq) < sp (b+L') =
sp(L) — 1 = s(P) — 1. This would contradict s(P) = s(Pq), so b € Succ(a). The
equalities s(Pq) = s(P) = s(L) = s(b + L') show the optimality of b + L’ for Pg,
so b € Start(Pg). O

The next algorithm (Algorithm 2.2) is very similar to the greedy algorithm.
The starty algorithm differs, however, from the former in that it never fails in

generating optimal linear extensions.

Lemma 2.3 If L is the linear extension of P, which is generated by the

starty algorithm, then sp(L) = s(P), i.e., L is optimal.
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Algorithm 2.2:

STARTY ALGORITHM

L=[]
for i=1ton do
if Start(P) N Succ(xi_;) # 0 do
choose( x; € Start(P) N Succ(x;_;) )
else
choose( x; € Start(P) )
L=L+x

P =P\ {x}
output L

Proof. The proof is by induction on |P|. First note that if L = a+ L’ is generated
by the starty algorithm with input P, then with input Pq the starty algorithm
produces L', w.r.t appropriate choices. Comparing the jump number of L and L'
we find two possibilities:

e If s(L) = s(L'), then the trivial inequality s(P) > s(Pq) and the optimality
of L' for Py imply the optimality of L.

e Otherwise, i.e., if s(L) = s(L') + 1, there is a jump after a, hence Succ(a) N
Start(Pq) = 0 and, by Lemma 2, s(P) = s(Pq) + 1. Again the optimality of L is
deduced from the optimality of L. O

Corollary. The NP-hardness of the jump number problem implies that, in gen-

eral, the identification of starting elements is NP-hard, too.

We now turn to interval orders. Here we have slightly more information on
starting elements than given in Lemmas 2.1 and 2.2. From the characterization
theorem for interval orders (Theorem 1.5), we know, that in an interval order
[ = (X,<) the sets of successors of any two elements x,y € X are related by
either Succ(x) C Succ(y) or Succ(x) O Succ(y). In the sequel we will often
refer to the decreasing Succ—order and especially to the minimal elements in the

decreasing Succ—order, therefore, we introduce a new notation SMin(I) = {x €
X': Succ(x) D Succ(y) for all y € X}.

Lemma 2.4 (Faigle, Schrader) Let I = (X;<) be an interval order. If
a € Min(I), then a € Start(I) iff a € SMin(I) or s(I) = s(Iq) + 1.

Proof. In an interval order there can be at most one starting element with
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s(I) = s(Iq), since only for the Succ-maximal element, which has to be unique
in this case, there may exist b € Succ(a) N Min(Iq) as required (see Lemma 2.2).
Any other a € Start(I) thus fulfills the equation s(I) = s(Ig) + 1.

So it only remains to prove that every Succ-maximal element a is a starting
element. First note that if L = Xxy,%,...,Xn is optimal and a = x;, then the
set {x1,...,x{} is an antichain in I, since Succ(x;) C Succ(a) for j < i. Let
Xk be the first element of L with x; > x;, then k > i and g : L — ¢(L) =
X9 ...Xk_1X1Xk - . - Xnn 1S an operator, which does not increase the number of jumps.

The linear extension g (L) is optimal and starts with a. O

The preceding lemma motivated Faigle and Schrader [FS1] to offer the fol-
lowing greedy-heuristic for jump minimization in interval orders: Construct a
greedy linear extension L extending the decreasing Succ-order that omits jumps
whenever possible. We again present an algorithmic version of this approach
(Algorithm 2.3).

Algorithm 2.3:

FAIGLE SCHRADER HEURISTIC

L=[]
for i=1ton do
if Succ(xi_,) N SMin(I) # 0 do
choose( x; € Succ(xi_;) N SMin(I) )
else
choose( x; € SMin(I) )
L=L+x4
=1\ {x;)

output L

Let L be constructed by the previous algorithm. Faigle and Schrader [FS1]
asserted sy(L) < 2s(I). The factor of two, however, is not really correct. Consider

this interval order:

L d [ 9 J[i]
L b [ e J[ h |
[all ¢ J[_f |

The linear extension of I constructed by the previous algorithm has 7 jumps,

it is a|b|c|d|e|f|gi|h. The optimal linear extension of I only has 3 jumps, it is
ad|be|cfh|/gi. However, with the methods introduced in the next two sections

the real factor of their heuristic is easily seen to be less than 3.
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2.3 Bounds for the Jump Number of Interval
Orders

The main ‘tool” in this section will be the auxiliary list L(I) of an interval order
[ = (X, <). This list is an almost representation of I, i.e., the list encodes almost
all the information required to generate the canonical representation of I. In
fact, sometimes we can not recover the left endpoint of an interval. For the jump
number problem, however, the list L(I) contains all the relevant information.
That is, if two interval orders I and ] have isomorphic lists then their jump

number is the same. We build up the list L(I) of I in two steps:

1. Take the elements of I in decreasing Succ—order (see page 15). We thus

obtain a linear extension Ay = X1,X9,...,Xn.

2. We now include some additional information in this list. First observe that

for every pair xi,xi,; in the list one of the following three cases applies.

(a) Succ(x;) = Succ(xq, ).

Call this an o-jump.

(b) Succ(x;) # Succ(xq,) and xj,, € Succ(x;).
This are the bumps of Aj.

(c) Succ(xi) # Succ(xiy;) and xq,; & Succ(xq, ).
Call this a -jump.

At every PB-jump (xq,%;i,;) of Ap we now fix ‘a box containing’ the set
N = Succ(xj) N Min({xi;,...,xn}). This gives the list L(I).

The auxiliary list then looks like
L(I) = L'+ Oy, +L2+DN2+...+LB+DNB + LB+

Example.
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Given this interval order I, we obtain L(I) = alq|bUq¢|cOg|d|eh|f/g and Ay (I) =
a/blc|d|eh|f|g. As indicated by the rules there are 6 jumps, 3 of them are counted

by .

Remarks.

1. Note that if xj, xj,; is a B-jump and we fix X1, X2, ..., x; then the greedy al-

gorithm would choose as the i+1% element some member of N = Succ(x;) N
MIn({XH_l, P )X'Tl})

2. The List L is uniquely defined up to interchanges of elements having the

same sets of predecessors and successors.

3. The linear extension A could also be generated by the Faigle-Schrader

heuristic.

4. The N; are pairwise disjoint, i.e., an element Yy may appear at most once

in one of the sets Succ(xj) N Min({X{,,...,Xn}).

5. If y € Ny, for some 1i, then y is a minimal element of the remaining poset,

hence in Ay there must be a jump just before y.

6. There is another characterization of the I-invariant « of o-jumps in Ap.
Namely @« = n — u, where pu denutes the magnitude of the interval order 1.

An equality involving & and $ is p = n — & — bumps(Ap).

To investigate the performance of algorithms for our problem, it turned out
to be useful, to investigate the effect of the choices made on « and 3. More
precisely, if a minimal element x € I has been chosen then the & and 3 of the
lists L(I) and L(Iy), respectively, are to be compared. In a first application of this
technique we will derive lower bounds for the jump number from the list version
of the starty algorithm (Algorithm 2.4). We will also refer to this algorithm as
‘list starty algorithm’.

Lemma 2.5 The linear extension Ag = Ag(L(I)) generated by the list

starty algorithm is an optimal linear extension of I.

Proof. With reference to Lemma 2.3, it suffices to show that there is a run of

the starty algorithm with input I that generates Ag(L(I)). Let Ag = x1Xa...%Xn,



2.3. BOUNDS FOR THE JUMP NUMBER OF INTERVAL ORDERS 25

Algorithm 2.4:

STARTY ALGORITHM (LIST VERSION)

L=L(I)
while there is a first O in L do
L=L+0ON+L (* decompose L *)
J={x:xel}
if NN Start(]) # 0 do
choose( n € NN Start(]) )
L=L+n+L(Jn)
else
L=L+1L
As =L
output Ag

the element x; is in SMin(I), so by Lemma 2.4 we know x; € Start(I), and x; is
a suitable first choice for the starty algorithm.

Suppose the starty algorithm has chosen x; ...x;, the first i elements of Ag.
Let ] = I\ {x1,...,%x{}. If x{;; is in SMin(]), then the starty algorithm may
choose xi ;. This is due to Lemma 2.4. Otherwise x;,; will be an element of
N = Succ(x;) N Min(J). In this case our algorithm found the decomposition
X1...x{ + On + L(J) and selected x;, as a starting element. Hence, again, x;,

may be chosen by the starty algorithm. O

As announced before, we now look for an expression of s(Ag) in terms of
and 3. We begin with the introduction of some new variables. Let ¢ count the
number of times the while loop is repeated in a run of the list starty algorithm,
i.e., ¢ is the number of boxes the algorithm finds on its way through the list L.
Let ¢y count the number of times the condition N N Start(J) # 0 appears false,
i.e., cg is the number of boxes kept empty.

We now turn to the remaining ¢ — cq boxes, i.e., to the boxes filled with some
starting element n € N. In each of these cases the tail of L, i.e., L' = L(]) is
replaced by the new list L(Jn). A close look at the way auxiliary lists are built
enables us to characterize the transition L(J) — L(Jn). Since n € Min(]), but
n ¢ SMin(J), we know that in L’ the element n is preceded by an element x that
is incomparable with n. If Succ(x) # Succ(n), i.e. Succ(x) D Succ(n), then in L’

we find a box between x and n, and possible patterns for the transition are:
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(1) XON; [ nOn,, [y = xy

(2) xOng [ BN 1Y = xONNg,, 1Y
(3) xOn Iny = xy

(4) xOn [nly  — xOn|vy

Remark. These transitions correspond to:
(1)  Succ(n) D Succ(y), vy ¢ Succ(n), y € Succ(x).
(2)  Succ(n) D Succ(y), y ¢ Succ(n), y & Succ(x).
(3)  Succ(n) D Succ(y), vy € Succ(n).
(4)  Succ(n) = Succ(y).

Note that in the auxiliary list we gave preference to the element with maximal
set of predecessors in SMin. In the last case above we thus obtain Pred(n) D

Pred(y) from the fact that n precedes y in L. This excludes the transition
XOnInfy = xy
Now let oy, 31 be the jump counters for Ap (L+L(])), and let &y, B2 be those

for Af (L+n+L(Jn)). Depending on the pattern of the transition L(J) — L(Jn)
we find

Xy = 0 Bo=p1—2 in case (1)
Ky = X Bo=H1—1 in cases (2) and (3)
o =0 — 1 Ba =B in case (4).

If Succ(n) = Succ(x) then the jump x|n between x and n is counted by «.
When n is pulled forward, then, with respect to the rest of the list, x takes the
role of n. Thus the new jump counters are

oy =0 — 1 Bo = By in case Succ(n) = Succ(x).
Now partition the ¢ — cq starting elements n, which have been pulled forward

by the algorithm, according to the type of transition L(]J) — L(Jn).

Let ¢, count the transitions of type (1)
cy count the transitions of type (2) and (3)

c3 count the remaining transitions.

With these definitions the validity of the following equations is obvious.

C = cp+cp+cotecs (2.1)
B = c+2c1+cy (2.2)
= ¢o+3ci +2co+c3 (2.3)

At this point we can express s(I) = s(Ag) in terms of & and the c;.
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Lemma 2.6 The jump number of Iis s(Ag) = o+ ¢y + ¢y + cs.

Proof. In L(I) we distinguish between the jumps counted by & and those counted
by B. If we transform L(I) step by step to Ag, i.e., for each of the c repetitions
of the while loop in the list starty algorithm we consider Ay and observe, which
jumps disappear. We see that disappearance only happens to jumps on the right
side of the current box. Since number and type of disappearing jumps depend on
the transition L(J) — L(Jn) only, they are counted by the c;. Altogether we note
the disappearance of c3 jumps counted by & and 2c; + ¢c5 jumps counted by f3.
Hence s(Ag) = o+ B — 2c; — ¢y — c3, insert the expression of 3 given in

Formula 2.3 to proof the claim. O
We are ready for the bounds now.
Theorem 2.2 If I is an interval order then s(I) > max{ o, &+ % }

Proof. All the c; are nonnegative, therefore, the first bound s(I) > « is an
obvious consequence of Lemma 2.6.

Since ¢g > 0 and ¢y > 0 we may relax Equation 2.3 to B < 3(cg+c1+c2)+cs.
With ¢3 < o we obtain 3 < 3(co+c;1+c2)+ &, which is equivalent to co+cq+cy >
(B — «)/3. This together with Lemma 2.6 yields s(I) > o + %. O

2.4 An Approximation Algorithm

We start this section at the same point where the last one did end, with some
calculations involving « and . Our first aim will be an algorithm with a 3/2
approximation factor. Therefore, it will be useful to have a nicely expressible

lower bound for 2s(I).
Lemma 2.7 2s(I) > 3max{et, ot + %} > oc—l—%

Proof. In view of Theorem 2.2 we only have to consider the second inequality.
We distinguish two cases.
If « < B then

If p < o then
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For reasons of an easy analysis, we first state the next algorithm in its list

version (Algorithm 2.5).

Algorithm 2.5:

T-GREEDY ALGORITHM (LIST VERSION)

L=1L(I)

while there is a first O in L do
L=L+0On+L (* decompose L *)
J={x:xel;}
choose( ne N )
L=L+n+L(Jn)

Atg=1L

output A1g

When comparing this algorithm with the list starty algorithm we note the

following.
e Both algorithms start with L(I) and transform this list step by step into
their output.
e In each iteration of both algorithms some tail L(J) of L is replaced by L(Jy).
e The possible transitions L(J) — L(Jn) are the same in both algorithms, i.e.
those of the previous section.

Introducing the transition counters c; we can thus express s(Ayg) in terms of «

and some c;.
Lemma 2.8 The jump number of Ayg is &+ ¢y + co.

Proof. The proof is almost the same as for Lemma 2.6. The only difference is

that now each box found is also filled up, hence cq = 0. O

Theorem 2.3 s(Ayg) < 3s(I).

Proof. In view of Lemma 2.7 and the previous lemma we only have to show that
x+c;+co < ax+ % Since 3 = 3¢y + 2co + c3 (see Equation 2.3) and the c; are

nonnegative this is obvious. O
It should be evident that the T-greedy algorithm can as well be stated without

reference to the list L(I). For sake of completeness we also state this version
(Algorithm 2.6).



