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2PrefaceThis thesis is based on my research on partially ordered sets and specially inter-val orders, that began when I came to Berlin in 1988. Professor R.H. M�ohringintroduced me to the �eld, I like to thank him for stimulations and guidance overthe years. Beside the introduction, the thesis combines �ve chapters that havein common the central role played by interval orders. On the other hand, theyare only loosely connected and so I decided to make the chapters self-contained.To emphasize the independency of the chapters references are given at the end ofeach one. Articles and books, that are of signi�cance to the general theme andhave been consulted without being cited directly, are collected in the referencesof the introduction. An outline of the contents of the thesis can be found in thepreview at the beginning of the introduction. All further chapters are opened bya section called `Introduction and Overview'. That special section may serve asan extended abstract for the contents of the chapter, it also gives the relationshipto the existing literature.I am indebted to many people for encouragement and discussions. Specialthanks go to Tom Trotter, Lorenz Wernisch and the members of our group `dis-crete algorithmical mathematics' which provided an ageeable and creative atmo-sphere.Stefan FelsnerBerlin, February 1992
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Chapter 1Introduction
1.1 PreviewHere we only give a very brief survey of the contents of this thesis. For moredetailed information on the subject of a single chapter we refer to introductorysections, called `Introduction and Overview', there we also relate our own resultsto the existing literature.A family (Ix)x2X of intervals on the real line may be used to de�ne a partialordering on X. We put x < y if a 2 Ix and b 2 Iy implies a < b. A partial orderI = (X;<) thus obtained is called an interval order. In this chapter we introducebasic terminology and facts about partial orders, linear extensions and intervalorders that are used throughout all parts. The next three chapters then deal withproblems for interval orders that are known to be NP-complete for general partialorders.In the next chapter we consider the jump number problem. That is, we arelooking for a linear extension of I which has a minimal number of adjacent pairsthat are incomparable in I. We introduce parameters � and � of an interval orderand prove a close relationship with the jump number.(1) The jump number of an interval order is at least max( � ; �+ ���3 ).(2) A linear extension with at most � + �2 jumps can always be found. Thisis an approximation ratio of 32 .(3) There is a polynomial algorithm which decides whether the jump numberis exactly �.(4) It is NP-complete to decide whether the jump number is exactly �+ ���3 .Chapter 3 deals with the dimension of interval orders. The dimension of a partial5



6 CHAPTER 1. INTRODUCTIONorder is the minimal dimension of an euklidean space that admits an embedding ofthe order. We �rst use the concept of marking intervals to obtain easy proofs forsome logarithmic bounds. Afterwards, we introduce the step-graph of an intervalorder. A partition of the arcs of the step-graph into semi-transitive classes leadsto a realizer. This observation is used to give more bounds, particularly, a doublylogarithmic bound. Motivated by the proof of the lower bound for the dimensionof interval orders we, �nally, study colorings and arc-colorings of digraphs andstep-graphs.In Chapter 4 we directly deal with colorings, namely with the chromatic num-ber of the diagram of an interval order. It is shown that 2 + logn colors alwayssu�ce for diagrams of hight n. On the other hand, there are interval orders ofthis hight, such that the diagram requires 1 + logn colors. The construction ofgood colorings relies on the existence of certain sequences of sets of colors (�-sequences). An upper bound for the length of �-sequences is given and we showthat �-sequences of this length correspond to level accurate Hamiltonian pathsin the Boolean lattice. In Boolean lattices of order � 9 we could construct suchpaths.Chapter 5 deals with the interplay of interval dimension and dimension. Wede�ne a transformation P ! Q between partial orders, such that the dimensionof Q and the interval dimension of P agree. We provide two interpretations ofthis transformation, a combinatorial one and a geometrical one. These two in-terpretations are used for several consequences: We relate the interval dimensionof subdivisions of an order P to the dimension of P. We give a new proof for thecomparability invariance of interval dimension.Finally, in the last chapter, we deal with tolerance graphs. The complementof a bounded tolerance graph has an orientation as partial order of interval di-mension 2. This order admits a square representation while general orders ofinterval dimension 2 require non-square rectangels in their representation. Thisobservation is the starting point for our invertigations about the relations be-tween several classes of graphs. Some of our results are: If the complement of atolerance graph admits an orientation as partial order, then this order has inter-val dimension 2. We give an example of an alternatingly orientable graph that isthe complement of an order of interval dimension 2 but is not a tolerance graph.We also characterize the tolerance graphs among the complements of trees.



1.2. PARTIALLY ORDERED SETS 71.2 Partially Ordered SetsIn this and the next section we introduce necessary terminology and basic resultsabout partially ordered sets, linear extensions and interval orders.A strict partial ordering R on a (�nite) set X is a binary relation on X suchthat(1) (x; x) is not in R for any x 2 X.(2) if (x; y) and (y; z) are in R then (x; z) is in R.Condition 1 is the irreexivity of R and Condition 2 says that R is transitive.Note, that as a consequence of the two conditions we obtain that R is antisym-metric, i.e., if (x; y) 2 R and x 6= y, then (y; x) is not in R.In some situations it is appropriate to use the idea of a reexive partialordering. This is a relation R which is reexive (i.e., (x; x) is in R for eachx 2 X), antisymmetric and transitive. The di�erence between a strict and areexive ordering is normally clear from the context, and the word ordering mayrefer to either kind of ordering.A set X together with a partial ordering R on X is called a partially orderedset and denoted by (X; R). We often abbreviate `partially ordered set' as eitherordered set, order or poset. The commonly used notation for a partially orderedset P is P = (X;<) in the case of a strict ordering, and P = (X;�) if the orderingis reexive. We then write x < y instead of (x; y) 2< and y > x to mean x < y.There is a further abuse of notation which should be mentioned. If P = (X;<) isa poset we sometimes write x 2 P or (x; y) 2 P instead of x 2 X and x < y. Thecomparability graph of a poset P = (X;<), denoted Comp(P), is a graph on X,its edges are the comparabilities of P, i.e., fx; yg is an edge if either x < y ory < x.A binary relation R on a set X can be represented graphically by a directedgraph (digraph for short). We represent the elements of X as points and usearrows (arcs) to represent the ordered pairs in R. When the binary relationis a partial ordering the graphical representation can be simpli�ed. Since therelation is understood to be transitive, we can omit arrows between points that areconnected by a sequence of arrows. When the graphical representation is orientedsuch that all arrowheads point upwards, we can even omit the arrowheads as theexample in Figure 1.1 shows. Such a graphical representation of a poset in whichall arrowheads are understood to point upwards is also known as the diagram



8 CHAPTER 1. INTRODUCTION(or Hasse diagram) of the poset.
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Figure 1.1: A poset and its diagram.Let P = (X;<) be a partially ordered set. A subset of X is called a chain ifevery two elements in the subset are comparable. Note that if fx1; x2; : : : ; xkgis a chain in P, then there is some rearrangement of indices, such that xi1 <xi2 < : : : < xik. We refer to the number of elements in a chain as the lengthof the chain. The height of an element x 2 P, denoted by height(x), is thelength of the longest chain x1 < x2 < : : : < x, i.e., of the longest chain ending inx. The height of a poset P, denoted height(P), is the length of a longest chainin P. A subset of X is called an antichain in the poset P = (X;<) if no twodistinct elements in the subset are related. A pair x; y of unrelated elements isalso called an incomparable pair and denoted by xjjy. The width of a partiallyordered set P = (X;<), denoted width(P), is the maximal size of an antichain inP. For example in the poset P of Figure 1.1, fa; c; gg; fb; d; gg and fa; dg arechains, and fc; d; e; fg; fa; fg and fb; eg are antichains, the height of c is 2, whileheight(P) = 3 and width(P) = 4.Let P = (X;<) be a partially ordered set. An element x in P is called aminimal element if there is no y with y < x, the set of all minimal elementsof P is denoted by Min(P). An element x in P is called a maximal element ifthere is no y with y > x, the set of all maximal elements is denoted by Max(P).If P is the poset of Figure 1.1 then Min(P) = fa; b; eg and Max(P) = fg; hg. Anelement x is said to cover another element y, denoted x � y, if x > y and thereis no element z with x > z > y. Note that the covering pairs of an order P areexactly the edges in the diagram of P.As an illustration of the concepts of chains and antichains in partially ordered



1.2. PARTIALLY ORDERED SETS 9sets we present two theorems that show a close relationship between them.Theorem 1.1 Let P = (X;<) be a partially ordered set. The height of Pequals the minimum number of antichains required to cover the elementsof P.Proof. Let C be a chain of length height(P). Since an antichain may contain atmost one element of C, a covering of P by antichains requires at least height(P)antichains.For the converse we use induction on the height of P. Let height(P) = nand M = Min(P). Clearly, M is a nonempty antichain. Consider now the posetP0 = (XnM;<) and note that height(P0) = n�1. By induction, P0 can be coveredby n� 1 antichains. Thus P can be covered by n antichains. 2The dual of this theorem is given next. It is known as Dilworth's theorem.Theorem 1.2 (Dilworth) Let P = (X;<) be a partially ordered set. Thewidth of P equals the minimum number of chains needed to cover theelements of P.Proof. Let A be an antichain of size width(P). Since any chain may contain atmost one element of A, a covering of P by chains requires at least width(P) chains.For the converse we use induction on jXj, the number of elements in P. Let Cbe a maximal chain of P. If C nontrivially intersects every maximum antichain,then we remove C and use induction. Otherwise, there is a maximum antichainA disjoint from C. Set AU = fx 2 X j x � a for some a 2 Ag and AD = fx 2X j x � a for some a 2 Ag. Note that C � AU would imply, by maximality ofC, that the minimal element of C is in A. Similarly, C 6� AD. Hence jAUj < jXjand jADj < jXj. By induction AU and AD both can be covered with jAj chains,which have the elements of A as maximal respectively minimal elements. Atthese points the chains of AU and AD can be put together. Since A is maximal,AU [AD = X and we obtain a covering of P by jAj chains. 2The probably most important family of partial orders are the Boolean lat-tices. The Boolean lattice Bn is the set of all subsets of f1; 2; : : : ; ng ordered byinclusion, i.e., A < B i� A � B. As a nice application of chain coverings we willnow derive another classical theorem of poset theory. It is known as Sperner'stheorem.



10 CHAPTER 1. INTRODUCTIONTheorem 1.3 (Sperner) Let A be an antichain of subsets of an n-set.Then jAj � � ndn2 e� :Proof. We use induction on n. For n = 1 the claim is trivially true.If C = (S1 < S2 < : : : < S`) is a chain of length ` > 1 in Bn�1. ThenC1 = (S1 < S2 < : : : < S` < S` [ fng) and C2 = (S1 [ fng < S2 [ fng < : : : <S`�1 [ fng) are chains in Bn. Now, let fC1; C2; : : : ; Ctg be a minimal family ofchains covering Bn�1. By induction t = � n�1dn�12 e�. Note that every chain Ci hasto contain a set from the antichain of ln�12 m{element sets.Now consider the collection C consisting of the chains C1i ; C2i , if the length ofCi is at least 2, together with the chains C1i , if the length of Ci is one. It can beseen that C is a chain covering of Bn. Moreover, every chain in C contains a setof size ln2 m. Therefore, C consists of � ndn2 e� chains and and every antichain in Bnhas at most this size. 2A poset P = (X;<) which is a chain is called a linear order. Let L = (X;<L)be a linear order, we then write L = x1; x2; : : : ; xn as an abbreviation for x1 <Lx2 <L : : : <L xn. An extension Q of a poset P = (X;<P) is a poset on thesame elements with x <Q y whenever x <P y. Of special importance are thoseextensions of P which are linear orders, they are called linear extensions.A linear extension L = x1; x2; : : : ; xn of P = (X;<) induces a partitionL = C1; C2; : : : ; Cm of P into chains. The chains in this partition are maxi-mal segments of L such that the elements in the segment are pairwise comparablein P, consequently maxCi 6� minCi+1 for each i. The problem of minimizing thenumber of chains in a partition induced by a linear extension is the jump numberproblem. In the context of this problem it is useful to view linear extensions asthe result of an algorithmic process. A generic algorithm for linear extensions isAlgorithm 1.1.Using appropriate speci�cations of the subroutine choose we may obtainevery linear extension of P as output of the algorithm. With the proof of thenext lemma we give an application of this freedom of speci�cation.Lemma 1.1 Let P = (X;<) be a poset and xjjy. Then there is a linearextension L of P which takes x before y, i.e., x <L y.



1.2. PARTIALLY ORDERED SETS 11Algorithm 1.1:Linear ExtensionL = [ ] (* the empty list *)for i = 1 to n dochoose( xi 2 Min(P) )L = L+ xiP = P n fxigoutput LProof. Specify the choice in the following way: Choose any element distinctfrom y, as long as Min(P) 6= fyg. Using this rule y is chosen exactly whenP = fz 2 X j y < zg. Since x is not in this set we will �nd x somewhere before yin L. 2Note that the intersection of two partial orderings is again irreexive andtransitive, that is a partial ordering. With this in mind we can state anotherclassical theorem.Theorem 1.4 (Dushnik and Miller)Every poset P is the intersection of its linear extensions.Proof. This is an immediate consequence of Lemma 1.1. 2A family of linear extensions of P such that P is their intersection is called arealizer of P. Note that for each incomparable pair xjjy in P there must be twolinear extensions L1; L2 in a realizer with x <L1 y and y <L2 x, we then say thepair x; y is realized by L1; L2. The size of the smallest realizer of P = (X;<) iscalled the dimension of P and abbreviated dim(P). Some authors prefer the moreprecise names order dimension or Dushnik{Miller dimension. Nowadays,dimension theory is a strong branch in the theory of partially ordered sets. Thisis documented by the recent book of Trotter [Tr], which gives a comprehensivesurvey.Let fL1; : : : ; Lkg be a realizer of an order P. With every x 2 P we associatethe vector (x1; : : : ; xk) 2 IRk, where xi gives the position (coordinate) of x in Li.This mapping of the points of P to points of IRk embeds P into the componentwiseordering of IRk. Ore de�ned dim(P) as the minimum k such that P embeds intoIRk in this way. Since the projections of such an embedding on each coordinateyield a realizer, the two de�nitions are equivalent (see Figure 1.2).
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gfcdhaeb hgedbfcaFigure 1.2: A 2-dimensional poset P and an embedding of P in the plane.Lemma 1.2 A poset P = (X;<) is two dimensional i� there is a mappingof the elements x 2 X to intervals Ix on the real line, such that x < y i�Ix � Iy.Proof. We �rst claim that there is no loss of generality if we only deal with fami-lies (Ix)x2X of intervals containing a common point. To see this, note that for anypositive number M, we may increase each interval in length by M symmetricallyabout its center, without a�ecting the containment relation.A geometric argument then proves the lemma. Let r 2 IR be a point with r 2Tx2X Ix. Take r as pivot and turn the left side of the axis up, thus transformingthe intervals into hooks. The construction is illustrated in Figur 1.3. It shouldbe clear how to carry out the converse construction. 21.3 Interval OrdersLet (Ix)x2X be a family of intervals on the real line. This family may be used tode�ne a graph and two partial orderings on X.intersection graph: Edges correspond to pairs of intersecting intervals. Thatis G = (X; E) is the intersection graph of the family if E = f fx; yg :Ix \ Iy 6= ; g. A graph obtained in this way is called an interval graph.



1.3. INTERVAL ORDERS 13
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aedbc edcbara e db c a bc d eFigure 1.3: A two dimensional order in two representations.containment order: The ordering on X is given by proper containment, i.e.,x < y i� Ix � Iy. As we have seen in Lemma 1.2, the class of posetsobtained in this way is exactly the class of 2-dimensional orders.visibility order: Here we put x < y if, when looking to the right, every pointof Ix can see every point of Iy. In other words x < y i� Ix is entirely to theleft of Iy. A partial order obtained in this way is called an interval order.In each of the three cases the collection (Ix)x2X is called an interval rep-resentation. In many arguments we will have to refer to the endpoints of theintervals corresponding to the elements x 2 X. To simplify these references let usadopt the convention that [ax; bx] is the interval of x, i.e., ax is the left and bxis the right endpoint.From the de�nitions, we immediately obtain.Lemma 1.3 G = (X; E) is an interval graph i� it is the cocomparabilitygraph of an interval order. That is, there is an interval order I = (X;<)such that fx; yg 2 E i� xjjy in P.With Pred(x) = fy 2 X : y < xg we denote the set of all predecessors of x inP = (X;<). Dually, Succ(x) = fy 2 X : x < yg denotes the set of all successorsof x.There are several important characterizations of interval orders, we combinesome of them in the next theorem.
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1.3. INTERVAL ORDERS 15and Succ(x) then are not related by inclusion. The dual argument shows that (3)implies (4).We �nally prove that (3) implies (1). Let P1 � P2 � : : : � P� be the chain ofsets of predecessors. For x 2 X let ax 2 f1; : : : ; �g be such that Pred(x) = Paxand let bx be the least index with x 2 Pbx, if such an index does not exist, i.e.,if x 2 Max(P), we de�ne bx = � + 1. Note that since x 62 Pred(x) we alwayshave ax < bx. We claim that the open intervals (ax; bx) for x 2 X representP. If x < y then x 2 Pred(y), hence bx � ay and the interval of x precedesthe interval of y. On the other hand, if xjjy then x 62 Pred(y) implies ay < bxand y 62 Pred(x) implies ax < by. Therefore, the intervals of x and y intersect.This representation of an interval order by open intervals with integer endpointsis called the canonical representation. 2Of course, if we would have applied the dual construction to prove that (4)implies (1), the resulting interval representation would be the same, i.e., thecanonical representation. As a consequence we obtain that the number of di�erentsets of predecessors agrees with the number of di�erent sets of successors, thisnumber, denoted by �, is called the magnitude of the interval order.If we replace the open intervals (ax; bx) of the canonical representation bythe (possibly degenerate) intervals [ax; bx� 1] we obtain a closed representationwith endpoints in f1; : : : ; �g. Therefore, every �nite interval order has open andclosed representations. In fact the magnitude � of an interval order I is the leastpositive integer n for which I has a closed representation with integer endpointsin f1; : : : ; ng.With an interval order I = (X;<) we can associate two special linear orderings.In the (increasing) Pred{order we have x < y i� Pred(x) � Pred(y) or Pred(x) =Pred(y) and Succ(x) � Succ(y), elements with equal holdings, i.e., elements withidentical sets of predecessors and of successors, are ordered arbitrarily. In the(decreasing) Succ{order we have x < y if i� Succ(y) � Succ(x) or Succ(y) =Succ(x) and Pred(y) � Pred(x), elements with equal holding are again orderedarbitrarily. Note that Pred{order and Succ{order are linear extensions. In general,the Pred{order of I and the Succ{order of I need not be the same.An interval order I = (X;<) is called a semi-order i� I has an intervalrepresentation ([ax; bx])x2X such that bx � ax = 1 for all x 2 X. We close theintroduction with mentioning the characterization theorem for semi-orders.
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Chapter 2The Jump Number of IntervalOrders
2.1 Introduction and OverviewLet L = x1; x2; : : : ; xn be a linear extension of P. Two consecutive elementsxi; xi+1 of L are separated by a jump i� xi is incomparable with xi+1 in P;sometimes we call this the `jump after xi'. If xi < xi+1 the pair xi; xi+1 is calleda bump. The total number of jumps of L is denoted by sP(L) or s(L). The jumpnumber s(P) of P is the minimum number of jumps in any linear extension, i.e.s(P) = minfsP(L) : L is a linear extension of PgA linear extension L of P with sP(L) = s(P) will be called optimal.The jump number has been introduced by Chein and Martin [CM]. Theminimization problem, `determine s(P) and �nd an optimal linear extension', hasbeen shown to be NP-hard even for bipartite orders (Pulleyblank [Pu], M�uller[M�u]). Nevertheless, e�cient methods for jump-minimization have been foundfor large classes of partially ordered sets such as N-free orders (Rival [Ri]), cycle-free orders (Du�us, Rival, Winkler [DRW]) or orders with bounded decompositionwidth (Steiner [St]). In this chapter we consider the jump number problem oninterval orders.In the next section it is shown that the jump number problem can be reducedto a choice problem: �nd an appropriate �rst element for an optimal lin-ear extension. We then give some algorithms using di�erent choice rules. Inparticular the greedy rule and some derivates of the greedy rule are investigated.17