2.5. DEFECT OPTIMAL INTERVAL ORDERS 29

Algorithm 2.6:

T-GREEDY ALGORITHM

L=T[]
for i=1ton do
if Min(I) N Succ(x;_;) # 0 do
if SMin(I) N Succ(xi_;) # 0 do
choose( x; € SMin(I) N Succ(x; ;) )
else
choose( x; € Min(I) N Succ(xi_;) )
else
choose( x; € SMin(I) )
L=L+ Xi

[=T\ {xi}

output L

2.5 Defect Optimal Interval Orders

The defect of a partially ordered set has been introduced in (Giertz, Poguntke
(GP]) as def(P) = |P| — rank(Mp) where Mp is the incidence matrix of P, i.e.,
Mp(x,y) = 1 iff x <p y, otherwise Mp(x,y) = 0. The main result of [GP] is

Theorem 2.4
s(P) + 1 < def(P)

Remark. Orders with equality, i.e., with s(P) + 1 = def(P), are called defect
optimal. We now give a short and simple proof for this bound (see [Fe2]).

Proof. Let L be a jump optimal linear extension of P, i.e., s{ (P) = s(P). Order
the rows and columns of Mp according to the order of L. Then Mp is an upper
diagonal matrix with a zero diagonal. On the super-diagonal of Mp we find a 1
for each bump and a 0 for each jump (xj,xj,;) of L (see Figure 2.1). Delete the
first column and the last row of Mp (both have all entries 0) as well as all the
rows and columns corresponding to a 0 on the super-diagonal. The matrix Mp
thus obtained is an upper diagonal. All the entries on the diagonal of M} are 1,
hence, rank(Mp) = size(Mp) = |P| — s(P) — 1. With rank(Mp) > rank(Mp) we
have finished the proof. O

If T is an interval order then we may arrange the rows of My in Succ-order

and the columns in Pred—order. This leads to a staircase shape of M (see Figure
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Figure 2.1: An interval order I with its incidence matrix M. Rows and columns
of M are arranged according to an optimal linear extension.

2.2). In this representation M is easily seen to be of rank pu— 1, where u denotes
the magnitude of I. Therefore, the defect optimal interval orders are exactly the
interval orders with s(I) = |I] — p = « (the second equality can be found in a

remark on page 24).

acdbfe
al0 00000
cl0O000O00O0
dl0o 00001
b0 00011
flo0 00011
el001111

Figure 2.2: The ‘staircase’ shaped M of the order given in Figure 2.1.

From Lemma 2.6 we know that for s(I) = « we need ¢y = 0, ¢; = 0 and

co = 0 in a run of the list starty algorithm. This means that
1. All the boxes found are filled.

2. All the transitions L(J) — L(Jn) are counted by cs.
Lemma 2.9 A transition L(J) — L(Jn) is counted by c3 iff w(Jn) = u(J).

Proof. Let the elements x, n,y appear consecutively in L(]J). With the transition
table it is easy to verify that a necessary and sufficient condition for the transition
L(J) = L(Jn) to be counted by cj3 is that either Succ(n) = Succ(x) or Succ(n) =
Succ(y). In both cases w(Jn) = u(J).
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If the transition L(]J) — L(Jn) is not counted by c3, then, Succ(x) # Succ(n) #
Succ(y). In L(I) the elements are in decreasing Succ—order, so the element n
contributes an indentation in the staircase shape of the incidence matrix. We

conclude that in this case p(Jn) < p(J). O

We now reformulate the above conditions. In a run of the list starty algorithm

we arrive at s(Ag) = « exactly if the following holds.

(1) All the boxes found are filled.

(2) Fori=1,...,ulet S; be the i'" largest set of successors of elements of I. In
each set Ty = {x : Succ(x) = S;} there is at least one element that is not

the n of any transition made by the algorithm.
We now construct a bipartite graph G = (A, B; E) as follows:

e As the vertices of A take the T; fori=1,... .

e There are two kinds of vertices in B.
Firstly, there are [Nj| — 1 copies of each set Nj associated to a box.

Secondly, we take those elements of I which do not occur in any Nj;.

e Let (a,b) be an edge of G
if a = T; and either b is a copy of some Nj with T; N N; # ()
or b is a vertex of P and b € Tj.

This construction is illustrated in Figure 2.3.
We now show how to reduce the question whether an interval order I is defect

optimal onto a matching problem in G.
Theorem 2.5 The jump number of I s « iff G has a matching of size p.

Proof. Suppose s(I) = o then there is a run of the list starty algorithm satisfying
conditions (1) and (2) above. By condition (2) we find an x; in each T; which
has not been the n of any transition. If x; is a vertex of the second kind in
B then take the edge (T;, xi) into the matching. Otherwise x; is an element of
some Nj use (T;, b) with a still unmatched copy b of Nj for the matching. This
never causes trouble since exactly one n € Nj gave rise to a transition, for the
remaining elements of Nj the |N;| — 1 copies of Nj suffice. Each of the u many
T; is finally matched.
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[c ][9]
[a][ e [n]

L(I) = aOc ¢ ¢|bd|cOg|eh[f|g
[ b ][d]

A a b
B:(l b

Figure 2.3: An interval order and the associated bipartite graph
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Now assume that we have found a matching M C E of size pin G. We use the
matching to construct a reduced list Lg. First we label the edges of the matching
with elements of P. The label A(a, b) of an edge (a,b) is

(1) b if b is a vertex of P

(ii)some element of T; N N; if a = T; and b is a copy of N;.

Define

N_]- = N;j \ {A(a,b) : (a,b) is a matched edge and b is a copy of N;},

Now let Lg be obtained from L by exchanging each box Oy by Ogy. If we enter
the list T-greedy algorithm with Ly then condition (2) is satisfied since each
set T; contains a element x; which does not appear in any N of Lg. It remains
to show that we can fill all the boxes to satisfy condition (1). This can be done
since |Nj| > 1 for all j. O

2.6 The NP-Completeness Proof

In Theorem 2.2 we have established two lower bounds for s(I). In the last section
we saw that the question ‘s(I) = « 7" can be decided in polynomial time. In
contrast we will now prove that the decision ‘s(I) = & + @ 77 is NP-complete.
Again, we start with extracting necessary and sufficient conditions for equality

from the proof of Theorem 2.2.
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Lemma 2.10 If s(A) = a + @ then ¢ =c2 =0 and c3 = «.

Proof. See the proof of Theorem 2.2. In addition we obtain ¢; = %. O

The result will be proved by a transformation from the NP-complete problem
(X3C) exact cover by 3-sets. For background information on the theory of NP-
completeness and the X3C Problem, we refer to Garey and Johnson [GJ]. The
transformation is due to Mitas [Mi2]. We start with a presentation of the X3C
Problem.

Exact COVER BY 3-SETS

Instance: A set Y of size 3q for some positive integer q together with a family F
of 3-element subsets of Y.

Question: Does F contain an exact cover of Y, that is a subset F C F of q pairwise

disjoint subsets of F?

We now introduce a construction which associates an interval order Iy f) with
a given instance (Y, F) of X3C. Let (Y, F) consist of

Y={yi,...,un}, n=3q,
F={Ty,...,Tm}, L, CY, |T;| = 3.

The order Iy will consist of a basis representing the base-set Y together
with a T-segment for each T € F. The interval representation of Iy is an open
representation, i.e, a representation by open intervals.

The basis B is a width 3 interval order consisting of 6 frame intervals ay, ..., ag
and an interval yj for each yy € Y. The intervals are:

a; =[0,1] a2=1[0,2] a3=]10,3]
Yk = [k, k+ 3]
a=Mn+1n+4 a=Mn+2n+4 a=Mn+3n+4

The T-segment TS; for T; € F consists of 9 intervals. The body of the T-

segment consists of 6 short intervals b}), o ,b}l and ci, namely,

bl =[n+5i+j—-2,n+5i+j] and c'=[n+50+3,n+5i+4].
The body of the T-segment is connected with the basis by three interval, t}, t}
and ti, representing the elements of T;. If T; = {tintig tis) and t5 = y%j then
the starting points of t} and 99 coincide as well as the ending points of t} and

b}, that is
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th= [kj, n+5i+jl.
Example. For Y = {yi, 5 5 v, 5, U} and F = {{y}, u5, u6}, {3, u5, U5}
the associated interval order is shown in Figure 2.4.

[a)[ v J[ wa ][ @ Jibi by e[ BT ][ BF ][]
[a ][ ve ][ vs J[as ] by ibi

Figure 2.4: The intervals of the first T-segment are ‘dashed’

As a useful consequence of this construction, we can obtain the list L(Iy))
by concatenating the list L(B) with the lists L(TS;). To give L(B) in a closed
form we need a further definition. Let

Ny = {yk}U{t} Pty = Ui )
We then have

L(B) = aiON,|as0n,las0On,|yiON,[y20N,] - -
.- Yn-sHN, ‘Un—QD{(L;} ‘Un—lD{a5} lunas|as|ay (2.4)
L(TS;) = D{b'}}|b})m{b§}‘b}‘tim{bg}|b;‘t;D{b}l}‘b§|técl|b}1 (2.5)

We count (B) = 2 and 3(B) = n+2. Each T-segment TS; contributes a(TS;) = 4
and B(TS;) = 4. In the concatenated list L(Iy ) we thus have o = 2 + 4m and
B =n+ 2+ 4m. The lower bound of Theorem 2.2 gives s(I) > 24+ 4m + & =
2 +4m+ q. With this we are able to state the main theorem of this section.

Theorem 2.6 The jump number of Iiyp) is 2+ 4m + g exactly if the X3C

instance (Y,F) has a solution.
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Proof. Assume that the X3C instance has a solution F. Let i(k) and j(k) be
such that yj = tj ik),ik) € Tik) € F. In a run of the T-greedy algorithm choose
t]iEk; € Ny as the element to be pulled into the box, for all other boxes choose

the unique element contained in the box. This leads to

A1(B) = alt] \(12’(] \03’(] |Lh’CJ |le’CJ ;|

“Yn- 3tJE ;|Un 204[Yn—105/Ynag (2.6)
A1G(TSy) = b}\bﬁbé\tib§|t§b}1\técl (2.7)
A1g(TSy) = bilbybib|blc! (2.8)

The case 2.7 applies if T; is not used for the solution, i.e if T; ¢ F', otherwise the
T-segment of Tj is transformed to 2.8.

The basis contributes n+2 = 3q+2 jumps in Ayg(B). If T; ¢ F then A1g(TS;)
contains 4 jumps. In the q T-segments corresponding to T; € F only 2 jumps are
in Apg(TS;). Altogether, we have s(Atg) =3q+2+4m—2q =2+4m+ g and
since Agg achieves the bound of Theorem 2.2 it is optimal.

For the converse direction we have to show how to derive a solution of (Y, F)
from the fact that s(Lyf) = o + %. We may assume that an optimal linear
extension is produced by the list starty algorithm. Here are properties of an

optimal run of this algorithm:

1. While scanning the list the algorithm fills up each box it finds. This because

from Lemma 2.10 we know that ¢y = 0.

2. The algorithm may never choose yi € Ny to fill a box ON, - The corre-

sponding transition would be counted by cy, but ¢co = 0 by Lemma 2.10.
Therefore some t]lgg

The claim that proves the theorem is the following: In an optimal run of

€ Ny is chosen.

the list starty algorithm from each set T; € F either all three elements t},
ti2 and t}, are pulled into their boxes in the base or all three remain in the
corresponding T-segment. The elements chosen from the Ny therefore belong
to only q different T; which constitute an exact cover of Y.

To prove the claim we repeatedly apply the following argument:

From Lemma 2.10 we know that ¢ = «. Since each transition counted
by c3 removes an «-jump we may look at o-jumps and decide which

of the two elements is pulled out.
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Remember that
L(TS;) = D{bil}‘b}JD{b%}|b}‘t}D{bg}‘b;|t;D{b}l}|b}z‘t}zcl|b}1

Assume that ti1 has been pulled into the base. When the algorithm finds D{b}}
he has to use the element b} to fill this box. We then have the following situation
(overbraced elements may have been pulled out).
bbb [t} T, 103 16 b

Consider the «-jump b%\tg, for this jump, which is removed from the final list,
the element ti2 has to be pulled out. From the a-jump b§|t§ we can only remove
tg, and this has to be done. Hence, if t} then also ti2 and t;, have been pulled into
the base.

Now assume, that ti1 did remain in the T-segment but tg has been pulled out.

After filling the first two boxes, with the unique choice, we remain with

bj[bgb[bi[tibs [t c'[bj
Now the o-jump ci|b}1 can’t be removed, contradicting the optimality condition.
Therefore, if t! remains then t} also remains. Finally, assume that t} has been
pulled out. Taking bg forward into the box after t} we would generate a transition

counted by cs contradicting the conditions of Lemma 2.10. Hence, with ti1 all

three t} remain in the T-segment. O

This NP-completeness result together with the existence of %fapproximation

algorithms motivates the following problem.

Problem 2.1 For which % > € > 1 does an e—approximation algorithm for

the jump number problem on interval orders exist?
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Chapter 3

The Dimension of Interval
Orders

3.1 Introduction and Overview

A set Ly,...,L; of linear extensions of P is a realizer of P if the intersection of
the L equals P. This requires that all incomparable pairs x||y are realized in
the following sense, there are i,j € {1,...,7} with x <r, Y and y <t x- The
dimension, dim(P), of P is defined as the minimum size of a realizer (for a survey
on dimension see [KT]). By a theorem of Yannakakis [Ya] it is in general NP-hard
to compute dim(P). For interval orders, however, the complexity of determining
the dimension is open. In this chapter we try to give a comprehensive survey of
the knowledge on ‘dimension of interval orders’.

Although interval orders have a somewhat one-dimensional nature, their di-
mension can be arbitrarily high. The first proof of this [BRT] was essentially
Ramsey-Theoretic. Here we give the more recent argument of [FHRT].

For an integer n, let I, = (Xy, <) denote the interval order whose elements
are all the closed intervals with integer endpoints from [n] with [i;,12] < [j1,j2]
iff i, < j;. We call the posets in the family {I, : n € N} canonical interval
orders.

For integers n, k with n > k, Erdés and Hajnal [EH| defined the shift-graph
G(n, k) as the (directed) graph whose vertex set is ([E]) and whose arc set consists
of all pairs ({x1,%X2,..., Xk}, {X2,X3,..., X1 }) where {x1,%o,..., X1} € (khf )
In this context we always require the elements of a set {x;,xs,...,x¢} to be

labeled such that x; < x; whenever i <j. In Section 3 we will develop the chro-

39
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matic number theory of shift-graphs. Here we need the following result (proved
as Theorem 3.11 below).
Result The chromatic number of the double shift-graph G(n,3) satisfies

1
X(G(n,3)) = loglogn + (5 +0(1)) logloglogn
We are now able to give the lower bound for the dimension of interval orders.