18 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERSThe third section deals with lower bounds for the jump number of intervalorders. These bounds are derived from a so-called auxiliary list, which is a rep-resentation of interval orders which is close to a linear extension.The auxiliary list is used in section four for the analysis of two algorithms.First we study the T-greedy algorithm (Felsner [Fe1]), which has a performanceratio of 3/2. That is, if P is an interval order and L is the linear extension ofP generated by the T-greedy algorithm, then s(P) � 32sP(L). Approximationalgorithms with the same performance bound have recently been proposed bySys lo [Sy] and Mitas [Mi2].We then give an algorithm based on bipartite matching which recognizes defectoptimal interval orders. Mitas [Mi1] obtained the �rst polynomial recognition ofdefect optimal interval orders. Earlier, a subclass of defect optimal interval ordershas been characterized by Faigle and Schrader [FS2].In general, approximation algorithms are the best we can hope for. Thisresults from the NP-competeness of the jump number problem on interval orders(Mitas [Mi2]). In section �ve we give a modi�ed proof of her result, which nicely�ts into the theory developed before.A di�erent light is shed on the complexity of the jump number problem oninterval orders by a recent result of de la Higuera [Hi]. He shows, that the jumpnumber problem is polynomial on the class of semi-orders.2.2 Greedy Linear Extensions and Starting El-ementsIn the context of the jump number problem it is useful to view linear extensionsas being constructed by the generic algorithm, (Algorithm 1.1 on page 11). Note,that the choice made for the ith element determines whether the pair xi�1; xiis a jump or a bump. This suggests the idea of guiding the choices, such that,elements producing bumps are preferred. This idea leads to the greedy algorithm,Algorithm 2.1.Linear extensions constructed by the greedy algorithm are called greedy linearextensions. Part of the interest in greedy linear extensions has its origin in thefollowing theorem.



2.2. GREEDY LINEAR EXTENSIONS AND STARTING ELEMENTS 19Algorithm 2.1:Greedy AlgorithmL = [ ]for i = 1 to n doif Min(P)\ Succ(xi�1) 6= ; dochoose( xi 2 Min(P) \ Succ(xi�1) )elsechoose( xi 2 Min(P) )L = L+ xiP = P n fxigoutput LTheorem 2.1 (Rival, Zaguia)Every poset P has a greedy linear extension which is optimal.Proof. Call an element xi nongreedy in L = x1; x2; : : : ; xn, if for Q = P nfx1; x2; : : : ; xi�1g we have Min(Q)\Succ(xi�1) 6= ; and xi 62 Min(Q)\Succ(xi�1).Note, that linear extensions without nongreedy elements are exactly the greedylinear extensions.Now assume that P has no optimal greedy linear extensions. For a linearextension L of P let ng(L) be the least index of a nongreedy element in L (if L isgreedy let ng(L) = n+ 1). Our assumption impliesr = maxfng(L) : L optimal g � n:Now let L = y1; y2; : : : ; yn be an optimal linear extension with ng(L) = r. De�neL0 = y01; y02; : : : ; y0n as follows.� y0i = yi for i < r� Choose z 2 Min(P n fy1; : : : ; yr�1g) \ Succ(yr�1) and let y0r = z� If z = yk then y0i = yi�1 for r < i � k� y0i = yi for i > kThe linear extensions L and L0 only di�er in three consecutive pairs, namely,(yr�1; yr), (yk�1; yk) and (yk; yk+1) have been replaced by (yr�1; z), (z; yr) and(yk�1; yk+1). At least two of the pairs in L are jumps, the pair (yr�1; yr) andsince yk is minimal in P n fy1; : : : ; yr�1g also the pair (yk�1; yk). On the otherhand at least the pair (yr�1; z) in L0 is a bump, therefore, s(L0) � s(L), and L0



20 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERSis optimal. But ng(L0) > ng(L) = r, contradicting our assumption and, hence,proving the theorem. 2Rival [Ri] proved that any greedy linear extension of P is optimal if P is an N{free order. Since then a great amount of work has been invested into investigationsof the interplay between greedy and optimal linear extensions. Ghazal et al.[GSZ], for example, characterized greedy interval orders, i.e., interval orders withthe property that any optimal linear extension is greedy.From the algorithms of this section and Theorem 2.1 we conclude that theoptimality of a linear extension only depends on a good choice of x 2 Min(P).Faigle and Schrader [FS1] de�ned the set Start(P) � Min(P) of starting elementsof P as the set of good choices, i.e., Start(P) = fx 2 P : x is the �rst element insome optimal linear extension of Pg.The following two lemmas are valid for the starting elements of arbitrarypartial orders. If P = (X;<), we will use the abbreviation Pa to denote theinduced order on the set X n fag.Lemma 2.1 If a 2 Min(P) and s(P) = s(Pa) + 1, then a 2 Start(P):Proof. Take any optimal extension L0 of Pa. Since a is a minimal element of Pthe concatenation L = a + L0 is a linear extension of P. Counting jumps provesthe optimality of L. 2Lemma 2.2 If a 2 Start(P) and s(P) = s(Pa), then a has a successor whichis a starting element of Pa, i.e, Succ(a) \ Start(Pa) 6= ;.Proof. Let L = a + b + L0 be any optimal linear extension of P starting witha. If b 62 Succ(a), or equivalently if a; b is a jump, then s(Pa) � sPa(b + L0) =sP(L)� 1 = s(P)� 1. This would contradict s(P) = s(Pa), so b 2 Succ(a). Theequalities s(Pa) = s(P) = s(L) = s(b + L0) show the optimality of b + L0 for Pa,so b 2 Start(Pa). 2The next algorithm (Algorithm 2.2) is very similar to the greedy algorithm.The starty algorithm di�ers, however, from the former in that it never fails ingenerating optimal linear extensions.Lemma 2.3 If L is the linear extension of P, which is generated by thestarty algorithm, then sP(L) = s(P), i.e., L is optimal.