Theorem 3.1 Let n > 4, let I, = (Xp, <) be the canonical interval order
and G(n,3) be the double shift graph. Then dim(In) > X(G(n,3)).

Proof. Suppose that dim(In) = t, and let L;,..., L be a realizer of I,. Now
define a coloring 1 : ([g}) — [t] as follows. For each {ij,1,,13} choose ¢ € [t]
such that [i1,1s] > [i2,13] in Lc. We claim that 1 is a proper coloring of G(n, 3).
Suppose, on the contrary, that {({i;,12,13}) = b ({12, 13,14}) = co, i.e., the edge
induced by the four element set {i;, 13, 13,14} is incident with vertices of the same
color. Then in L¢, we have [i,15] > [is,13] > [i3,14]. Since [i1,1s] < [i3,14] in I
this contradicts that Lc, is a linear extension. We conclude that 1 is a proper
coloring of G(n, 3), so dim(Iy) > X(G(n, 3)). O

In the next section we will study upper bounds for the dimension of interval
orders. First, we introduce the concept of marking intervals. This is then used to
give common access to logarithmic bounds in terms of the height [Ra2] and the
width [FM] of interval orders.

Then we investigate the step graph of an interval order and derive bounds for
the dimension from arc-colorings of the step graph.

Finally, we sketch the fascinating new construction of Fiiredi, Hajnal, Rodl
and Trotter [FHRT]. They prove that the dimension of a height n interval order
is bounded by a function f(n) which is asymptotically equal to X(G(n, 3)).

In Section 3.4 we discuss chromatic and arc-chromatic numbers of directed
graphs and their line graphs. The results are then applied to shift-graphs, giv-
ing estimates of their chromatic numbers. A combinatorial interpretation of the

chromatic numbers of shift graphs follows.

3.2 Some Logarithmic Bounds

In this section we are going to develop upper bounds for the dimension of interval

orders. These upper bounds are proved by giving a rule which generates a realizer
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Li,..., Ly of an interval order I, such that the size r of the realizer is bounded by
a function f(p(I)), where p is some parameter of interval orders. The parameters
will be the width, the height and the staircase length (see page 45) of 1. The
main tool in proving the first two bounds will be an alternative definition of the

dimension of interval orders which relies on the following lemma.

Lemma 3.1 Let I = (X, <) be an interval order with a closed representa-
tion [ax,bx] and L be a linear extension of I. Then there is a function
m: X = R such that

(1) m(x) € [ax, bx].

(2) if x <p y then m(x) < m(y).

A function m respecting (1) is called a marking function. A marking func-
tion having property (2) with respect to L is called an L-marking.
Proof. For L = xy,...,xn an L-marking is defined by

m(x;) := max( ax, , m(x{_1) )

It is obvious that m respects property (2). By definition, ax, < m(x;). To verify
property (1) it remains to show that m(x;) < by,. Note, that for each i we find
some 1 such that m(x;) = ax, . Since L is a linear extension we get x;_1 # xi,
hence ax; p bxi. O

Conversely, if m is a marking function of I then with x <q y iff m(x) < m(y)
we obtain an extension Q = (X,<q) of I. Moreover, m is a L-marking with

respect to every linear extension L of Q.

3.2.1 Marking Functions and Bounds

A realizer Ly, ..., Ly of [ = (X, <) corresponds to a family my, ..., m; of marking
functions, such that for every incomparable pair x||y there are different i,j €
{1,..., 7} with mi(x) < m;(y) and mj(x) > m;(y).

A special class of linear extensions is obtained if we concentrate on marking
functions with m(x) € {ax, bx}, i.e., we choose one of the endpoints of the interval
for the mark. Such a marking function can be transformed into a Boolean vector
f e {0,1}X by f(x) = 0 iff m(x) = ax. A family fi, ..., f; of Boolean vectors
gives rise to a realizer of I if for x||y there are i,j with fi(x) = 0, f;(y) = 1 and
fj(x) = 1, fj(y) = 0. We now give two constructions for such a family of Boolean

vectors.
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The first construction is essentially the construction of Rabinovich [Ra2]. Let
I be an interval order of height h. For 0 < k < h define Hy as the set of elements
of I with height(x) = k. Note that each Hy is an antichain. Moreover, if k < 1
and x € Hy, y € Hy, then ax < ay.

We now look for linear extensions Ly, ..., Ls of I with the following properties

(1) Each Lj corresponds to a Boolean vector fj in the sense given above.
(2)  If x,y € Hy then f;(x) = fi(y) for 1 <i <, i.e., all the elements of
Hy are treated in the same manner.
(3)  For an incomparable pair x||y with x € Hy, y € H{ and k < | there
is some f; with fi(x) =1 and fi(y) =0, i.e., y precedes x in L;.
A family L;,...,Ls of linear extensions with property 3 can be extended to a
realizer with a single additional linear extension L*. An appropriate L* is obtained
if the elements of Hy precede the elements of Hy in L* for k < | and the order
of elements of the antichain Hj in L* is exactly the inverse of the order of these
elements in L;.

By property (2) we only have to investigate families of vectors with f; €
{0,1}™. Property (3) then is:

(3')  for k <1 there is some i with f]f =1 and f% =0.

Therefore, if we arrange the vectors f; as the rows of a matrix F then every pair
% £ of columns of F differs in some component. Since F is an s X h matrix we
conclude that 2% > h.

Now let f',..., f* be different vectors of length s = [logh]. We assume
that these vectors have been arranged in reversed lexicographic order to form
the columns of a matrix F, i.e., for 1 < k < 1 < h, if 1 is the least component
with f]f + f%, then f]f =1 and f% = 0. This is property (3'), so the columns of
F give a family of linear extensions with properties (1)-(3) and we have proved

Rabinovich’s theorem.

Theorem 3.2 The dimension of an interval order I of height h is bounded
by [logh|+ 1.

Suppose Y and Z are any two disjoint subsets of X. An injection of Y by
Z is a linear extension L such that z precedes y in Lify € Y, z € Z and
yllz. Rabinovich’s proof of Theorem 3.2 made essential use of the following

characterization of interval orders.
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Theorem 3.3 P = (X, <) is an interval order iff there is an injection of Y

by Z for every two disjoint subsets Y and Z of X.

Proof. If P is not an interval order then there is a 242 in P, let {y;,z;} and

{ya2, z2} be the two chains. The injection of {yi,y2} by {z1, 22} will not exist.
For the converse consider a marking function m with m(y) = by and m(z) =

a; forally € Yand z € Z. O

In the previous construction we partitioned the elements of I into the an-
tichains Hy. This time we will make use of a partition into chains. If C and C’
are disjoint chains in an interval order I, then all the incomparabilities x||y with
x € C and y € C' can be realized with two linear extensions Ly; and L; . The
order of Ly corresponds to the Boolean function f(x) = 0if x € C and f(y) =1
if y € C'. For L interchange the roles of C and C'.

Let Cy,..., Cyw be a partition of I into disjoint chains. By Dilworth’s theorem
we may assume that w = width(I). If we decide to treat all the elements of C;

the same, a Boolean vector f € {0,1}" corresponds to a linear extension of I. A

family fy, ..., fr of Boolean vectors f; € {0,1}" gives rise to a realizer of I if
(4) for every two components k and | there are i and j, such that f]f =0,
ff =1and ff = 1, ff = 0.
Let fq,...,fr be a realizer of I in the above sense and arrange the vectors f;

as the rows of a matrix F of size v x w. By (4) every pair f, f! of columns of F is
an incomparable pair of elements in the Boolean lattice By, i.e., the columns are

an antichain in By. With Sperner’s theorem we obtain ([ﬁ) > w.

2
Now let f!,...,f" be an antichain in the Boolean lattice By and arrange the
X as the columns of a matrix F. The rows fy,...,fr of F then correspond to a

realizer of I. This proves the theorem.

Theorem 3.4 The dimension of an interval order I is bounded by v, if v

1s the least integer with (ﬁw) > w.

Remark. We will frequently need this function in the sequel, therefore, we in-
troduce a name for it. Let
N(w) = min{re N : ([;1) > w}

Combining the ideas of the previous constructions we can prove another the-

orem.
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Theorem 3.5 The dimension of an interval order I which does not contain
a 14+t is bounded by N(t —1) + 1.

Proof. Let Hy be the set of elements x of I with height(x) = k. The forbidden
suborder guarantees that x <y if x € Hy and y € Hy with 1 > k+t — 1. For
1 < k < t define Hy as the union of the levels Hy g_q) with £ > 0. We will
treat all the elements of each Hj in the same manner. All inequalities in T can
be realized if we take the linear extensions corresponding to a set fi,...,f; of
vectors in {0,1}*"! such that
(5)  for k # 1 there are i,j with fX =0, f} =1 and f}< =1, f} =0,

together with an appropriate L* which reverses the order in in each Hy relative
to L. Since properties (5) and (4) are equivalent, a copy of arguments yields the

condition we have to put on r, namely ([ﬁ) >t—1,ie,1r>N(t-1). O
2

Remark. As a consequence of this theorem we obtain another result of Rabi-

novich [Ral]: The dimension of a semi-order is at most 3.

3.2.2 The Step-Graph and More Bounds

Since we will be concerned with bounds for the dimension of interval orders in
this section too, we may start spending a fixed number of linear extensions and
then investigate, how this set can be augmented to give a realizer. Our initial set
consists of two linear extensions. Let (ax,by) be the canonical representation of
I =(X,<), then

Lup takes x before y if by < by or by = by and ax > ay.

Laown takes x before y if ax < ay or ax = ay and by > by .
Let x||y be an incomparability which is not realized by Lyp, Laown, if Laown takes x
before y then ayx < ay < bx < by. A pair of elements x,y of I with this ordering

of endpoints in the canonical representation will be called a step in 1.

y

Figure 3.1: An example for a step

lif 2 and y have identical intervals then if x is before y in Ly, iff y is before z in Ljoun.
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A family Ly, ..., Ls of linear extensions of I extends Ly, Lgown to a realizer of I if
every step is reversed, i.e., if there is an L; taking y before x.

The step graph S(I) = (X, U) of an interval order I = (X, <) is the directed
graph with arcs y — x if x,y is a step of I. A (directed) path in S(I) corresponds
to a sequence of steps, i.e., a staircase. Let xg — X1 — ... — x{ be a path in S(I),
then the left endpoints of the intervals of the x; are ordered by ay > a; > ... > ay.

This proves the next lemma.
Lemma 3.2 The step graph S(I) of an interval order I is acyclic.

Let Fy, ..., Fs be a partition of the arcs of S(I), such that TU F; is acyclic for
every i. We then can take linear extensions L; of I U F; and obtain a realizer
Lup, Laown, L1, ..., Ls of I. We now give a necessary and sufficient condition on a
class F, such that [UF is acyclic. A class F is called semi-transitive if for every

path x; = xg — ... — x in F the (transitive) arc x; — xq is in S(I).
Lemma 3.3 TUF s acyclic exactly if F 1s semi-transitive.

Proof. Let x; — xo — ... — x{ be a path in S(I) with x; 4 x;. Along the
path we have decreasing endpoints a; > a; > ... > agand by > by > ... >
by. Therefore, it is impossible that one of the intervals (aj,b;) and (ay, by) is
contained in the other. The reason for x; # x| then has to be a comparability.

From a; > a; we conclude x; < x;. If F is a class containing the above path then

F U I contains the cycle [xg, X1, ..., X, Xo].

Now, let F be a semi-transitive class and assume that [xo,..., X, X0 is a
cycle in TUF. In this cycle let xi,...,xj4j41 be a sequence of F-arcs together
with the closing comparability, i.e., xj1j < Xjyj41 and x{ = ... = Xi45. By
the semi-transitivity of F we have x; — xi;j in S(I), hence ax, < by ;- The
comparability gives bx.lﬂ. < CIT hence ay, < Axq, iy, Let [yo, ..., Yt, Yo be
the subsequence of elements of [xg, ..., X, Xo] which appear as the right hand side

of a comparability x; < x;,;. The starting points of the intervals in this sequence
are strictly increasing, i.e., ay, < ay, < ... < ay, < ay,. This contradicts the

assumption. O

Note that, if F is semi-transitive and x — y is the transitive arc of some path

in F, then every linear extension of I U F will take x before y.
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Remark. Coverings of the arcs of a digraph D = (X, A) by semi-transitive classes
and by transitive classes, i.e., partial orders, are equivalent problems. The mini-
mal number of partial orders on X whose union covers all arcs of D gives a notion
of digraph dimension. Unfortunately, little seems to be known about this concept

of dimension which gives a measure for the intransitivity of D.

An arc-coloring of a directed graph is an assignment of colors to arcs such

that consecutive arcs obtain different colors.

Lemma 3.4 An arc-coloring of S(I) with k colors leads to a realizer of I

with k 4+ 2 linear extenstons.

Proof. Let Fy,..., F¢ be the color classes of a proper arc-coloring. No F; does
contain consecutive arcs, hence, F; is semi-transitive, and by the previous lemma
[UF; is acyclic. Let L, fori=1,...,k, be a linear extension of [UF;. Ly,, Laown

and the k linear extensions L; together are a realizer of I. O

We now discuss two methods leading to arc-colorings of S(I). They lead us to
two new bounds for the dimension of interval orders.

In Section 3.4 Lemma 3.11 we will prove that the arc-chromatic number of
a digraph D is at most N(X(D)). Therefore, we can bound the arc-chromatic
number of S(I) by estimating the chromatic number.

Let ind(x) denote the indegree of the vertex x in S(I) and let ind(S(I)) =
maxyxind(x). Using the well known list coloring algorithm with a list given by
a topological ordering of the vertices of S(I) we obtain a coloring with at most
ind(S(I)) + 1 colors. With Lemma 3.11 we then obtain.

Theorem 3.6 The dimension of an interval order I is bounded by the
expression N(ind(S(I)) + 1) + 2.

Here is a second strategy leading to an arc-coloring of S(I). Label an element
x € X with the length of the longest directed path in S(I) which ends in x.
Let h(x) be the label of x and h = max,.xh(x). Now assume that an arc-
coloring of the transitive tournament Ty, on h points is given. The arc-set of
This {(1,j) : 4,7 € {1,...,h},i < j}. Assigning to (x,y) € S(I) the color of
(h(x),h(y)) € Ty, we will obtain a legal coloring of S(I). Therefore, the arc-

chromatic number of Ty, is an upper bound for the arc-chromatic number of S(I).
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Arc-chromatic numbers will be discussed later in this chapter (Lemma 3.9), there
we will prove that the arc-chromatic number of Ty, is [logh].