2.2. GREEDY LINEAR EXTENSIONS AND STARTING ELEMENTS 21Algorithm 2.2:Starty AlgorithmL = [ ]for i = 1 to n doif Start(P)\ Succ(xi�1) 6= ; dochoose( xi 2 Start(P)\ Succ(xi�1) )elsechoose( xi 2 Start(P) )L = L+ xiP = P n fxigoutput LProof. The proof is by induction on jPj. First note that if L = a+L0 is generatedby the starty algorithm with input P, then with input Pa the starty algorithmproduces L0, w.r.t appropriate choices. Comparing the jump number of L and L0we �nd two possibilities:� If s(L) = s(L0), then the trivial inequality s(P) � s(Pa) and the optimalityof L0 for Pa imply the optimality of L.� Otherwise, i.e., if s(L) = s(L0) + 1, there is a jump after a, hence Succ(a) \Start(Pa) = ; and, by Lemma 2, s(P) = s(Pa) + 1. Again the optimality of L isdeduced from the optimality of L0. 2Corollary. The NP-hardness of the jump number problem implies that, in gen-eral, the identi�cation of starting elements is NP-hard, too.We now turn to interval orders. Here we have slightly more information onstarting elements than given in Lemmas 2.1 and 2.2. From the characterizationtheorem for interval orders (Theorem 1.5), we know, that in an interval orderI = (X;<) the sets of successors of any two elements x; y 2 X are related byeither Succ(x) � Succ(y) or Succ(x) � Succ(y). In the sequel we will oftenrefer to the decreasing Succ{order and especially to the minimal elements in thedecreasing Succ{order, therefore, we introduce a new notation SMin(I) = f x 2X : Succ(x) � Succ(y) for all y 2 Xg.Lemma 2.4 (Faigle, Schrader) Let I = (X;<) be an interval order. Ifa 2 Min(I), then a 2 Start(I) i� a 2 SMin(I) or s(I) = s(Ia) + 1.Proof. In an interval order there can be at most one starting element with



22 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERSs(I) = s(Ia), since only for the Succ-maximal element, which has to be uniquein this case, there may exist b 2 Succ(a)\Min(Ia) as required (see Lemma 2.2).Any other a 2 Start(I) thus ful�lls the equation s(I) = s(Ia) + 1.So it only remains to prove that every Succ-maximal element a is a startingelement. First note that if L = x1; x2; : : : ; xn is optimal and a = xi, then theset fx1; : : : ; xig is an antichain in I, since Succ(xj) � Succ(a) for j � i. Letxk be the �rst element of L with xk > x1, then k > i and g : L 7! g(L) =x2 : : : xk�1x1xk : : : xn is an operator, which does not increase the number of jumps.The linear extension gi�1(L) is optimal and starts with a. 2The preceding lemma motivated Faigle and Schrader [FS1] to o�er the fol-lowing greedy-heuristic for jump minimization in interval orders: Construct agreedy linear extension L extending the decreasing Succ-order that omits jumpswhenever possible. We again present an algorithmic version of this approach(Algorithm 2.3).Algorithm 2.3:Faigle Schrader HeuristicL = [ ]for i = 1 to n doif Succ(xi�1) \ SMin(I) 6= ; dochoose( xi 2 Succ(xi�1) \ SMin(I) )elsechoose( xi 2 SMin(I) )L = L+ xiI = I n fxigoutput LLet L be constructed by the previous algorithm. Faigle and Schrader [FS1]asserted sI(L) � 2s(I). The factor of two, however, is not really correct. Considerthis interval order: a c fb e hd g iThe linear extension of I constructed by the previous algorithm has 7 jumps,it is ajbjcjdjejfjgijh. The optimal linear extension of I only has 3 jumps, it isadjbejcfhjgi. However, with the methods introduced in the next two sectionsthe real factor of their heuristic is easily seen to be less than 3.



2.3. BOUNDS FOR THE JUMP NUMBER OF INTERVAL ORDERS 232.3 Bounds for the Jump Number of IntervalOrdersThe main `tool' in this section will be the auxiliary list L(I) of an interval orderI = (X;<). This list is an almost representation of I, i.e., the list encodes almostall the information required to generate the canonical representation of I. Infact, sometimes we can not recover the left endpoint of an interval. For the jumpnumber problem, however, the list L(I) contains all the relevant information.That is, if two interval orders I and J have isomorphic lists then their jumpnumber is the same. We build up the list L(I) of I in two steps:1. Take the elements of I in decreasing Succ{order (see page 15). We thusobtain a linear extension �L = x1; x2; : : : ; xn.2. We now include some additional information in this list. First observe thatfor every pair xi; xi+1 in the list one of the following three cases applies.(a) Succ(xi) = Succ(xi+1).Call this an �-jump.(b) Succ(xi) 6= Succ(xi+1) and xi+1 2 Succ(xi).This are the bumps of �L.(c) Succ(xi) 6= Succ(xi+1) and xi+1 62 Succ(xi+1).Call this a �-jump.At every �-jump (xi; xi+1) of �L we now �x `a box containing' the setN = Succ(xi) \Min(fxi+1; : : : ; xng). This gives the list L(I).The auxiliary list then looks likeL(I) = L1 +2N1 + L2 +2N2 + : : :+ L� +2N� + L�+1Example. a b c d e f g h



24 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERSGiven this interval order I, we obtain L(I) = a2djb2efjc2gjdjehjfjg and�L(I) =ajbjcjdjehjfjg. As indicated by the rules there are 6 jumps, 3 of them are countedby �.Remarks.1. Note that if xi; xi+1 is a �-jump and we �x x1; x2; : : : ; xi then the greedy al-gorithm would choose as the i+1st element some member of N = Succ(xi)\Min(fxi+1; : : : ; xng).2. The List L is uniquely de�ned up to interchanges of elements having thesame sets of predecessors and successors.3. The linear extension �L could also be generated by the Faigle{Schraderheuristic.4. The Ni are pairwise disjoint, i.e., an element y may appear at most oncein one of the sets Succ(xi) \Min(fxi+1; : : : ; xng).5. If y 2 Ni, for some i, then y is a minimal element of the remaining poset,hence in �L there must be a jump just before y.6. There is another characterization of the I-invariant � of �-jumps in �L.Namely � = n� �, where � denutes the magnitude of the interval order I.An equality involving � and � is � = n� �� bumps(�L).To investigate the performance of algorithms for our problem, it turned outto be useful, to investigate the e�ect of the choices made on � and �. Moreprecisely, if a minimal element x 2 I has been chosen then the � and � of thelists L(I) and L(Ix), respectively, are to be compared. In a �rst application of thistechnique we will derive lower bounds for the jump number from the list versionof the starty algorithm (Algorithm 2.4). We will also refer to this algorithm as`list starty algorithm'.Lemma 2.5 The linear extension �S = �S(L(I)) generated by the liststarty algorithm is an optimal linear extension of I.Proof. With reference to Lemma 2.3, it su�ces to show that there is a run ofthe starty algorithm with input I that generates �S(L(I)). Let �S = x1x2 : : : xn,



2.3. BOUNDS FOR THE JUMP NUMBER OF INTERVAL ORDERS 25Algorithm 2.4:Starty Algorithm (List Version)L = L(I)while there is a �rst 2 in L doL = L+2N + L1 (* decompose L *)J = f x : x 2 L1gif N \ Start(J) 6= ; dochoose( n 2 N \ Start(J) )L = L+ n+ L(Jn)elseL = L+ L1�S = Loutput �Sthe element x1 is in SMin(I), so by Lemma 2.4 we know x1 2 Start(I), and x1 isa suitable �rst choice for the starty algorithm.Suppose the starty algorithm has chosen x1 : : : xi, the �rst i elements of �S.Let J = I n fx1; : : : ; xig. If xi+1 is in SMin(J), then the starty algorithm maychoose xi+1. This is due to Lemma 2.4. Otherwise xi+1 will be an element ofN = Succ(xi) \ Min(J). In this case our algorithm found the decompositionx1 : : : xi +2N + L(J) and selected xi+1 as a starting element. Hence, again, xi+1may be chosen by the starty algorithm. 2As announced before, we now look for an expression of s(�S) in terms of �and �. We begin with the introduction of some new variables. Let c count thenumber of times the while loop is repeated in a run of the list starty algorithm,i.e., c is the number of boxes the algorithm �nds on its way through the list L.Let c0 count the number of times the condition N \ Start(J) 6= ; appears false,i.e., c0 is the number of boxes kept empty.We now turn to the remaining c� c0 boxes, i.e., to the boxes �lled with somestarting element n 2 N. In each of these cases the tail of L, i.e., L0 = L(J) isreplaced by the new list L(Jn). A close look at the way auxiliary lists are builtenables us to characterize the transition L(J) ! L(Jn). Since n 2 Min(J), butn 62 SMin(J), we know that in L0 the element n is preceded by an element x thatis incomparable with n. If Succ(x) 6= Succ(n), i.e. Succ(x) � Succ(n), then in L0we �nd a box between x and n, and possible patterns for the transition are:



26 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERS(1) x2Ni j n2Ni+1 j y ! xy(2) x2Ni j n2Ni+1 j y ! x2Ni[Ni+1 j y(3) x2N j ny ! xy(4) x2N j n j y ! x2N j yRemark. These transitions correspond to:(1) Succ(n) � Succ(y); y 62 Succ(n); y 2 Succ(x):(2) Succ(n) � Succ(y); y 62 Succ(n); y 62 Succ(x):(3) Succ(n) � Succ(y); y 2 Succ(n):(4) Succ(n) = Succ(y).Note that in the auxiliary list we gave preference to the element with maximalset of predecessors in SMin. In the last case above we thus obtain Pred(n) �Pred(y) from the fact that n precedes y in L. This excludes the transitionx2N j n j y ! xyNow let �1; �1 be the jump counters for �L(L+L(J)), and let �2; �2 be thosefor �L(L+n+L(Jn)). Depending on the pattern of the transition L(J) ! L(Jn)we �nd�2 = �1 �2 = �1 � 2 in case (1)�2 = �1 �2 = �1 � 1 in cases (2) and (3)�2 = �1 � 1 �2 = �1 in case (4).If Succ(n) = Succ(x) then the jump xjn between x and n is counted by �.When n is pulled forward, then, with respect to the rest of the list, x takes therole of n. Thus the new jump counters are�2 = �1 � 1 �2 = �1 in case Succ(n) = Succ(x).Now partition the c� c0 starting elements n, which have been pulled forwardby the algorithm, according to the type of transition L(J) ! L(Jn).Let c1 count the transitions of type (1)c2 count the transitions of type (2) and (3)c3 count the remaining transitions.With these de�nitions the validity of the following equations is obvious.c = c0 + c1 + c2 + c3 (2.1)� = c+ 2c1 + c2 (2.2)= c0 + 3c1 + 2c2 + c3 (2.3)At this point we can express s(I) = s(�S) in terms of � and the ci.