Since h is just the maximal staircase length of I we obtain

Theorem 3.7 The dimension of an interval order I is bounded by the
expPression

[log(maximal staircase length of I) | + 2.

3.2.3 Open Problems

We have obtained bounds for the dimension of an interval order I in terms of the
height of I, the width of I, the minimum t such that I does not contain an 1+t
and in terms of parameters of the step graph. For each of this bounds there are
interval orders for which the bound dominates the others. Unfortunately, there
remain interval orders for which all these bounds are poorly bad. We now present

such an example.

Example. Let I(n; m) be the order defined by all the open intervals of length m
with endpoints in [n]. For this order only the bound referring to 14+ m is good, it
gives the true value, dim(I(n;m)) = 3. If we add all the open length 1 intervals
to obtain I(n;m,1) this bound also goes up to m. If C = (Y,<c) is a chain,
P = (X, <p) is an arbitrary poset and Q = (XUY, <q) induces P on X and C on
Y, then the dimension of Q does not exceed the dimension of P by more than 2.
Therefore, dim(I(n;m,1)) < 5. In fact dim(I(n;m,1)) = 3, we leave this as an

exercise.

This example shall serve as a motivation for the following open problems (see
[FHRT])

Problem 3.1 Given an interval order I, is it NP-complete to determine

the dimension of 19

Problem 3.2 Is it true, that for every n € IN there exists some tn € N so
that if T is an interval order with dim(I) > ty then I contains a subposet

Q which is isomorphic to the canonical interval order 1%
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3.3 The Doubly Logarithmic Bound

We are now ready for a sketch of the most ingenious construction in the field. It
is due to Fiiredi, Hajnal, Rodl and Trotter (see [FHRT]).

Their work splits into two parts. First they proof an estimate for the di-
mension of canonical interval orders. Their bound is asymptotically optimal, i.e.,
coincides with the lower bound (Theorem 3.1). In the second part they proof that
the dimension of a height n interval order is bounded by the size of the realizer
constructed in the first part for In;.

Although I did not contribute to the results of this section, proofs are included,
since they are a very surprising combination of ideas we have seen earlier in this

chapter.

3.3.1 Canonical Interval Orders

Let In = (Xn, <) be a canonical interval order. We again start with two special
linear extensions L,, and Lgown. (Note that this time we have to change the
definitions slightly, since we defined them for the case of open intervals. But Iy
consists of closed intervals). We remain with the job of reverting the steps, i.e.,
the pairs x,y with ax < ay < bx < by. Now let t > N(logn), i.e., if s = ([2&)
then n < 2% We will show that semi-transitive classes Fy, Fy, ..., Fi suffice to

cover the arcs of S(I). This will prove the theorem
Theorem 3.8 dim(I;,) < N(logn) + 3

Let My, My, ..., Mg be the antichain of subsets on level [ﬂ of By and let
1 £2, ..., f™ be different column vectors in {0, 1}%, we assume that these functions

are in lexicographic order, i.e., for k < Lif i is the least component (row) with
f]f # f% then f]f =0 and f% =1

Lemma 3.5 (Lexicographic Property) If S C [n] with |S| > 2 and 1 is the
least component in which the vectors {fk : k € S} are not identical, then

there is a kg € S such that for L € S, f%ZOfOT l < ko and f%: 1 for 1> kq.

Proof. This is an easy consequence of the lexicographic ordering. O
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Let y — x be an arc in S(In), i.e., ax < ay < by < by. The distinguishing
row of y — x is the least component i in which the vectors fo, 0 bx fby
are not all identical, we will denote this as d(y — x) = 1. It is an immediate
consequence of the lemma that we may classify an arc y — x as balanced, zero-

dominant or one-dominant by the following scheme:

o y — x is balanced if i = d(y — x) and (f&, % 2% 29) = (0,0,1,1).

L' A S A

fx 0y fbx gbuy

ey — x is zero-dominant if i = d(y — x) and (f{>, 7, 7%, 1,

(0,0,0,1).

fax 0y fbx gbuy

ey — xis one-dominant if i = d(y — x) and (f;*, ;7,7 f;

(0,1,1,1).

If y — x is zero-dominant, then let j be the least component in which the
vectors & Ay {9 are not all identical. We call j the tie-breaking row and
write j = tb(y — x). Of course d(y — x) < tb(y — x).

If y — x is one-dominant, then let j be the least component in which the
vectors fay,fbx,fby are not all identical. We call j the tie-breaking row and
write j = tb(y — x). Again d(y — x) < tb(y — x).

We now define a labeling 1\ of arcs with (y — x) € {0,1,...,t}. The classes
Fo,Fi,..., Ft are then defined via this labeling: y — x € Fy,y_x)-

e If y — x is balanced we let P(y — x) = 0.

e If y — x is zero-dominant, i = d(y — x) and j = tb(y — x) we choose
some ¢ € My \ Mj and let h(y — x) = c.

e If y — x is one-dominant, i = d(y — x) and j = tb(y — x) we choose
some ¢ € M; \ Mj and let h(y — x) = c.

Lemma 3.6 Each of the classes F¢, 0 < c <t, is semi-transitive.

Proof. In fact, we will proof that Fy is transitive, and no class Fe, 1 < ¢ < t,

does contain consecutive arcs, i.e., they are proper arc color classes in S(In).
We first deal with Fy. Let z — y and y — x both be balanced. As arcs in

the step graph they are steps and we have ax < ay < by < by and ay < a; <

) a o
b];J < b,. N](D)te that, since they are balanced we have fd?yax) = fd?zﬁy) =0 and
fd?y—m) = fd?zay) = 1. Therefore, d(y — x) = d(y — z), let d = d(y — x).
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If a; < bx we have an arc z — x in S(In). We claim that z — x is also
balanced. Since f3* # fg" we have d(z — x) < d. If d(z — x) = d then z = x
is balanced.

Otherwise, assume d’ = d(z — x) < d. In the distinguishing row d’ of z — x
we have either fg}‘ + fg?‘ or fg,z + fg,z. This contradicts either d(y — x) > d’ or
diz—y)>d.

The remaining case is bx < az, ie., x < z. Recall that d = d(z —
y) = d(y — x) and note that d is the first component in which the vectors
fax fay fbx faz by bz yre not all identical. In the distinguishing row we then
find the pattern (ng,fgy,fQX,ng,fg‘J,ng) — (0,0,1,0,1,1) which violates the
lexicographic property. Therefore, if x,z is not a step we cannot have both of
z—yand y — x in Fy.

Now let y = x be in F¢, 1 < ¢ < t. Our claim is that z — y is not in F¢. Let
d=d(y — x) and d' = d(z — y).

Assume that y — x is zero-dominant, then (fgy,fzy) = (0,1), therefore,
d <d.

e If z — y is balanced then it is not in F¢:

e If z — y is one-dominant then (fg?,fg?) =(0,1)and d=d'. Asx =y is
zero-dominant ¢ = P(y — x) € Mg but P(z - y) € My since z — y is
one-dominant. Hence, ¢ # P (z — y).

e If z — y is also zero-dominant then (fg?,fg?) = (0,0) and necessarily

d’ < d. In the tie-breaking row t = tb(z — y), however, the lexicographic
property ensures (fgy,f};y) = (0,1), therefore, t = d. By definition ¢ =
Y(y — x) € Mq and P(z = y) € My \ My. Hence, ¢ #P(z = y).

Now assume that y — x is one-dominant.
e If z — y is balanced then it is not in F¢:

e If z — y is zero-dominant then t = tb(y — x) = tb(z — y) is the first
coordinate with (&%, £2¥) = (0,1). By definition ¢ = (y — x) € M¢\ Mg
while P(z = y) € Mg \ Mt. Hence, ¢ # P(z = v).

e If z — y is also one dominant, then (fgy,fgy) = (1,1) and (fg?,fg?) =

(0,1), hence d' > d. The tie-breaking coordinate t = tb(y — x) is the first
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with (f2 £2Y) = (0,1), therefore, t = d’. By definition ¢ = h(y — x) €
M¢ \ My while Y(z — y) € Mg = M¢. Hence, ¢ # P (z = y).

3.3.2 General Interval Orders

For an interval order I with height(I) = n we now define a mapping A : I — In,;.
Let Ay, Ay, ..., An be an ordered sequence of maximal antichains covering all the
elements of I. For x € X let A(x) = [ax, Bx] if Ay is the first and Ag, _; is the

last antichain in this sequence containing x. Note that
e Bx < oy implies x <y
e x <y implies Bx < oy.

Let Fy, Fo, ..., Ft be the family of semi-transitive classes constructed in The-
orem 3.8 to cover the arcs of S(Iny1). We have seen that dim(In,q) < t+ 3.
Now define F{ = {x —y € S(I) : A(x) = A(y) € F;}.

Lemma 3.7 With F[,F; ... F{ we have a family of semi-transitive classes
of arcs of S(I).

Proof. If ¢ > 1 the class F¢ does not contain consecutive arcs. This property is
transferred to F, hence for ¢ > 1 the class F{ is semi-transitive.

For the case of ¢ = 0 note that in F; we never have an arc y — x with
oy = Px. This is true since f& = Bx prevents y — x from being balanced.

With this additional information Fj is easily seen to be semi-transitive as well. O

It remains to take care for those incomparabilities which are realized by the
two linear extensions L,, and Lgown Of Iny1, as well as for the steps x,y with
oy = Px. All this can be done with the two linear extensions:

L,  takes x before y if Bx < By or fx = By and ox > ay.
L*

down

takes x before y if oy < oy or oy = oy and Bx > Py

As a consequence we obtain:

Theorem 3.9 If I is an interval order with height(I) < n then dim(I) < t+3,
if t > N(log(n+1)).
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3.4 Colorings of Digraphs and Shift-Graphs

In the first part of this section we develop a theory of colorings for directed graphs.
In Lemma 3.8-3.11 we exhibit relations between the chromatic number and the
arc-chromatic number. As an application, we obtain estimates for the chromatic
numbers of shift-graphs.

In the second part, we prove a combinatorial interpretation of the chromatic
numbers of shift-graphs (Theorem 3.12).

I guess that all the material presented here belongs to the folklore of the field,
parts of it can be found in [HE] and [FHRT|. However, when I first heard of
the Erdos and Hajnal result on the chromatic numbers of shift-graphs (Theorem
3.11) it took me some time to reproduce their estimates. The techniques I used

are given in the first part.

3.4.1 Colorings of Directed Graphs

An arc-coloring of a directed graph is an assignment of colors to arcs such
that consecutive arcs obtain different colors. The arc-chromatic number A(D)
of a digraph D is the minimal number of colors in an arc-coloring of D. The
chromatic number X(D) of a digraph D is defined as the chromatic number of
the underlying undirected graph Gp, i.e., X(D) = X(Gp). With the next lemmas

we exhibit some connections between A(D) and X(D).

Lemma 3.8 For every digraph D chromatic and arc-chromatic numbers
are related by: A(D) > [logX(D) |.

Proof. Given an arc-coloring of D with 1 colors we will construct a vertex-coloring
with < 2! colors. As colors for the vertices we use boolean vectors of length 1.
Let ck denote the i component of the color of x and define ¢ = 1 iff there is
an arc (y,x) of color i.

Assume that two vertices u,v of the same color are connected by an arc
(v,u). Then the color of the arc (v,u) has to appear as the color of some arc

(w,v) conflicting with the proper arc-coloring. O

With the next lemmas we investigate converses of Lemma 3.8. We begin with

a special case which turns out to be paradigmatic.
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Lemma 3.9 Let T, be a transitive orientation of the complete graph Ky,

i.e., a transitive tournament, then A(Tn) = [logn|.

Proof. Since X(Tn) = X(Kn) = n we obtain A(Tyn) > [logn | from the previous
lemma.

For the converse, let n = 2™, and let the arcs of Ty, be given by the pairs
(i,j) with i <j and i,j € {0,1,...,2™ — 1}. Assign color m to all the arcs (i,j)
with 1 < 2™ 1 and j > 2™ !, The uncolored arcs then induce two independent
subtournaments on 2! points each. The first consist of all arcs (i,j) with i,j €
{0,1,...,2Mm=1 — 1}, the second of all arcs (i,j) with i,j € {2™~! ... 2™ — 1}.
By induction we can arc-color each of them with colors from {1,... m—1}. We

obtain a proper arc-coloring of Tom using m colors. a

Lemma 3.10 Every graph G = (V,E) admits an acyclic orientation Dg so
that A(Dg) = [logX(G) |.

Proof. Let X(G) = k, and let ¢ : V — [k]| be an optimal coloring of G. In Dg
an edge {u,v} € E is oriented as (u,v) iff c(u) < c(v). We use an arc-coloring
of the transitive tournament Ty with [logk| colors (Lemma 3.9) to color (u,v)
with the color of (c(u),c(v)) in Ty. Therefore A(Dg) < [logX(G) |.

From Lemma 3.8 we obtain the converse inequality. a

Lemma 3.11 For every digraph D chromatic and arc-chromatic numbers
are related by: A(D) < N(X(D)).

Proof. Let X(G) = k and let an optimal coloring ¢ : V — [k] be given. If
t = N(k), i.e., ([2&) > k, then let My, My, ..., My be an antichain of subsets
on level {ﬂ of Bt. To an arc (u,v) assign as color some element from the set
Mcw) \ Mcy. Consecutive arcs (u,v) and (v, w) obtain different colors since the

color of (u,v) is element of Mc(y while the color of (v, w) is not in Mcny. O
The line graph L(D) of a digraph D = (V,A) is the directed graph with
vertex set A and arcs (a,b), a,b € A if head(a) = tail(b), i.e., a = (u,v) and

b = (v,w) for vertices u,v,w € V. From this definition we immediately obtain:

Lemma 3.12 If D = (V,A) is a digraph and L(D) is the line graph of D
then X(L(D)) = A(D).
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From the definition of shift-graphs (page 39) the next lemma is immediate.

Lemma 3.13 The shift-graph G(n, 1) is the transitive tournament Tp.
Higher shift-graphs can be obtained as line graphs, i.e., G(n,k + 1) =
L(G(n,k)).

We conclude this part with our main theorem on the chromatic number of

shift-graphs
Theorem 3.10 loghn < X(G(n, k+1) < N¥I(logn)

Proof. This is an easy combination of the preceding lemmas. O

3.4.2 Asymptotics

Here we give the results of some computations which are required to obtain the

Erdos, Hajnal theorem as a consequence of Theorem 3.10.

Theorem 3.11 (Erdos,Hajnal)
a) The chromatic number of the double shift-graph G(n,3) satisfies

1
X(G(n,3)) =loglogn + (5 +0(1))logloglogn .
b) The chromatic numbers of higher shift-graphs satisfy
X(G(n, k) = (1+0(1))log" 'n .

Proof. From Theorem 3.12 and Remark 3.4.3 below we obtain that X(G(n, 3))

t
is the least integer t with 2(%) > n, that is, t > N(logn).
Note that by Sterling’s formula

(2) _ 2; (1+0(1) .

5} n

This and the fact that with n = N(m) we certainly have logn = o(1) log m gives

1
N(m) =logm + (5 +0(1)) loglogm .
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That is the < inequality of a).

Relax the previous formula to obtain
N(m) = (1+o0(1))logm
and note that this implies
N¥(m) = (14 o(1)) logcm ,

i.e., the conclusion of b). O

3.4.3 A Connection with Lattices of Antichains

A down set in an order P = (X, <) is a set M C X such that x € M and y < x
implies y € M. There is a one-to-one mapping between down sets and antichains
given by M = Max(M) and A - A = {x € P : x <y for some y € A}. Due
to a well known theorem of Dilworth the down sets (antichains) of an order P
form a lattice denoted by A(P). The order relation of this lattice is given by set
inclusion, i.e., if M;N € A(P) then M < N iff M C N. Note, that we can view
A : P — A(P) as an operator which maps posets to posets. Let A(P) denote
the poset resulting from k applications of A.

The next theorem gives a surprising connection between the chromatic num-
bers of shift-graphs and the size of certain down set lattices. (The case k = 3
of the theorem can be found in [FHRT]). Let [t] denote the t element antichain,

i.e., the poset consisting of ¢ pairwise incomparable elements.

Theorem 3.12 For all integers n and k the shift-graph G(n, k) is colorable

with t colors if there are at least n elements in the poset AK-1([t]).

Remark. Note that in the case of k = 2 this theorem will give an alternative
proof for Lemma 3.9.
Proof. Suppose that a proper coloring of G(n, k) is given by ¢ : (Tkl) — [t]. Let
Co(x1, X2,y .oy X) = c({x1, X2 ..., Xk }),
Ci(xg, ..., xx) = {Co(x1,%2,...,%xi) : for some x; < xa}
and C; be the down set generated by Cy in A([t]). Forj = 2...k—1 we iteratively
define

Cj(Xj+1,...,Xk) = {ijl(xj’xj+1>---’xk) . for some X; < Xj+1}
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where C/jjl is the down set generated by C;_; in AI=1([H]).

Next, we show that Cp_,(x) 2 Cy_,(y) for all k < x <y < n. Therefore, all
these sets are distinct. Suppose, on the contrary, that k < x;_; < x < n and
Cr 1(xx 1) 2 Cx_y(xx). From this we conclude the existence of some xj_, <

Xk 1 with Cp o(Xk 9, Xk 1) 2 Ck »(xx 1,%x) and iterating this argument we

find x; < xo < ... < Xg_y such that a(xl,...,xk_l) D CAl(xg,...,xk), ie.,
Ci(x1y ..oy xk_1) D Ci(x2y...,xg). We now let d = Co(xq,x2,...,xg), from
de Ci(x1,...,Xk_1) D Ci(xa,...,XK) we obtain the existence of some xy < x4
such that Cy(xg,X1,...,Xx_;) = d. This contradicts the assumption that c is a

proper coloring.

We close this direction of the proof with the observation that at the bottom
of AX=1([t]) there is a chain of k — 1 ‘empty’ elements which can not occur as

Ci_1(x) for x > k. These elements are 0, {0}, {{0}},...,{{---{0}}---}, the last

element in this list is an () enclosed by k — 2 pairs of braces.

For the converse direction assume that A¥~'([t]) contains s > n elements and
let C(1),C(2),...,C(s) be a linear extension of AX"1([t]), i.e., if x <y we never
have C(x) D C(y). Therefore, we can choose a down set C(x,y) in AX2([t])
which is an element of C(y) \ C(x). We claim that if w < x then there is an
element C(w,x,y) € C(x,y) \ C(w, x), otherwise the down set C(x,y) would be
contained in the down set C(w, x) but C(w,x) € C(x) and C(x,y) & C(x).

Repeating this, we can associate a set of colors C(xa,Xs,...,xy) with each
k — 1 subset of [n], such that C(xa,x3,...,%k) € C(xs,..., %K) \ C(X2, ..., XK_1)-
Finally, we find a color C(xy,Xs,...,xx) € C(x2,...,%xx) \ C(x1,...,Xx_1). This
coloring of the k element subsets of [n] is a proper coloring of G(n, k). O

Remark. The problem of counting the antichains in A([t]) = Bt is a classical
one. The estimates assert that the number of antichains in By is approximately

(§)

the number of subsets of the largest antichain, i.e., 2"2”.
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Chapter 4

Coloring Interval Order
Diagrams

4.1 Introduction and Overview

For a nonnegative integer k, let I be the interval order defined by the open
intervals with endpoints in {1,..., 2k}. It has height 2K _ 1 and is isomorphic to
the canonical interval order I _, (see Chapter 3 for canonical interval orders).

Two vertices v and w in I} are a cover, denoted by v < w, exactly if the right
endpoint of the interval of v equals the left endpoint of the interval of w. The
diagram Dy of Iy is thus recognized as the shift graph G(2k, 2) (see Chapter 3
for shift graphs). In general we denote by Dy the diagram of an interval order I,
and we denote the chromatic number of the diagram by X(Dy).

We again include a proof for the next lemma since we will need similar methods
in later arguments (for an alternative formulation and proof of this lemma see
Lemma 3.9).

Lemma 4.1
X(Dr,) = [log; height(Iy) | = k

Proof. Suppose we have a proper coloring of Dy, with colors {1,...,c}. With
each point 1 associate the set C; of colors used for the intervals having their right
endpoint at i. Note that C; = 0. For1 <i<j < 2k, we have C; ¢ C;; otherwise
the interval (i,j) would have the same color as some interval (1,1). This proves
that all of the 2% subsets Ci of {1,...,c} are distinct; therefore 2¢ > 2k and
c>k.

29
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A coloring of Dy, using k colors can be obtained by the following construction.
Take a linear extension of the Boolean lattice By and let C; be the i set in this
list. Assign to the interval (i,j) any color from C;\ C;. A coloring obtained in

this way is easily seen to be proper. O

We derive a lemma for later use and a theorem from this construction.

Lemma 4.2 In a coloring of le which uses exactly k colors, every point

ie{1,...,25) is incident with an interval of each color.

Proof. The crucial fact here is that every subset of {1,...,k} is the C; for some
i. Now choose any i € {1,...,2%} and a color ¢ € {1,...,k}, we have to show
that an interval of color c is incident with 1.

If ¢ € G, then this is immediate from the definition of C;. Otherwise, i.e., if
c ¢ Cy, then there is a jc > i such that C;, = C; U {c} and the interval (i,jc) is

colored c. O

With the next lemma we improve the lower bound: There are interval orders
I with X(Dy) > 1 + log,(height(I)). Compared with Lemma 4.1, this is a minor
improvement, but we feel it worth stating, since later we will prove an upper

bound of 2 + log, (height(I)) on the chromatic number of the diagram of I.

Lemma 4.3 For each k there is an tnterval order IT( such that
X(DI;;) > 1+ [log, height(I}) | =k

Proof. Take Ij as the order obtained from Iy (see Lemma 4.1) by removing the
intervals of odd length, i.e., the interval order defined by the open intervals (i,j)
withi,j € {1,...,2%} and j—i=0 (mod 2). The height of Ij is 2~! — 1 which
is the height of I}_;; however, as we are now going to prove, a proper coloring
of I} requires at least k colors. Note that two intervals (i;,j;) and (iz,j2) with
j1 <12 induce an edge in the diagram of Iy if either j; =1y or j; =1y — 1.

In I} we find an isomorphic copy of Iy _; consisting of the intervals (i,j) with
both 1 and j odd. Call this the odd Iy_;. The even Iy _; is defined by the interval
(1,j) with 1 and j even. Let C; be the set of colors used for intervals with right
end-point 21 — 1, and let Dj be the set of colors used for intervals with right
end-point 2i. From Lemma 4.1, we know that if both the odd and the even copy

only need k — 1 colors, then the C; and the Dj; have to form linear extensions of
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the Boolean lattice By ;. Now define C; as the set of colors used for intervals
with left-endpoint 21 — 1. From Lemma 4.2, we know that C; is exactly the
complement of C;. With the corresponding definition, D; and Dj are seen to be
complementary sets as well. Note that a proper coloring requires C;ND; = (). We
therefore have C; C Dj. A similar argument gives D; C Cj, ;. Altogether we find
that the C; have to be a linear extension of By_; with C; C C;, for all 1. This

is impossible. The contradiction shows that at least k colors are required. O

Now we turn to the upper bound which we view as the more interesting aspect

of the problem.

Theorem 4.1 If I is an interval order, then
X(Dy) < 2+ log, height(I)

Proof. In this first part of the proof, we convert the problem into a purely

combinatorial one. The next section will then deal with the derived problem.

Let I = (V, <) be an interval order of height h, given together with an interval
representation. For v € V, let (1, 1y] (left open, right closed) be the correspond-
ing interval. With respect to this representation, we distinguish the ‘leftmost’
h-chain in I. This chain consists of the elements x;,...,x;, where x; has the
leftmost right-endpoint 1, among all elements of height i. It is easily checked
that x1,...,xy is indeed a chain. Now let r; = rx. be the right endpoint of x;’s

interval and define a partition of the real axis into blocks. The i'" block is

B(1) = [y, Tisa)-

This definition is made for 1 = 0,..., h with the convention that B(0) extends to
minus infinity and B(h) to plus infinity.
In some sense these blocks capture a relevant part of the structure of 1. This

is exemplified by two properties.

e The elements v with 7, € B(i) are an antichain for each 1. This gives a

minimal antichain partition of L.
e If , € B(j), then 1, € B(i) for some 1 less than j.

Suppose we are given a sequence Cy, ..., Cy, of sets (of colors) with the following

property
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(o) CjZCiflUCiforaHl<i<)'§h.

A sequence with this property will, henceforth, be called an «-sequence. The
a-sequence Cyp,...,Cy may be used to color the diagram Dj with the colors
occurring in the C;. The rule is: to an element v € V with 1, € B(i) and
Ty € B(j) assign any color from Cj \ (C;_; U C;). This set of colors is nonempty
by the o property of the sequence Cj, since i < j. We claim that a coloring
obtained this way is proper. Assume, to the contrary, that there is a covering
pair w < v such that w and v obtain the same color. Let m, € B(k) and 1, € B(3i).
Since w < v, we know that k < i. Due to our coloring rule, we know that the
color of w is an element of Cy and the color of v is not contained in C;_; U Cj;
hence k < i — 1. This, however, contradicts our assumption that w < v, since
Iy, € B(i—1) and 1y > vy, = 7 gives w < x; <.

We have thus reduced the original problem to the determination of the min-
imal number of colors which admits a a-sequence of length h. We will demon-
strate in the next section, Lemma 4.4 and Lemma 4.5, how to construct a o-
sequence of length 2™ 2 4 {nTHJ
the theorem. O

using M colors. This will complete the proof of

In the third section we give an upper bound of 2™~ + [“T“J for the maximal
length of a x-sequence. From the proof, we derive some further properties «-
sequences of this length necessarily satisfy. Finally, we apply the construction of
long o-sequences to the problem of finding long cycles between two consecutive
levels of the Boolean lattice. A famous instance of this problem is the question
whether there is a Hamiltonian cycle between the middle two levels of the Boolean
lattice (see e.g. [KT], [Sa]). The best constructions known until now could guar-
antee cycles of length QQ(N¢) where N is the number of vertices and ¢ ~ 0.85.
We exhibit cycles of length > iN.

4.2 A Construction of Long a-Sequences

Let t(n, k) denote the maximal length of a sequence C; of sets satisfying:
(1) G c{l,...,n},
(2) |C;| = k and
() ifi<jthen Cj € Ci_, UCy.
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Lemma 4.4

t(n, k) > <n]:1> +1

Proof. The sequences actually constructed will have the additional property

(4) Ci_yUCi|=k+1foralli>2.

The proof is by induction. For all n and k = 1 or k = n the claim is obviously
true.

Now suppose that two «-sequences as specified have been constructed on
{1,...,n—1}. First, a sequence of k-sets A = Ay, ..., Ag of length s = (n]ZQ) +1,
and second, a sequence of (k — 1)-sets B = By, ..., Bt of length t = (Tkl:f) + 1.

Property (4) guarantees that there is a permutation 7t of the colors such that
As = BT UBT. Now let

C. = Aq for1 <i<s
VUl B, Ufn} fors+1<i<s+t-1

The length of the new sequence is s +t— 1= (n]zl) + 1. Properties (1) and (2)
are obviously true for the sequence C; and property (4) is true for both the A
and the B sequence. These observations and the choice of 7 give property (4)
for the C sequence. It remains to verify property (). If i < j < s+ 1, this
property is inherited from the A sequence. If s +1 < 1 < j, it is inherited from
the B sequence. In case i <s+ 1 <j, we have n € Cj and n ¢ C;_; U Cy. The
remaining case is s + 1 =1 < j. Here the choice of 7t and the sacrifice of By show
that Cs U Csy1 = A UBT U {n} = BTUBT U {n}. Again, property () can be
concluded from this property for the B sequence. O

For k = 2 and k = n — 1, we can prove that the inequality of Lemma 4.4 is

tight, but in general the value of t(n,k) is open.
Problem 4.1 Determine the true value of t(n,k).