2.4. AN APPROXIMATION ALGORITHM 27Lemma 2.6 The jump number of I is s(�S) = �+ c0 + c1 + c2.Proof. In L(I) we distinguish between the jumps counted by � and those countedby �. If we transform L(I) step by step to �S, i.e., for each of the c repetitionsof the while loop in the list starty algorithm we consider �L and observe, whichjumps disappear. We see that disappearance only happens to jumps on the rightside of the current box. Since number and type of disappearing jumps depend onthe transition L(J) ! L(Jn) only, they are counted by the ci. Altogether we notethe disappearance of c3 jumps counted by � and 2c1 + c2 jumps counted by �.Hence s(�S) = � + � � 2c1 � c2 � c3, insert the expression of � given inFormula 2.3 to proof the claim. 2We are ready for the bounds now.Theorem 2.2 If I is an interval order then s(I) � maxn� ; �+ ���3 o.Proof. All the ci are nonnegative, therefore, the �rst bound s(I) � � is anobvious consequence of Lemma 2.6.Since c0 � 0 and c2 � 0 we may relax Equation 2.3 to � � 3(c0+c1+c2)+c3.With c3 � � we obtain � � 3(c0+c1+c2)+�, which is equivalent to c0+c1+c2 �(�� �)=3. This together with Lemma 2.6 yields s(I) � �+ ���3 . 22.4 An Approximation AlgorithmWe start this section at the same point where the last one did end, with somecalculations involving � and �. Our �rst aim will be an algorithm with a 3/2approximation factor. Therefore, it will be useful to have a nicely expressiblelower bound for 32s(I).Lemma 2.7 32s(I) � 32maxf� ; �+ ���3 g � �+ �2Proof. In view of Theorem 2.2 we only have to consider the second inequality.We distinguish two cases.If � � � then 32s(I) � 32  �+ �� �3 ! � �+ �2If � < � then 32s(I) � 32� > �+ �2 2



28 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERSFor reasons of an easy analysis, we �rst state the next algorithm in its listversion (Algorithm 2.5).Algorithm 2.5:T{Greedy Algorithm (List Version)L = L(I)while there is a �rst 2 in L doL = L+2N + L1 (* decompose L *)J = f x : x 2 L1gchoose( n 2 N )L = L+ n + L(Jn)�TG = Loutput �TGWhen comparing this algorithm with the list starty algorithm we note thefollowing.� Both algorithms start with L(I) and transform this list step by step intotheir output.� In each iteration of both algorithms some tail L(J) of L is replaced by L(Jn).� The possible transitions L(J) ! L(Jn) are the same in both algorithms, i.e.those of the previous section.Introducing the transition counters ci we can thus express s(�TG) in terms of �and some ci.Lemma 2.8 The jump number of �TG is �+ c1 + c2.Proof. The proof is almost the same as for Lemma 2.6. The only di�erence isthat now each box found is also �lled up, hence c0 = 0. 2Theorem 2.3 s(�TG) � 32s(I).Proof. In view of Lemma 2.7 and the previous lemma we only have to show that�+ c1 + c2 � �+ �2 . Since � = 3c1 + 2c2 + c3 (see Equation 2.3) and the ci arenonnegative this is obvious. 2It should be evident that the T-greedy algorithm can as well be stated withoutreference to the list L(I). For sake of completeness we also state this version(Algorithm 2.6).



2.5. DEFECT OPTIMAL INTERVAL ORDERS 29Algorithm 2.6:T{Greedy AlgorithmL = [ ]for i = 1 to n doif Min(I) \ Succ(xi�1) 6= ; doif SMin(I) \ Succ(xi�1) 6= ; dochoose( xi 2 SMin(I) \ Succ(xi�1) )elsechoose( xi 2 Min(I) \ Succ(xi�1) )elsechoose( xi 2 SMin(I) )L = L+ xiI = I n fxigoutput L2.5 Defect Optimal Interval OrdersThe defect of a partially ordered set has been introduced in (Giertz, Poguntke[GP]) as def(P) = jPj � rank(MP) where MP is the incidence matrix of P, i.e.,MP(x; y) = 1 i� x <P y, otherwise MP(x; y) = 0. The main result of [GP] isTheorem 2.4 s(P) + 1 � def(P)Remark. Orders with equality, i.e., with s(P) + 1 = def(P), are called defectoptimal. We now give a short and simple proof for this bound (see [Fe2]).Proof. Let L be a jump optimal linear extension of P, i.e., sL(P) = s(P). Orderthe rows and columns of MP according to the order of L. Then MP is an upperdiagonal matrix with a zero diagonal. On the super-diagonal of MP we �nd a 1for each bump and a 0 for each jump (xi; xi+1) of L (see Figure 2.1). Delete the�rst column and the last row of MP (both have all entries 0) as well as all therows and columns corresponding to a 0 on the super-diagonal. The matrix M�Pthus obtained is an upper diagonal. All the entries on the diagonal of M�P are 1,hence, rank(M�P) = size(M�P) = jPj � s(P)� 1. With rank(MP) � rank(M�P) wehave �nished the proof. 2If I is an interval order then we may arrange the rows of MI in Succ{orderand the columns in Pred{order. This leads to a staircase shape of MI (see Figure
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2.5. DEFECT OPTIMAL INTERVAL ORDERS 31If the transition L(J) ! L(Jn) is not counted by c3, then, Succ(x) 6= Succ(n) 6=Succ(y). In L(I) the elements are in decreasing Succ{order, so the element ncontributes an indentation in the staircase shape of the incidence matrix. Weconclude that in this case �(Jn) < �(J). 2We now reformulate the above conditions. In a run of the list starty algorithmwe arrive at s(�S) = � exactly if the following holds.(1) All the boxes found are �lled.(2) For i = 1; : : : ; � let Si be the ith largest set of successors of elements of I. Ineach set Ti = f x : Succ(x) = Sig there is at least one element that is notthe n of any transition made by the algorithm.We now construct a bipartite graph G = (A;B;E) as follows:� As the vertices of A take the Ti for i = 1; : : : ; �.� There are two kinds of vertices in B.Firstly, there are jNjj � 1 copies of each set Nj associated to a box.Secondly, we take those elements of I which do not occur in any Nj.� Let (a; b) be an edge of Gif a = Ti and either b is a copy of some Nj with Ti \Nj 6= ;or b is a vertex of P and b 2 Ti.This construction is illustrated in Figure 2.3.We now show how to reduce the question whether an interval order I is defectoptimal onto a matching problem in G.Theorem 2.5 The jump number of I is � i� G has a matching of size �.Proof. Suppose s(I) = � then there is a run of the list starty algorithm satisfyingconditions (1) and (2) above. By condition (2) we �nd an xi in each Ti whichhas not been the n of any transition. If xi is a vertex of the second kind inB then take the edge (Ti; xi) into the matching. Otherwise xi is an element ofsome Nj use (Ti; b) with a still unmatched copy b of Nj for the matching. Thisnever causes trouble since exactly one n 2 Nj gave rise to a transition, for theremaining elements of Nj the jNjj � 1 copies of Nj su�ce. Each of the � manyTi is �nally matched.
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hc; e; fc; e; fdbaFigure 2.3: An interval order and the associated bipartite graphNow assume that we have found a matchingM � E of size � in G. We use thematching to construct a reduced list LR. First we label the edges of the matchingwith elements of P. The label �(a; b) of an edge (a; b) is(i) b if b is a vertex of P(ii)some element of Ti \Nj if a = Ti and b is a copy of Nj.De�neNj = Nj n f�(a; b) : (a; b) is a matched edge and b is a copy of Njg; .Now let LR be obtained from L by exchanging each box 2N by 2N. If we enterthe list T{greedy algorithm with LR then condition (2) is satis�ed since eachset Ti contains a element xi which does not appear in any N of LR. It remainsto show that we can �ll all the boxes to satisfy condition (1). This can be donesince jNjj � 1 for all j. 22.6 The NP -Completeness ProofIn Theorem 2.2 we have established two lower bounds for s(I). In the last sectionwe saw that the question `s(I) = � ?' can be decided in polynomial time. Incontrast we will now prove that the decision `s(I) = �+ ���3 ?' is NP-complete.Again, we start with extracting necessary and su�cient conditions for equalityfrom the proof of Theorem 2.2.