Let T(n) denote the maximal length of a sequence C; of sets satisfying:
(1)  C;C{1,...,n} and
(OC) ifi< ) then C] Z Ci—l U Ci'

Lemma 4.5
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Proof. Let L(n, k) be the (n, k)-sequence constructed in the preceeding lemma.
We claim that L =L™(n,1) @ L™ (n,3) @ L' (n,5) & ... with appropriate per-
mutations 7; is a «-sequence of subsets of {1,...,n}. The m’s can be found
recursively. 71, = id and if 7, has been determined, then 7 is chosen as a
permutation, such that, the last set of the sequence L™-2(n,k-2) is a subset
of the first set of L™k (n, k). Let C; be the i*" set in the sequence L. We now
check property («). If the three sets C;_;, C; and Cj are in the same subsequence
L™ (n, k), then the property is inherited from this subsequence. If C; € L™ (n, k)
and C; € L™ (n, k') with k < k' — 2, then [C;_; U Cj| < ‘Cj‘ is a consequence
of property (4) for the subsequence L™ (n, k), and gives the claim in this case.
There remains the situation where C;_; is the last set of its subsequence. The

choice of the my gives C;_; C C; and the property reduces to C; € Cy, which is

obvious.
The length of L is the sum over the length of the L™(n, k) used in L. This is
the sum over (n]zl) + 1 with k odd, which is 2™2 4 [HTHJ O

4.3 The Structure of Very Long a-Sequences

Theorem 4.2 Let C = Cy,...,Ct be a a-sequence of subsets of {1,...,n}.
Then t < 2" + {nTHJ

Proof. We start with some definitions. For 1 <i <t —1, let
Si={S: G CSCCGUCy, } (4.1)
and s; = |Si|. Observe that with r; = |C; \ Cj, | we have the equation
si=2"—1. (4.2)
We now prove two important properties of the sets S;

¢ SiNS;=0ifij.

Assume, to the contrary, that S € S;NS; and let 1 <j. From the definition
of the Si, we obtain Cj,; C S C C;U Cy,. This contradicts with property

(o) for the sequence C.
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e CNS;=0forall i.

Assume, C; € S;. If j <1, then Ci; C Cj gives a contradiction. If j = i+1,
note that C;; € S; from the definition. If j < i41, the contradiction comes
from C) C Ci U Ci—l—l'

Therefore C and the S; are pairwise disjoint subsets of By, this gives the inequality

t-1
2" >+ ) s (4.3)
i=1
We now partition the indices {1,...,t — 1} into three classes

e I, = {i:|Cj| =|Ci, |}; note, that i € I; implies s; > 1.
o [, ={i:|Ci| <|Ci,|}; trivially, s; > 0 for i € Io.

o I3 = {i:|Ci| > |Ci,|}; note, that if 1 € I3, then the corresponding s; is

relatively large, i.e., s; > 2/Cisi -G+ _ 1 This estimate is a consequence of
Equation 4.2 and the fact that C; ; has to contain an element not contained

in Ci'

We first investigate the case I3 = (). This condition guarantees that the sizes
of the sets in C is a nondecreasing sequence. Since Byn has n + 1 levels, the size
of the sets in C can increase at most n times, i.e., |l <m and || >t—1—n.
It follows that:

2" >t ) sit Y s

iely iel,
> t+ |1

> t+(t—1-n)

This gives 2t < 2™+ (n+1). Hence, t < 2™ !+ {nTHJ in this case.
The case I3 # () is somewhat more complicated. Let the number of descending
steps be d and I3 = {i;,...,1q}. Let m; denote the number of levels the sequence

is decreasing when going from Cj, to Ci 4, i.e., my = |Cy | = [Ci| and 85, >
j j j j j
my +1

2 7 —1. Again, we can estimate the size of Iy, namely, |I5] < n + Zjd:l my.
It follows that:

2 >t ) s+ Y s+ s

iel; iel, iels
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d
mi_-i—l
> t+L+>. (2% —1)
j=1
d mi_-i—l
> t4+((t=1)— Ll -LH+> 29 —d
j:l
d d
;. +1
> t+(t—1—n—2mij—d)+z2ml —d
j:l j:l

Comparing this with the calculations made for the case I3 = ), we find that
> 2"+ | B | would requi d 2d + ¢ 2™5 " < 0. For each j
t= + {TJ would require —3—, my, —2d + 35 < 0. For each j,

m.
we have 2 Y > my — 2. Hence, the above inequality can never hold. O

Remark Let T*(n) = 2! + [nTHJ be the upper bound from the theorem. We
have seen that a a-sequence C of length T*(n) can only exist if I3 = (). Moreover,

the following conditions follow from the argument given for Theorem 4.2.
1. There are exactly n increasing steps, i.e., |I| =n.

2. If i € I, then s; = 1, i.e., two consecutive sets of equal size have to be a
shaft: Ci-l—l = (C1 \ {X}) U {y} with x € C; and y ¢ C;.

3. If i € I then s; =0, i.e., if |Cj| < |Ci |, then there is an element x € Cj,
such that, Ci,, = C; U {x}.

4. Every element of By is either an element of C or appears as the unique

element of some Sj, i.e., as C; U Cy;.

From this observations, we obtain an alternate interpretation for a sequence
C of length T*(n) in Bn. In the diagram of By, i.e., the n-hypercube, consider
the edges (Cj, Ci,,) for i € I, and for i € I; the edges (Cy, T;) and (T;, Cij,)
where Tj is the unique member of Sj, i.e., T; = C; U Ci, ;. This set of edges is a
Hamiltonian path in the hypercube and respects a strong condition of being level
accurate. After having reached the k'™ level for the first time the path will
never come back to level k — 2 (see Figure 4.1 for an example, the bullets are

the elements of a very long a-sequence).

Problem 4.2 Do sequences of length T*(n) exist for all n ?
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Figure 4.1: A level accurate path in B,

We are hopeful that such sequences exist. Our optimism stems in part from
computational results. The number of sequences starting with (), {1}, {2},...{n}
is 1 form <4, 10 for n = 5, 123 for n = 6 and there are thousands of solutions for
n = 7. The next case n = 8 could not be handled by our program, but Markus

Fulmek wrote a program which also resolved this case affirmatively.

4.3.1 Long Cycles between Consecutive Levels in B,

Let B(n, k) denote the bipartite graph consisting of all elements from levels k and
k + 1 of the Boolean lattice Bn. A well known problem on this class of graphs
is the following: Is B(2k + 1,k) Hamiltonian for all k ? Until now, it was
known that this is the case for k < 9. Since the problem seems to be very hard,
some authors have attempted to construct long cycles. The best results (see [Sa])
lead to cycles of length Q(N€) where N = 2(2]({1) is the number of vertices of
B(2k + 1, k) and ¢ ~ 0.85.

Theorem 4.3 In B(n, k), there is a cycle of length

3

n—3 n—3
4 1 1

Proof. Note that the graphs B(n, k) and B(n,n — k — 1) are isomorphic, it thus
suffices to exhibit a cycle of length 4(%:?) + 4 in B(n,k). To this end, take a
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a-sequence Cyp,...,C¢ of (k — 1)-sets on {1,...,n —2}. From Lemma 4.4, we
know that t > (E:f) + 1 can be achieved. Now consider the following set of edges
in B(n, k)

o (GiU{n}, GUC, U{n})for1<i<t,

CiUCi U{n}, CiUfn} ) for1<i<t,

Ceu{n}, Ceufn—1mn})and (CU{n—-1n}, CeUu{n—1} ),

(Gu{n-1}, UG U{n-1} ) forl1<i<t,
e (GUCL,UM-1}, Cuin—1} ) for1<i<t,
e (Ciuin-1}, Gufn-1mn})and (CiU{n-1,n}, CU{n}).

The proof that this set of edges in fact determines a cycle of length 4t in B(n, k)
is straightforward. a

With a simple calculation on binomial coefficients, we obtain a final theorem

Theorem 4.4 There are cycles in B(2k + 1,k) of length at least iN.

4.4 References for Chapter 4

[FHRT| Z. FUREDI, P. HAINAL, V. RODL AND W.T. TROTTER, Interval
orders and shift graphs, Preprint 1991.

[KT] H.A. KIERSTEAD AND W.T. TROTTER, Explicit matchings in the
middle two levels of the boolean lattice, Order 5 (1988), 163-171.

[Sa] C. SAVAGE, Long cycles in the middle two levels of the boolean lattice,
SIAM Conference on Discrete Mathematics 1990.



Chapter 5

Interval Dimension and
Dimension

5.1 Introduction and Overview

A family {Qy,..., Qy} of extensions of a partial order P is said to realize P or
to be a realizer of Piff P = Q;N...N Qy, i.e., x <y in Piff x <y in Q; for
each 1, 1 <1 < k. If we restrict the Q; to belong to a special class of orders and
seek for a minimum size realizer we come up with a concept of dimension with
respect to the special class.

Interval dimension, denoted idim(P), is defined by using interval extensions of

P. Since linear orders are interval orders we obtain the trivial inequality
idim(P) < dim(P) (5.1)

It is well known that interval orders of large dimension exist (see Chapter 3).
Hence, the gap between idim(P) and dim(P) may be arbitrarily large.

Let Z = {I;,..., I} be an open interval realizer of P and let (a%.(, b%() be the
interval corresponding to x € P in a fixed representation of I;. We now find a
boxr embedding of P to RK. With x € P we associate the box I; (a), b)) C
RX. Each of these boxes is uniquely determined by its upper extreme corner
Uy = (bk,...,b%) and its lower extreme corner ly = (al, ..., aX). Obviously,
x <y in P iff ux <1y componentwise. The projections of a box embedding onto
each coordinate yield an interval realizer, so the concepts of box embeddings
and interval realizers are equivalent. For interval dimension the box embeddings
thus play the role of the point embeddings into R¥ introduced by Ore for order

dimension.

69
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A box embedding does not only depend on the realizer Z of P, but also on
the representations of the I;. Now we define the poset B(Z) of extreme corners
associated with a box embedding or, equivalently, with an interval realizer Z of
P. The vertices of B(Z) are lx,ux for x € P. The order relation of B(Z) is given
by the componentwise order in R,

By definition we have an embedding of B(Z) in R¥, so dim B(Z) < k = idim(P).
The starting point of our investigations was the following question concerning the
interplay between dimension and interval dimension:

Is dimB(Z) = idim(P) ?

In the next section we define a transformation P — B(P) such that idim(P) =
dim B(P). We provide two interpretations of this transformation, a combinatorial
one and a geometrical one. In the combinatorial interpretation the elements of
B(P) are subsets of P. For the geometrical one we present a normalizing procedure
Z — I* for box embeddings and find B(P) = B(Z*). From the proofs we obtain
an affirmative answer to the question above.

In the third section we then investigate several consequences of the main
result. First, we study the transformation P — B(P) on special partial orders of
height 1. In particular we show that the standard example Sy of an n-dimensional
order is an (almost) fixed point of the transformation P — B(P) in particular
dim(Syn) = idim(Sy).

Second, we investigate the relationship with the split operation [Tr1]. This has
a surprising consequence for the iterated transformation P — B(P) — B?(P) —
...BX(P) = .... For every n there are partial orders P such that 0 < dim(P) —
dim BX(P) < 2 for all k < n but dim(P) —dim B! (P) > m, where m is arbitrary.

Third, we relate the interval dimension of subdivisions of P to the dimension
of P, thus providing a theoretical framework for the examples of Spinrad [Sp].

Finally, we show the comparability invariance of the transformation P — B(P),
which, as a consequence, gives another proof that the interval dimension is a

comparability invariant.

5.2 Reducing Interval Dimension to Dimension

In the last section we defined the poset B(Z) of extreme corners associated with
a box embedding of P in R¥. We now show that B(Z) inherits some structure
which is independent of the realizer Z leading to the box embedding.
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Lemma 5.1 Let B(Z) be the poset of extreme corners of a box representa-

tion of a partial order P

a) If the lower extreme corners of x and y are comparable in B(Z), e.g.,
lxy <y, then the predecessor sets of x and y in P are ordered by inclusion,

i.e., Predp(x) C Predp(y).

b) If the upper extreme corners of x and y are comparable in B(Z), e.g.,
uyx < Uy, then the successor sets of x and y in P are ordered by (reversed)

inclusion, i.e., Succp(x) 2 Succp(y).

c) I the lower extreme corner of x and the upper extreme corner of y
are related by 1y < uy then Predp(z) O Predp(x) for all z € Succp(y) or,
equivalently, Predp(x) C (1) Predp(z).

zeSuccp(y)

d) If uyx <1y then [ Predp(z) C Predp(y).

zeSuccp(x)
Proof. a) From 1y < 1y we obtain a; < aL for all j. Therefore in each Ij, x has
less predecessors than y, i.e., Predj(x) C Pred;(y). The claim now follows from
Predp(x) = ﬂjPredj(X) since the I; realize P.
b) The proof of this part is symmetric to part a).
c) From 1y < uy we have aic < b{'J. If z € Succ(y), then necessarily ajZ > bL > a;.
Hence, Pred;(z) 2 Pred;(x) for all j. The claim follows.
d) From uy < ly we immediately obtain x < y, i.e., y € Succ(x), therefore,
Pred(y) 2 () Pred(z). O

zeSucc(x)
All statments except the conclusion part of b use only the sets Predp(x) and

(] Predp(z). This irregularity is resolved with the next lemma.
zeSuccp(x)

Lemma 5.2 (] Pred(z) O (1) Pred(z) if and only if  Succ(x) C Succ(y).
zeSucc(x) zeSucc(y)

Proof. The ‘if’ direction is trivial. We now prove the ‘only if’ direction. Let

z € Succ(x) and note that y € ﬂzeSucc( )

we obtain y € Pred(z), hence z € Succ(y). O

Pred(z). From the assumed inclusion

Definition 5.1 With each vertex x of a partial order P = (X, <) we asso-

ciate the lower set L(x) = Predp(x) and the upper set U(x) = () Predp(z),
zeSuccp(x)
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the case x € Max(P) is settled by the convention U(x) = X.
Define B(P) = {L(x), U(x) : x € X} ordered by setinclusion.

Note that this construction is in fact equivalent with Cogis’ construction in the
context of Ferrers dimension [Col]. Cogis also uses L(x), but replaces U(x) by
the equivalent set {z € X : Succ(x) C Succ(z)}. He also proves Theorem 5.2, but
in a different way and without the geometrical interpretation that our approach

is based on.

The preceding lemmas prove that Iy — L(x) and uyx — U(x) together form
an order preserving mapping from B(Z) to B(P), hence,

idim(P) > dim B(Z) > dim B(P). (5.2)

To get more structure into interval realizers we now introduce a procedure
that transforms an interval extension I = { (ax,bx) : x € P} of P into its nor-

malization I* = { (a}, by) : x € P}.

e In the first step of the normalization we update left endpoints.
ay = max{bz : z € Pred(x)} if x € P\ Min(P),

ay = min{a; : z € Min(P)} otherwise.

e In the second step we update right endpoints.
by = min{a} : z € Succ(x)} if x € P\ Max(P),
by = max{b; : z € Max(P)} otherwise.