2.6. THE NP-COMPLETENESS PROOF 33Lemma 2.10 If s(�) = �+ ���3 then c0 = c2 = 0 and c3 = �.Proof. See the proof of Theorem 2.2. In addition we obtain c1 = ���3 . 2The result will be proved by a transformation from the NP-complete problem(X3C) exact cover by 3-sets. For background information on the theory of NP-completeness and the X3C Problem, we refer to Garey and Johnson [GJ]. Thetransformation is due to Mitas [Mi2]. We start with a presentation of the X3CProblem.Exact Cover by 3-setsInstance: A set Y of size 3q for some positive integer q together with a family Fof 3-element subsets of Y.Question: Does F contain an exact cover of Y, that is a subset F0 � F of q pairwisedisjoint subsets of F?We now introduce a construction which associates an interval order I(Y;F) witha given instance (Y; F) of X3C. Let (Y; F) consist ofY = fy01; : : : ; y0ng, n = 3q,F = fT1; : : : ; Tmg, Ti � Y, jTij = 3.The order I(Y;F) will consist of a basis representing the base-set Y togetherwith a T-segment for each T 2 F. The interval representation of I(Y;F) is an openrepresentation, i.e, a representation by open intervals.The basis B is a width 3 interval order consisting of 6 frame intervals a1; : : : ; a6and an interval yk for each y0k 2 Y. The intervals are:a1 = [0; 1] a2 = [0; 2] a3 = [0; 3]yk = [k; k+ 3]a4 = [n + 1; n+ 4] a5 = [n+ 2; n+ 4] a6 = [n+ 3; n+ 4]The T-segment TSi for Ti 2 F consists of 9 intervals. The body of the T-segment consists of 6 short intervals bi0; : : : ; bi4 and ci, namely,bij = [n+ 5i+ j� 2; n+ 5i+ j] and ci = [n+ 5i+ 3; n+ 5i+ 4].The body of the T-segment is connected with the basis by three interval, ti1, ti2and ti3, representing the elements of Ti. If Ti = fti;1; ti;2; ti;3g and ti;j = y0kj thenthe starting points of tij and ykj coincide as well as the ending points of tij andbij, that is



34 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERStij = [kj; n+ 5i+ j].Example. For Y = fy01; y02; y03; y04; y05; y06g and F = ffy01; y05; y06g; fy02; y03; y05gg,the associated interval order is shown in Figure 2.4.

t23t22t21t13t12t11 b24b23b22b21b20 c2c1b14b13b12b11b10y6y5y4y3y2y1 a6a5a4a3a2a1

Figure 2.4: The intervals of the �rst T{segment are `dashed'As a useful consequence of this construction, we can obtain the list L(I(Y;F))by concatenating the list L(B) with the lists L(TSi). To give L(B) in a closedform we need a further de�nition. LetNk = fykg [ f tij : ti;j = y0k gWe then haveL(B) = a12N1 ja22N2 ja32N3 jy12N4 jy22N5 j : : :: : : yn�32Nn jyn�22fa4gjyn�12fa5gjyna6ja5ja4 (2.4)L(TSi) = 2fbi1gjbi02fbi2gjbi1jti12fbi3gjbi2jti22fbi4gjbi3jti3cijbi4 (2.5)We count �(B) = 2 and �(B) = n+2. Each T-segment TSi contributes �(TSi) = 4and �(TSi) = 4. In the concatenated list L(I(Y;F)) we thus have � = 2 + 4m and� = n + 2 + 4m. The lower bound of Theorem 2.2 gives s(I) � 2 + 4m + n3 =2 + 4m+ q. With this we are able to state the main theorem of this section.Theorem 2.6 The jump number of I(Y;F) is 2 + 4m+ q exactly if the X3Cinstance (Y; F) has a solution.



2.6. THE NP-COMPLETENESS PROOF 35Proof. Assume that the X3C instance has a solution F0. Let i(k) and j(k) besuch that y0k = tj(k);i(k) 2 Ti(k) 2 F0. In a run of the T-greedy algorithm choosetj(k)i(k) 2 Nk as the element to be pulled into the box, for all other boxes choosethe unique element contained in the box. This leads to�TG(B) = a1tj(1)i(1)ja2tj(2)i(2)ja3tj(3)i(3)jy1tj(4)i(4)jy2tj(5)i(5)j : : :: : : yn�3tj(n)i(n)jyn�2a4jyn�1a5jyna6 (2.6)�TG(TSi) = bi1jbi0bi2jti1bi3jti2bi4jti3ci (2.7)�TG(TSi) = bi1jbi0bi2bi4jbi3ci (2.8)The case 2.7 applies if Ti is not used for the solution, i.e if Ti 62 F0, otherwise theT-segment of Ti is transformed to 2.8.The basis contributes n+2 = 3q+2 jumps in�TG(B). If Ti 62 F0 then�TG(TSi)contains 4 jumps. In the q T-segments corresponding to Ti 2 F0 only 2 jumps arein �TG(TSi). Altogether, we have s(�TG) = 3q+ 2 + 4m� 2q = 2 + 4m+q andsince �TG achieves the bound of Theorem 2.2 it is optimal.For the converse direction we have to show how to derive a solution of (Y; F)from the fact that s(I(Y;F)) = � + ���3 . We may assume that an optimal linearextension is produced by the list starty algorithm. Here are properties of anoptimal run of this algorithm:1. While scanning the list the algorithm �lls up each box it �nds. This becausefrom Lemma 2.10 we know that c0 = 0.2. The algorithm may never choose yk 2 Nk to �ll a box 2Nk . The corre-sponding transition would be counted by c2, but c2 = 0 by Lemma 2.10.Therefore some ti(k)j(k) 2 Nk is chosen.The claim that proves the theorem is the following: In an optimal run ofthe list starty algorithm from each set Ti 2 F either all three elements ti1,ti2 and ti3 are pulled into their boxes in the base or all three remain in thecorresponding T-segment. The elements chosen from the Nk therefore belongto only q di�erent Ti which constitute an exact cover of Y.To prove the claim we repeatedly apply the following argument:From Lemma 2.10 we know that c3 = �. Since each transition countedby c3 removes an �-jump we may look at �-jumps and decide whichof the two elements is pulled out.



36 CHAPTER 2. THE JUMP NUMBER OF INTERVAL ORDERSRemember thatL(TSi) = 2fbi1gjbi02fbi2gjbi1jti12fbi3gjbi2jti22fbi4gjbi3jti3cijbi4Assume that ti1 has been pulled into the base. When the algorithm �nds 2fbi1ghe has to use the element bi1 to �ll this box. We then have the following situation(overbraced elements may have been pulled out).bi1jbi0bi2 z}|{jti2 2fbi4gjbi3 z}|{jti3 cijbi4Consider the �-jump bi2jti2, for this jump, which is removed from the �nal list,the element ti2 has to be pulled out. From the �-jump bi3jti3 we can only removeti3, and this has to be done. Hence, if ti1 then also ti2 and ti3 have been pulled intothe base.Now assume, that ti1 did remain in the T-segment but ti2 has been pulled out.After �lling the �rst two boxes, with the unique choice, we remain withbi1jbi0bi2jbi1jti1bi3 z}|{jti3 cijbi4Now the �-jump cijbi4 can't be removed, contradicting the optimality condition.Therefore, if ti1 remains then ti2 also remains. Finally, assume that ti3 has beenpulled out. Taking bi3 forward into the box after ti1 we would generate a transitioncounted by c2 contradicting the conditions of Lemma 2.10. Hence, with ti1 allthree tij remain in the T-segment. 2This NP-completeness result together with the existence of 32{approximationalgorithms motivates the following problem.Problem 2.1 For which 32 � � > 1 does an �{approximation algorithm forthe jump number problem on interval orders exist?2.7 References for Chapter 2[CM] M. Chein and P. Martin, Sur le nombre de saunts d'une forêt, C.R.Acad. Sc. Paris, t. 275, s�erie A (1972), 159-161.[DRW] D. Duffus, I. Rival and P. Winkler, Minimizing setups for cycle-free ordered sets, Proc. Amer. Math. Soc. 85 (1982), 509-513.
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Chapter 3The Dimension of IntervalOrders
3.1 Introduction and OverviewA set L1; : : : ; Lr of linear extensions of P is a realizer of P if the intersection ofthe Li equals P. This requires that all incomparable pairs xjjy are realized inthe following sense, there are i; j 2 f1; : : : ; rg with x <Li y and y <Lj x. Thedimension, dim(P), of P is de�ned as the minimum size of a realizer (for a surveyon dimension see [KT]). By a theorem of Yannakakis [Ya] it is in general NP-hardto compute dim(P). For interval orders, however, the complexity of determiningthe dimension is open. In this chapter we try to give a comprehensive survey ofthe knowledge on `dimension of interval orders'.Although interval orders have a somewhat one-dimensional nature, their di-mension can be arbitrarily high. The �rst proof of this [BRT] was essentiallyRamsey-Theoretic. Here we give the more recent argument of [FHRT].For an integer n, let In = (Xn; <) denote the interval order whose elementsare all the closed intervals with integer endpoints from [n] with [i1; i2] < [j1; j2]i� i2 < j1. We call the posets in the family fIn : n 2 INg canonical intervalorders.For integers n; k with n > k, Erd�os and Hajnal [EH] de�ned the shift-graphG(n; k) as the (directed) graph whose vertex set is �[n]k � and whose arc set consistsof all pairs (fx1; x2; : : : ; xkg; fx2; x3; : : : ; xk+1g) where fx1; x2; : : : ; xk+1g 2 � [n]k+1�.In this context we always require the elements of a set fx1; x2; : : : ; xtg to belabeled such that xi < xj whenever i < j. In Section 3 we will develop the chro-39



40 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSmatic number theory of shift-graphs. Here we need the following result (provedas Theorem 3.11 below).Result The chromatic number of the double shift-graph G(n; 3) satis�es�(G(n; 3)) = log logn+ (12 + o(1)) log log lognWe are now able to give the lower bound for the dimension of interval orders.Theorem 3.1 Let n � 4, let In = (Xn; <) be the canonical interval orderand G(n; 3) be the double shift graph. Then dim(In) � �(G(n; 3)).Proof. Suppose that dim(In) = t, and let L1; : : : ; Lt be a realizer of In. Nowde�ne a coloring  : �[n]3 � ! [t] as follows. For each fi1; i2; i3g choose c 2 [t]such that [i1; i2] > [i2; i3] in Lc. We claim that  is a proper coloring of G(n; 3).Suppose, on the contrary, that  (fi1; i2; i3g) =  (fi2; i3; i4g) = c0, i.e., the edgeinduced by the four element set fi1; i2; i3; i4g is incident with vertices of the samecolor. Then in Lc0 we have [i1; i2] > [i2; i3] > [i3; i4]. Since [i1; i2] < [i3; i4] in Inthis contradicts that Lc0 is a linear extension. We conclude that  is a propercoloring of G(n; 3), so dim(In) � �(G(n; 3)). 2In the next section we will study upper bounds for the dimension of intervalorders. First, we introduce the concept of marking intervals. This is then used togive common access to logarithmic bounds in terms of the height [Ra2] and thewidth [FM] of interval orders.Then we investigate the step graph of an interval order and derive bounds forthe dimension from arc-colorings of the step graph.Finally, we sketch the fascinating new construction of F�uredi, Hajnal, R�odland Trotter [FHRT]. They prove that the dimension of a height n interval orderis bounded by a function f(n) which is asymptotically equal to �(G(n; 3)).In Section 3.4 we discuss chromatic and arc-chromatic numbers of directedgraphs and their line graphs. The results are then applied to shift-graphs, giv-ing estimates of their chromatic numbers. A combinatorial interpretation of thechromatic numbers of shift graphs follows.3.2 Some Logarithmic BoundsIn this section we are going to develop upper bounds for the dimension of intervalorders. These upper bounds are proved by giving a rule which generates a realizer



3.2. SOME LOGARITHMIC BOUNDS 41L1; : : : ; Lr of an interval order I, such that the size r of the realizer is bounded bya function f(p(I)), where p is some parameter of interval orders. The parameterswill be the width, the height and the staircase length (see page 45) of I. Themain tool in proving the �rst two bounds will be an alternative de�nition of thedimension of interval orders which relies on the following lemma.Lemma 3.1 Let I = (X;<) be an interval order with a closed representa-tion [ax; bx] and L be a linear extension of I. Then there is a functionm : X! IR such that(1) m(x) 2 [ax; bx].(2) if x <L y then m(x) � m(y).A function m respecting (1) is called a marking function. A marking func-tion having property (2) with respect to L is called an L{marking.Proof. For L = x1; : : : ; xn an L{marking is de�ned bym(xi) := max( axi ; m(xi�1) ).It is obvious that m respects property (2). By de�nition, axi � m(xi). To verifyproperty (1) it remains to show that m(xi) � bxi. Note, that for each i we �ndsome l such that m(xi) = axi�l. Since L is a linear extension we get xi�l 6> xi,hence axi�l 6> bxi. 2Conversely, if m is a marking function of I then with x <Q y i� m(x) < m(y)we obtain an extension Q = (X;<Q) of I. Moreover, m is a L-marking withrespect to every linear extension L of Q.3.2.1 Marking Functions and BoundsA realizer L1; : : : ; Lr of I = (X;<) corresponds to a familym1; : : : ;mr of markingfunctions, such that for every incomparable pair xjjy there are di�erent i; j 2f1; : : : ; rg with mi(x) � mi(y) and mj(x) � mj(y).A special class of linear extensions is obtained if we concentrate on markingfunctions withm(x) 2 fax; bxg, i.e., we choose one of the endpoints of the intervalfor the mark. Such a marking function can be transformed into a Boolean vectorf 2 f0; 1gjXj by f(x) = 0 i� m(x) = ax. A family f1; : : : ; fr of Boolean vectorsgives rise to a realizer of I if for xjjy there are i; j with fi(x) = 0, fi(y) = 1 andfj(x) = 1, fj(y) = 0. We now give two constructions for such a family of Booleanvectors.



42 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSThe �rst construction is essentially the construction of Rabinovich [Ra2]. LetI be an interval order of height h. For 0 � k < h de�ne Hk as the set of elementsof I with height(x) = k. Note that each Hk is an antichain. Moreover, if k < land x 2 Hk, y 2 Hl, then ax < ay.We now look for linear extensions L1; : : : ; Ls of I with the following properties(1) Each Li corresponds to a Boolean vector fi in the sense given above.(2) If x; y 2 Hk then fi(x) = fi(y) for 1 � i � s, i.e., all the elements ofHk are treated in the same manner.(3) For an incomparable pair xjjy with x 2 Hk, y 2 Hl and k < l thereis some fi with fi(x) = 1 and fi(y) = 0, i.e., y precedes x in Li.A family L1; : : : ; Ls of linear extensions with property 3 can be extended to arealizer with a single additional linear extension L�. An appropriate L� is obtainedif the elements of Hk precede the elements of Hl in L� for k < l and the orderof elements of the antichain Hk in L� is exactly the inverse of the order of theseelements in L1.By property (2) we only have to investigate families of vectors with fi 2f0; 1gh. Property (3) then is:(30) for k < l there is some i with fki = 1 and fli = 0.Therefore, if we arrange the vectors fi as the rows of a matrix F then every pairfk; fl of columns of F di�ers in some component. Since F is an s � h matrix weconclude that 2s � h.Now let f1; : : : ; fh be di�erent vectors of length s = dlogh e. We assumethat these vectors have been arranged in reversed lexicographic order to formthe columns of a matrix F, i.e., for 1 � k < l � h, if i is the least componentwith fki 6= fli, then fki = 1 and fli = 0. This is property (30), so the columns ofF give a family of linear extensions with properties (1){(3) and we have provedRabinovich's theorem.Theorem 3.2 The dimension of an interval order I of height h is boundedby dlogh e+ 1.Suppose Y and Z are any two disjoint subsets of X. An injection of Y byZ is a linear extension L such that z precedes y in L if y 2 Y, z 2 Z andyjjz. Rabinovich's proof of Theorem 3.2 made essential use of the followingcharacterization of interval orders.



3.2. SOME LOGARITHMIC BOUNDS 43Theorem 3.3 P = (X;<) is an interval order i� there is an injection of Yby Z for every two disjoint subsets Y and Z of X.Proof. If P is not an interval order then there is a 2+2 in P, let fy1; z1g andfy2; z2g be the two chains. The injection of fy1; y2g by fz1; z2g will not exist.For the converse consider a marking function m with m(y) = by and m(z) =az for all y 2 Y and z 2 Z. 2In the previous construction we partitioned the elements of I into the an-tichains Hk. This time we will make use of a partition into chains. If C and C0are disjoint chains in an interval order I, then all the incomparabilities xjjy withx 2 C and y 2 C0 can be realized with two linear extensions L0;1 and L1;0. Theorder of L0;1 corresponds to the Boolean function f(x) = 0 if x 2 C and f(y) = 1if y 2 C0. For L1;0 interchange the roles of C and C0.Let C1; : : : ; Cw be a partition of I into disjoint chains. By Dilworth's theoremwe may assume that w = width(I). If we decide to treat all the elements of Cithe same, a Boolean vector f 2 f0; 1gw corresponds to a linear extension of I. Afamily f1; : : : ; fr of Boolean vectors fi 2 f0; 1gw gives rise to a realizer of I if(4) for every two components k and l there are i and j, such that fki = 0,fli = 1 and fkj = 1, flj = 0.Let f1; : : : ; fr be a realizer of I in the above sense and arrange the vectors fias the rows of a matrix F of size r�w. By (4) every pair fk; fl of columns of F isan incomparable pair of elements in the Boolean lattice Br, i.e., the columns arean antichain in Br. With Sperner's theorem we obtain � rd r2 e� � w.Now let f1; : : : ; fw be an antichain in the Boolean lattice Br and arrange thefk as the columns of a matrix F. The rows f1; : : : ; fr of F then correspond to arealizer of I. This proves the theorem.Theorem 3.4 The dimension of an interval order I is bounded by r, if ris the least integer with � rd r2 e� � w.Remark. We will frequently need this function in the sequel, therefore, we in-troduce a name for it. LetN(w) = minfr 2 IN : � rd r2 e� � wgCombining the ideas of the previous constructions we can prove another the-orem.