Note that the interval order I* need not be isomorphic to I. In general I*
is a suborder of I and a minimal interval extension (see [HMR] for minimal
interval extensions) of P if all the ay, bx were different.

If P is realized by Z = {I,,..., Iy} then Z* = {Ij,..., I} realizes P as well.
We call the box embedding corresponding to Z* the normalized box embedding
of Z. For an example see Figure 5.1.

After normalizing we have a realizer 7* = {Ij, ..., I} } of P, interval represen-
tations (a,bl) and an associated poset of extreme corners B(Z*) = {t,ug
x € P}. The next theorem shows that the geometrically defined B(Z*) and the

combinatorially defined B(P) are isomorphic.

Theorem 5.1 If Z* is a normalized realizer of P then B(Z*) = B(P).
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[
=

Y
Y

Figure 5.1: P, an interval realizer of P and its normalization

Proof. First observe that both partial orders have a least element generated by
x € Min(P) as 1 and L(x), respectively, and a greatest element generated by
x € Max(P) as uj and U(x), respectively.

Moreover, 1; — L(x) and uj — U(x) defines an order preserving mapping by

the above remarks. To show the converse we distinguish four cases:

U(x) C L(y). We know that x € U(x), so x € Pred(y). Since [} is an interval
extension of P, we obtain b} < a}j for all j. Hence uj < [y

L(x) C L(y). Remember that af = max{b : z € Pred(x)} and ajy* =
max{b} : z € Pred(y)}. By assumption Pred(x) C Pred(y), so a} < a} and
<l

U(x) € U(y). By Lemma 5.2, this is equivalent to Succ(x) 2 Succ(y). Now
uy <y follows symmetrically to the second case.

L(x) € U(y). Since I is normalized, there are zo € Pred(x) and z, € Succ(y)

with @}’ = b}, and b)) = a);. The hypothesis provides zy < z;, hence a} =

b;o < b]Z’; < a;j = bL*. The validity of this inequality for all j again gives
L <. O
Now we are going to prove our main theorem about interval dimension and

dimension.
Theorem 5.2 dim B(P) = idim(P).

Proof. The inequality dim B(P) < idim(P) was a simple consequence of the def-

inition of B(P). For the converse we need two arguments. We first show that a
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linear extension L of B(P) induces an interval extension I} of P. Secondly, we
prove that if Ly,..., Ly is a realizer of B(P), then the induced interval extensions
I = ILj form an interval realizer of P.

Let L = My, Ms,..., My be a linear extension of B(P). For each x € P there
are i,j € {1,...,71} such that Mj = L(x) and M; = U(x). From L(x) € U(x) and
x € L(x), x € U(x) we obtain that i <j. So we can associate with x the unique
interval (ax,bx) = (i,j). We now show, that the interval order I induced by
the interval representation { (ax,bx) : x € P} is an extension of P. If x <y in P,
then U(x) C L(y), and thus, with My = U(x) and Mj = L(y), bx =1 <j = qy,
which implies x <y in Ij.

Let {Ly,...,Lx} be a realizer for B(P). The induced family of interval exten-
sions {Ij, ..., I} of P is an interval realizer iff all incomparabilities x||y of P are
realized. If x||y in P, then U(x) Z L(y) since x € U(x) but x ¢ L(y). Therefore,
L(y) precedes U(x) in some Lj, which gives a{, < b%.(. The symmetric argument
yields an i with a}c < bb. Both inequalities together give x||y in ﬂj L. a

This theorem together with Inequality 5.2 shows that dim B(Z) is independent

of the interval realizer 7.

5.3 Consequences

In the previous section we introduced the operation P — B(P) mapping partial
orders to partial orders. We will now investigate several connections to other
order-theoretical topics and results. Since B(P) always has a greatest and a least
element, we adopt the convention to call orders with this property closed and
denote by Q the closure of any partial order Q, i.e., the order resulting from Q
by adjoining a new greatest and a new least element.

We first look at the effect of the operator B applied to special classes of orders.

5.3.1 Crowns and the Standard Examples

Let Sy, denote the standard poset of dimension n, i.e., the set of all subsets of an

n element set with either 1 or n — 1 elements ordered by setinclusion. Then

B(Sn) = Sn (5.3)
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Let C; denote the r-cycle. The r-cycle is the 3-dimensional poset on 2r
elements {x1,Y1,X2,Y2,...,%r, Yr} with comparabilities.

X1 < Y1,Y1 > Xo, X2 < Yo,...%r < Yr,Yr > X1
B(Cy) = Cy (5.4)

Let the diagram of T be a tree. The truncation of T, denoted by tr(T), is the

induced tree on the non-leaf vertices of T. Then

B(T) = tr(T) (5.5)
In particular 5.3 shows that the standard example Sy, of a n-dimensional order
is (up to closures) a fixed point of the operation P — B(P), thus showing again
that, for every n > 3, there is a poset P with dim(P) = idim(P) = n.

5.3.2 B and the Split Operation

We now turn to the natural question, whether, for every closed order Q there is
some P with Q = B(P). The next theorem answers this question affirmatively.
Moreover it turns out that the operation P — B(P) is an almost left inverse of
the split operation S which has applications in different branches of poset theory,
see, e.g., [Trl, Fr, Fe]. The split S[P] of an order P is the poset of height one with
minimal elements {x’ : x € P} maximal elements {x" : x € P} and ordered pairs

X' <y"iff x <yinP.

Theorem 5.3 B(S[P]) = P.

Proof. For x € P let Pred[x] = Pred(x) U {x}. Obviously, P is isomorphic to
the setsystem {Pred[x] : x € P} ordered by inclusion. We will show that the sets

of B(S[P]) are just the ‘primed’ sets Pred[x], i.e, (Pred[x]) = {x’' : x € Pred[x|},
together with the greatest element {x’,x” : x € P} and the least element (). We

have
L(x') =0, and
U(x') = () Pred(z") = (] (Pred[z])’. Since x € Succ[x], U(x") C (Pred[x])".

z'"eSucc(x!) zeSucc[x]

On the other hand, Pred[x] C Pred[z] for z € Succ(x). Together, this gives
U(x") = (Pred[x])’. Similarly, we obtain

L(x") = Pred(x") = (Pred[x])'. Finally,

U(x") = {x',x" : x € P} by definition since Succ(x") = (. O
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It is easy to verify that
B(P) = B(P). (5.6)
So we may generalize the theorem to

:} TN closures
B“(S“[P]) = P (5.7)
Investigations on the effect of iterated splitting to the dimension [TM1] lead to
the inequality

dimP <dimS"P] < 2+dimP foralln (5.8)

As a consequence of (5.7) and (5.8) we obtain that, for every n there is an order
P such that

dimP —dimB*(P) < 2 forall k <.

Just take P = S™[Q] for some order Q. If we choose Q, however, to be an m
dimensional interval order we obtain a large difference in dimension with the next

iteration, i.e.,

dimP —dimB™(P) > m—1. (5.9)

5.3.3 The Interval Dimension of Subdivisions

With the next theorem we relate the interval dimension of subdivisions of P to
the dimension of P. Spinrad [Sp] showed that the dimension of a subdivision
of a partial order can be an arbitrary multiple of its dimension, thus answering
Trotter’s Problem 4 in [Tr2]. With our result, we establish a theoretical framework
for his examples.

In this context, partial orders and their diagrams are regarded as directed
graphs whose edges (x,y) correspond to ordered pairs and cover pairs x < y
of P, respectively. An edge (x,y) is subdivided by placing a new vertex z in
the ‘middle’ of the edge, i.e., (x,y) is replaced by (x,z) and (z,y). In the case
of partial orders we then have to ensure transitivity, i.e., all edges (a,z) with
a € Pred[x] and (z,b) with b € Succ[y] are also added.

The complete diagram subdivision DS(P) is the subdivision of all edges of

the diagram of P. The complete subdivision CS(P) is the subdivision of all the
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edges of P, i.e., of the transitively closed relation. Since P is an induced suborder
of each of its subdivisions Sub(P), and since Sub(P) is an induced suborder of
CS(P), we obtain

dim(P) < dim Sub(P) < dim CS(P). (5.10)
With the next theorem we give an upper bound for idim Sub(P).
Theorem 5.4 idim Sub(P) < idim DS(P) = idim CS(P) = dim(P).
Proof. Take any embedding of P into R¥ with k = dim(P) and grow the points
to obtain an embedding by ‘miniboxes’. An interval embedding of a subdivision
Sub(P) is then obtained by adding the box with lower extreme corner uy and

upper extreme corner ly for the point z subdividing the edge (x,y) — see Figure
5.2. This gives idim Sub(P) < dim(P) for every subdivision Sub(P).

Y
Y

Figure 5.2: P, a minibox embedding of P and the box embedding of DS(P).

To prove that idim DS(P) = idim CS(P) = dim(P) we will show that P can be
embedded in B(DS(P)). This will give dim(P) < dim B(DS(P)). From Theorem
5.2 we know idim DS(P) = dim B(DS(P)) so we obtain dim(P) < idim DS(P).

To show that P can be embedded in B(DS(P)) we apply the normalizing pro-
cedure to the box embedding Z of DS(P) constructed in the first paragraph of
the proof. During the normalization we can only shift the left endpoints of
intervals corresponding to elements in Min(P) and the right endpoints of ele-
ments in Max(P). We then embed P into the lower extreme corners of the mini-
boxes of the normalized representation Z*. This gives dim(P) = k = idim(Z*) =
idim(DS(P)). 0
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Note that we obtained, in fact, a slightly stronger result: If CS(P) 2 Sub(P) D
DS(P), then B(Sub(P)) = VS(P), where VS(P) denotes the vertical split of P, i.e.
the order obtained from P by substituting each vertex by a 2—chain. In [TM2] a
distinct proof for dim(P) = idim VS(P) has been given.

5.3.4 Comparability Invariance of Interval Dimension

For the definition and basic facts on comparability invariance see [Ha]. Let
Comp(P) be the comparability graph of P. We will show that Comp(B(P)) is
a comparability invariant of P in the sense that if Comp(P) = Comp(Q) then
Comp(B(P)) = Comp(B(Q)). Together with Theorem 5.2 and the known fact
that dimension is a comparability invariant, this gives an alternative proof of the
comparability invariance of interval dimension in the finite case. The compara-

bility invariance of interval dimension was first shown in [HKM].
Theorem 5.5 Comp(B(P)) is a comparability invariant of P.

Proof. Let A be an autonomous subset of P. It is enough (see e.g. [DPW]) to
show that Comp(B(P)) = Comp(B(PQd)), where PQd denotes the order resulting
from substituting A by its dual A4 in P.

Note first that B(A) = {L(a),U(a) : a € A} is a closed suborder of B(P). Let

B(A) be B(A) without its greatest element 1g 4 and its least element Og . Our
claim is that B(A) is autonomous in B(P). To see this, observe first that, for each
a € A, we can decompose Pred(a) into Pred(a) = Pred(A) U Preda(a), hence,
the same is valid for all elements of Bf(x) On the other hand, the elements of
B(P) \ B(A) either contain all of A or their intersection with A is empty. Now if
M € B(P) \ B(A) contains all of A then it also contains Pred(A) and M is above

all sets in B(A). If M C Pred(A) then M is below all sets in B(A). In all the
other cases M is unrelated to all of Bf(x) This gives the claim.

To settle the theorem we again need an analogue of (5.6), namely B(A9d) =
B(A)Y. Consider a normalized box embedding of A in R¥. Its extreme corners
are an embedding of B(A) into R¥. Flip the embedding, i.e., reverse the relations,
this gives an embedding of A% and the extreme corners form an embedding of

B(A)d. O

As we have seen, autonomous sets in P induce autonomous sets in B(P). The

converse, however, is far from being true. Take as P a prime interval order, then
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B(P) is a chain. Hence P has none but B(P) has (‘B(Qp)‘) —1 nontrivial autonomous

sets.

5.3.5 Remarks on Computational Complexity

The transformation P — B(P) obviously can be computed in polynomial time,
thus this paper also explains and reproves the earlier noticed coincidence in com-
plexity for the recognition of partial orders of fixed (interval) dimension [Ya], and
the related complexity status of recognizing trapezoid graphs [Ch, MS, HM]. In
particular, it answers the questions of Dagan, Golumbic and Pinter [DGP] about
the comparability invariance of interval dimension and the recognition of interval

dimension at most 2 in a very direct and simple way.
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Chapter 6

Tolerance Graphs

6.1 Introduction and Overview

An undirected graph G = (V,E) is called a tolerance graph if there exists a
collection Z = {Ix | x € V} of closed intervals on the line and a (tolerance)

function t: V — R* satisfying
{x,u} € E <= |[IxNIy| > min(ty, ty)

where |I| denotes the length of the interval I. A tolerance graph is a bounded
tolerance graph if it admits a tolerance representation {Z,t} with |Ix| > tx for
all x € V.

Tolerance graphs were introduced by Golumbic and Monma [GM]. We sum-
marize two of the results proved there. If all tolerances ty equal the same value
c, say, then we obtain exactly the class of all interval graphs. If the tolerances
are ty = |Ix| for all vertices x, then we obtain exactly the class of all permutation

graphs. Furthermore, the following theorem was proved.

Theorem 6.1 Every bounded tolerance graph is the complement of a com-

parability graph, i.e., a cocomparability graph.

The most important article on tolerance graphs is due to Golumbic, Monma
and Trotter [GMT]. We summarize some of the results shown there in the next

theorem.

81
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Theorem 6.2

(1) A tolerance graph must not contain a chordless cycle of length
greater than or equal to 5.

(2) A tolerance graph must not contain the complement of a chordless
cycle of length greater than or equal to 5.

(3) A tolerance graph admits an orientation such that every chordless

) cycle is oriented as shown in Figure 6.1.

Figure 6.1: Alternating orientation of Cy4

Remark. A graph G is called alternatingly orientable if there is an orientation
of G such that around every chordless cycle of length greater than 3 the directions
of arcs alternate. As a consequence of the preceding theorem, we obtain that
tolerance graphs are alternatingly orientable, (see [Br] for more information on
this class of graphs).

In this chapter we report on some results which may be useful for a complete

answer to the following open problems.
Problem 6.1 Characterize tolerance and bounded tolerance graphs.

Problem 6.2 Is the intersection of tolerance graphs and cocomparability

graphs exactly the class of bounded tolerance graphs?

6.2 Tolerance Graphs and Orders of Interval
Dimension 2

The starting point of this work is a representation theorem for bounded toler-
ance graphs. Let G = (V,E) be a bounded tolerance graph with representation
{Z,t} and Iy = [ax,bx]. We now define interval subgraphs G', G? of G. Let
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G! be represented by the intervals I, = [ax + tx,bx] and G? by the intervals
2 = [ax, bx — tx]. It is easy to verify that G = G' U G?. Since G! and G? are co-
comparability graphs of interval orders P! and P2, respectively, the comparability
graph of P = P'N P2 is the complement of G. Therefore G is the cocomparability
graph of an order with interval dimension at most 2. A special feature of the
interval realizer {Z',Z?} of P is that |I}| = |I2] for all x € V. In the spirit of
the term box embedding introduced in Chapter 5, we call such a representation

a square embedding. The construction is illustrated in Figure 6.2.

A
by |
tx : : :
: square
: of z
AxU.|. ...t IR
_———1 >
ax tx by

Figure 6.2: The square corresponding to [ax, byx] and tolerance ty

Conversely, let P = (X, <) be an order of interval dimension < 2 that admits
a square embedding. We claim that the cocomparability graph of P (CoComp(P))
is a bounded tolerance graph. Let {Z',Z%} constitute a square embedding of
P, and let the corresponding intervals of x be given by I = [al, al + k] and
2 =[aZ, a2 +1]. We now fix some s € R such that s > max,x( aZ —ay ). The
cocomparability graph of P is the bounded tolerance graph given by the intervals
Ix = [aZ,s + a} + k] and the tolerances txy = s + ay — az.

We have thus shown the following strengthening of Theorem 6.1.

Theorem 6.3 A graph G is a bounded tolerance graph iff G is the cocom-
parability graph of an order P with interval dimension at most 2 which

has a square representation.



84 CHAPTER 6. TOLERANCE GRAPHS

Cocomparability graphs of orders with interval dimension at most 2 are known
as trapezoid graphs. An observation similar to ours is used by Bogart et al.
[BFIL] to show that the class of bounded tolerance graphs coincides with the
class of parallelogram graphs, i.e., trapezoid graphs where every trapezoid is a

parallelogram.

There exist orders of interval dimension 2 which do not admit a square rep-

resentation. This is shown with the following example.

Example. It is easy to see that the graph G given in Figure 6.3 is not alter-
natingly orientable. An orientation which is alternating on the cycles (3,4,7,8),
(7,8,5,6),(5,6,1,2) and (1,2, 4, 3)) and contains 3 — 4 would require 7 — 8,5 —
6,1 — 2,4 — 3 a contradiction. Therefore, G is not a tolerance graph.

On the other hand, G = CoComp(P), and the order P has a box embedding
which proves that idim(P) = 2.

Y

Figure 6.3: The graph G = CoComp(P) and the order P.

Until now, we only dealt with bounded tolerance graphs. As a consequence
of the next theorem, we will obtain: Ewvery tolerance graph which is a co-
comparability graph is a trapezoid graph. This will be useful later when we
characterize all tolerance graphs that are complements of trees and could be of

use as well for a solution to Problem 6.2.
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Theorem 6.4 The intersection of cocomparability graphs and alternat-

ingly orientable graphs is contained in the class of trapezoid graphs.

The main ingredient into the proof of this theorem will be a characterization
of orders of interval dimension 2 (Lemma 6.1), which is due to Cogis [Co] (also
[1]). Let P = (X, <) and x <y, z < t be a 242 in P. We call the pairs (x,t) and
(z,y) the diagonals of the 2+2. With P we now associate the incompatibility
graph Fp.

e As vertices of Fp we take the pairs (x,y) and (y,x) whenever x||y.

e Two vertices of Fp are connected by an edge iff they are the diagonals of a

common 242 in P.
Lemma 6.1 (Cogis) idim(P) < 2 iff Fp is bipartite.

Cogis obtained this result in the more general context of the Ferrers-dimension
of directed graphs. His definition of the incompatibility graph associated with a
directed graph is somewhat more involved (see [HM], pages 5-7, for details). In
the case of an antireflexive and transitive digraph (i.e., a partial order), however,
an easy case analysis shows that we have chosen the right definition.

Proof. (Theorem) We have to show that idim(P) > 2 implies that CoComp(P)
is not alternatingly orientable.

Let P with idim(P) > 3 be given. From Lemma 6.1 we know that Fp contains
odd cycles. Fix an odd cycle C = [(x1,Y1), (X2,Y2), - . -, (Xak1, Yokp1) (X1,Y1)]
in Fp. If (x{,yi) and (xq,,,Yi,,) are consecutive elements of C then, by the
definition of Fp, [X{,Yi, Uit1, Xit1, Xi) is @ 4-cycle in CoComp(P). Therefore:

(%) An alternating orientation of CoComp(P) will either contain the two

arcs x; — Yi and yi,; — xj,, or the two arcs y; — x; and x;,; —
Yiqr-

Assume that an alternating orientation A of CoComp(P) is given, w.l.o.g. we
may require X; — Y to be in A. Using (*) we obtain that ys — x5 is in A. Using
(*¥) again, we obtain that x3 — ys is in A. Repeating this argument we finally
find X911 — Ysk,1 and hence y; — x; in A. This contradicts the existence of

an alternating orientation. O
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6.2.1 Some Examples

After having obtained the previous theorem I had the idea that the intersection of
cocomparability graphs with alternatingly orientable graphs and the intersection
of cocomparability graphs with tolerance graphs could be the same. In this part
we will separate several classes of graphs by examples.

We first need a definition. Let P = (X, <) be an order of interval dimension
2 with a realizer, i.e., a box embedding, I, = { [al,bl] : x € X}, I, =
{ [a2,b2] : x € X}. We say x,y € X have crossing diagonals if the line

segments (ay, ax) — (by, b) and (ay, ajj) — (by, by) intersect in R

Lemma 6.2 If an order P of interval dimension 2 has a boxr embedding

without crossing diagonals then G = CoComp(P) has an alternating orien-

tation.

Proof. We first indicate how to define an alternating orientation on G. Using
the coordinates of the box of x we define two regions in the plane (see Figure
6.4).
R'(x) = { (w,v) : u> a) and v < b2 and dist[(u, V), (b), a2)] < dist[(u, V), (ak,b2)] }
R?(x) = { (u,v) : u< bl and v > a2 and dist[(u,v), (bL, a2)] > dist[(u,v), (ak, b2)] }.
Note that if x||y then the diagonal of the box of y has to intersect either R!(x)

A
2
2 :
ax

Figure 6.4: The regions defined by a box.

Y

or R?(x). Tt can not intersect both, since, there are no crossing diagonals. If the
diagonal of y intersects R!(x) we orient the edge {x,y} from x to y and if the
diagonal of y intersects R?(x) we orient it from y to x.

We now have to show that the orientation of G is alternating. Since G is a

cocomparability graph we only have to deal with cycles of length 4. A C4 in G
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corresponds to a 242 in P. With this remark, it is not hard to verify that our

orientation is alternating on the cycle. a

Consider the cocomparability graph G of the order P given in Figure 6.5.
From Lemma 6.2 we know that G is alternatingly orientable, but due to a cyclic
dependence among the boxes of a,b,c, and d there is no square representation
of P. Therefore, G is not a bounded tolerance graph. But note that, whenever
any box is deleted from the picture, the representation can be transformed into a
square representation. Hence G is a minimal obstruction for the class of bounded

tolerance graphs.  The example is quite stable with respect to this property,

B [
H 8]
[3] Hlﬁl
[a 1]
21 [4

>

Figure 6.5: The complement of this order is alternatingly orientable but not a
bounded tolerance graph.

we may add an arbitrary subset of the following comparabilities to P, without
affecting it.
1<3,2<4,5<7,6<8

In Theorem 6.6 and Theorem 6.7 we will exhibit more examples containing
several infinite families of obstructions for the class of bounded tolerance graphs.

It would be quite hard to give a rigorous proof that the graph G from the
previous example is no tolerance graph at all. Our aim, however, is to exhibit
cocomparability graphs which possess an alternating orientation but are not tol-
erance graphs. This can be done using some more notation.

A vertex x of G is called assertive if for every tolerance representation {Z, t}
of G replacing tx by min(ty, |Ix|) leaves the tolerance graph unchanged. An
assertive vertex never requires unbounded tolerance. Therefore, if every vertex of
a tolerance graph G is assertive then G is a bounded tolerance graph. In [GMT]

the following sufficient condition for a vertex to be assertive is shown.
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Lemma 6.3 Let x be a vertex in a tolerance graph G = (X, E).
If Adj(x) \ Adj(y) # 0 for all y with {x,y} & E, then x is assertive.

Lemma 6.4 If G = (X, E) is not a bounded tolerance graph then 2G is not
a tolerance graph. Here 2G is the graph on two copies Xi, Xy of X with
edges {x1,xz2} for all x € X and {x;,y;} for all {x,y} € E. That is, we

replace each verter of G by a 2 clique to obtain 2G.

Proof. It is easy to check that every vertex in 2G meets the conditions of Lemma
6.3, i.e., is assertive. Therefore, if 2G is a tolerance graph it will also be a bounded
tolerance graph. This, however, is impossible since even G is not a bounded

tolerance graph. a

Now consider the order given in Figure 6.6. The cocomparability graph of
this order is just 2G if G is the graph corresponding to Figure 6.5. We have seen
that G is not a bounded tolerance graph, so 2G is not a tolerance graph, but 2G

has an alternating orientation since again there are no crossing diagonals.

= 0
ill ill
o=

Figure 6.6: The complement of this order is alternatingly orientable but not a
tolerance graph.

6.2.2 Cotrees and More Examples

Complements of trees are cocomparability graphs. In [GMT] it is suggested to
take them as an initial step towards a solution of Problem 6.2. Using Theorems
6.3 and 6.4 we obtain
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Figure 6.7: Relations of tolerance graphs to other classes of graphs.

Theorem 6.5 If T is the complement of a tree T, then the following con-

ditions are equivalent:

(1) T is a tolerance graph.

(2) T is a bounded tolerance graph.

(3) T is a trapezoid graph.

(4) T is a tolerance graph.

(5) T contains no subtree isomorphic to the tree Ts of Figure 6.8.

Proof. If T is a tolerance graph then, by Theorem 6.4, T is the comparability
graph of an order of interval dimension 2, i.e., T is a trapezoid graph. Orders
which have trees as comparability graphs are of height one. In a box realizer,

of a height one order with interval dimension 2, we can grow the boxes of maxi-
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;/i\\ y

Figure 6.8: The trees Ty and Ts.

mal elements upwards and boxes of minimal elements downwards to make them
squares. Therefore, if T is a tolerance graph, then T is a bounded tolerance graph.

If T is a bounded tolerance graph then, trivially, it is a tolerance graph, and
by Theorem 6.3 it is a trapezoid graph. This gives the equivalence of (1),(2) and
(3).

For the equivalence of (3) and (5) we need a characterization of those trees
which are the comparability graphs of orders of interval dimension 2. In chapter
5 we showed that for every poset idim(P) = dimB(P) . If T is a tree then B(T)
is the truncation of T, i.e., the tree obtained by cutting down the leaves of T
(see page 75). Among the irreducible orders of dimension 3 there is only one tree,
namely Ts. From this we obtain that Ts is the unique tree among the obstructions
against interval dimension 3.

For the remaining equivalence, i.e., to show the equivalence of (4) with (5) we
refer to [GMT]. O

We now come back to minimal obstructions for the class of bounded tolerance
graphs. A quite simple observation will provide us with many examples.

It is well known that a graph G is both a comparability graph and a cocom-
parability graph iff G and G are comparability graphs of orders of dimension 2.
An order P is called 3—irreducible if dim P = 3, but whatever vertex x we remove
from P we obtain an order of dimension 2, i.e., dim(Py) = 2 for all x.

Now let P be 3-irreducible and G = Comp(P). G is not a bounded tolerance
graph since it is not a cocomparability graph. But if we remove any vertex x from
G then Gy will be the cocomparability graph of an order of dimension 2. This
order has an embedding by points, hence, a square embedding by minisquares.

Therefore, Gy is a bounded tolerance graph.

Theorem 6.6 If P is a 3—irreducible order then the comparability graph of

P is a minimal obstruction for the class of bounded tolerance graphs.
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Remark. A complete list of 3—irreducible orders has independently been com-
piled by Kelly and by Trotter and Moore (see [KT]). They found 10 isolated

examples and 7 infinite families.

We now turn to a second large class of obstructions. Recall that in the proof of
Theorem 6.5 we gave evidence that a height 1 order of interval dimension 2 admits
a square embedding, i.e., its cocomparability graph is a bounded tolerance graph.
An order P is called 3—interval irreducible if idim(P) = 3 but whatever vertex x
we remove from P we obtain an order of interval dimension 2, i.e., idim(Py) = 2.

Now let P be a 3—interval irreducible order of height 1 and G = CoComp(P).
From idim(P) = 3 we conclude that G is not a tolerance graph. But if we remove
any vertex x from G then Gy is the cocomparability graph of an order posessing

a square embedding. Hence G is a bounded tolerance graph.

Theorem 6.7 If P is a 3-interval irreducible order of height 1 then the
cocomparability graph of P is a minimal obstruction for both the class of

tolerance graphs and the class of bounded tolerance graphs.

Remark. A complete list of the 3—interval irreducible orders of height 1 has been

compiled by Trotter [Tr]. There are 3 isolated examples and 6 infinite families.

We close this chapter with a last example. Let N(x) = Adj(x) U {x} denote
the neighbourhood of a vertex x in G. A set of vertices {x;,x3,x3} is called an
asteroidal triple if any two of them are connected by a path which avoids the
neighbourhood of the remaining vertex. In [GMT] it is shown, that cocompara-
bility graphs do not contain asteroidal triples, hence, bounded tolerance graphs
are asteroidal triple-free as well. More information on asteroidal triple-free graphs
is given in [COS].

All examples of tolerance graphs which are not bounded tolerance graphs
given in [GMT] are not asteroidal triple-free. Therefore, it seems plausible to
conjecture that every tolerance graph which is not bounded contains an asteroidal
triple. Using Theorem 6.6 we now show that this is not true in general.
Example. Let G be the comparability graph of the order Hy from the list of 3—
irreducible orders, see Figure 6.9. This graph is a tolerance graph and asteroidal

triple-free, but, by Theorem 6.6 it can not be a bounded tolerance graph.
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Figure 6.9: G = Comp(Hy) and a tolerance representation of G.
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