44 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSTheorem 3.5 The dimension of an interval order I which does not containa 1+t is bounded by N(t� 1) + 1.Proof. Let Hk be the set of elements x of I with height(x) = k. The forbiddensuborder guarantees that x < y if x 2 Hk and y 2 Hl with l � k + t � 1. For1 � k < t de�ne H�k as the union of the levels Hk+`(t�1) with ` � 0. We willtreat all the elements of each H�k in the same manner. All inequalities in I canbe realized if we take the linear extensions corresponding to a set f1; : : : ; fr ofvectors in f0; 1gt�1 such that(5) for k 6= l there are i; j with fki = 0, fli = 1 and fkj = 1, flj = 0,together with an appropriate L� which reverses the order in in each Hk relativeto L1. Since properties (5) and (4) are equivalent, a copy of arguments yields thecondition we have to put on r, namely � rd r2 e� � t� 1, i.e., r � N(t� 1). 2Remark. As a consequence of this theorem we obtain another result of Rabi-novich [Ra1]: The dimension of a semi-order is at most 3.3.2.2 The Step-Graph and More BoundsSince we will be concerned with bounds for the dimension of interval orders inthis section too, we may start spending a �xed number of linear extensions andthen investigate, how this set can be augmented to give a realizer. Our initial setconsists of two linear extensions. Let (ax; bx) be the canonical representation ofI = (X;<), thenLup takes x before y if bx < by or bx = by and ax > ay.Ldown takes x before y if ax < ay or ax = ay and bx > by 1.Let xjjy be an incomparability which is not realized by Lup; Ldown, if Ldown takes xbefore y then ax < ay < bx < by. A pair of elements x; y of I with this orderingof endpoints in the canonical representation will be called a step in I.x yFigure 3.1: An example for a step1if x and y have identical intervals then if x is before y in Lup i� y is before x in Ldown.



3.2. SOME LOGARITHMIC BOUNDS 45A family L1; : : : ; Ls of linear extensions of I extends Lup; Ldown to a realizer of I ifevery step is reversed, i.e., if there is an Li taking y before x.The step graph S(I) = (X;U) of an interval order I = (X;<) is the directedgraph with arcs y! x if x; y is a step of I. A (directed) path in S(I) correspondsto a sequence of steps, i.e., a staircase. Let x0 ! x1 ! : : :! xl be a path in S(I),then the left endpoints of the intervals of the xi are ordered by a0 > a1 > : : : > al.This proves the next lemma.Lemma 3.2 The step graph S(I) of an interval order I is acyclic.Let F1; : : : ; Fs be a partition of the arcs of S(I), such that I [ Fi is acyclic forevery i. We then can take linear extensions Li of I [ Fi and obtain a realizerLup; Ldown; L1; : : : ; Ls of I. We now give a necessary and su�cient condition on aclass F, such that I [ F is acyclic. A class F is called semi-transitive if for everypath x1 ! x2 ! : : :! xl in F the (transitive) arc x1 ! xl is in S(I).Lemma 3.3 I [ F is acyclic exactly if F is semi-transitive.Proof. Let x1 ! x2 ! : : : ! xl be a path in S(I) with x1 6! xl. Along thepath we have decreasing endpoints a1 > a2 > : : : > al and b1 > b2 > : : : >bl. Therefore, it is impossible that one of the intervals (a1; b1) and (al; bl) iscontained in the other. The reason for x1 6! xl then has to be a comparability.From a1 > al we conclude xl < x1. If F is a class containing the above path thenF [ I contains the cycle [x0; x1; : : : ; xl; x0].Now, let F be a semi-transitive class and assume that [x0; : : : ; xl; x0] is acycle in I [ F. In this cycle let xi; : : : ; xi+j+1 be a sequence of F-arcs togetherwith the closing comparability, i.e., xi+j < xi+j+1 and xi ! : : : ! xi+j. Bythe semi-transitivity of F we have xi ! xi+j in S(I), hence axi < bxi+j. Thecomparability gives bxi+j � axi+j+1, hence axi < axi+j+1. Let [y0; : : : ; yt; y0] bethe subsequence of elements of [x0; : : : ; xl; x0] which appear as the right hand sideof a comparability xj < xj+1. The starting points of the intervals in this sequenceare strictly increasing, i.e., ay0 < ay1 < : : : < ayt < ay0. This contradicts theassumption. 2Note that, if F is semi-transitive and x! y is the transitive arc of some pathin F, then every linear extension of I [ F will take x before y.



46 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSRemark. Coverings of the arcs of a digraphD = (X;A) by semi-transitive classesand by transitive classes, i.e., partial orders, are equivalent problems. The mini-mal number of partial orders on X whose union covers all arcs of D gives a notionof digraph dimension. Unfortunately, little seems to be known about this conceptof dimension which gives a measure for the intransitivity of D.An arc-coloring of a directed graph is an assignment of colors to arcs suchthat consecutive arcs obtain di�erent colors.Lemma 3.4 An arc-coloring of S(I) with k colors leads to a realizer of Iwith k + 2 linear extensions.Proof. Let F1; : : : ; Fk be the color classes of a proper arc-coloring. No Fi doescontain consecutive arcs, hence, Fi is semi-transitive, and by the previous lemmaI[Fi is acyclic. Let Li, for i = 1; : : : ; k, be a linear extension of I[Fi. Lup, Ldownand the k linear extensions Li together are a realizer of I. 2We now discuss two methods leading to arc-colorings of S(I). They lead us totwo new bounds for the dimension of interval orders.In Section 3.4 Lemma 3.11 we will prove that the arc-chromatic number ofa digraph D is at most N(�(D)). Therefore, we can bound the arc-chromaticnumber of S(I) by estimating the chromatic number.Let ind(x) denote the indegree of the vertex x in S(I) and let ind(S(I)) =maxx2Xind(x). Using the well known list coloring algorithm with a list given bya topological ordering of the vertices of S(I) we obtain a coloring with at mostind(S(I)) + 1 colors. With Lemma 3.11 we then obtain.Theorem 3.6 The dimension of an interval order I is bounded by theexpression N(ind(S(I)) + 1) + 2.Here is a second strategy leading to an arc-coloring of S(I). Label an elementx 2 X with the length of the longest directed path in S(I) which ends in x.Let h(x) be the label of x and h = maxx2Xh(x). Now assume that an arc-coloring of the transitive tournament Th on h points is given. The arc-set ofTh is f(i; j) : i; j 2 f1; : : : ; hg; i < jg. Assigning to (x; y) 2 S(I) the color of(h(x); h(y)) 2 Th, we will obtain a legal coloring of S(I). Therefore, the arc-chromatic number of Th is an upper bound for the arc-chromatic number of S(I).



3.2. SOME LOGARITHMIC BOUNDS 47Arc-chromatic numbers will be discussed later in this chapter (Lemma 3.9), therewe will prove that the arc-chromatic number of Th is dloghe.Since h is just the maximal staircase length of I we obtainTheorem 3.7 The dimension of an interval order I is bounded by theexpression dlog(maximal staircase length of I) e + 2.3.2.3 Open ProblemsWe have obtained bounds for the dimension of an interval order I in terms of theheight of I, the width of I, the minimum t such that I does not contain an 1+tand in terms of parameters of the step graph. For each of this bounds there areinterval orders for which the bound dominates the others. Unfortunately, thereremain interval orders for which all these bounds are poorly bad. We now presentsuch an example.Example. Let I(n;m) be the order de�ned by all the open intervals of length mwith endpoints in [n]. For this order only the bound referring to 1+m is good, itgives the true value, dim(I(n;m)) = 3. If we add all the open length 1 intervalsto obtain I(n;m; 1) this bound also goes up to m. If C = (Y;<C) is a chain,P = (X;<P) is an arbitrary poset and Q = (X [ Y;<Q) induces P on X and C onY, then the dimension of Q does not exceed the dimension of P by more than 2.Therefore, dim(I(n;m; 1)) � 5. In fact dim(I(n;m; 1)) = 3, we leave this as anexercise.This example shall serve as a motivation for the following open problems (see[FHRT])Problem 3.1 Given an interval order I, is it NP-complete to determinethe dimension of I?Problem 3.2 Is it true, that for every n 2 IN there exists some tn 2 IN sothat if I is an interval order with dim(I) � tn then I contains a subposetQ which is isomorphic to the canonical interval order In?



48 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERS3.3 The Doubly Logarithmic BoundWe are now ready for a sketch of the most ingenious construction in the �eld. Itis due to F�uredi, Hajnal, R�odl and Trotter (see [FHRT]).Their work splits into two parts. First they proof an estimate for the di-mension of canonical interval orders. Their bound is asymptotically optimal, i.e.,coincides with the lower bound (Theorem 3.1). In the second part they proof thatthe dimension of a height n interval order is bounded by the size of the realizerconstructed in the �rst part for In+1.Although I did not contribute to the results of this section, proofs are included,since they are a very surprising combination of ideas we have seen earlier in thischapter.3.3.1 Canonical Interval OrdersLet In = (Xn; <) be a canonical interval order. We again start with two speciallinear extensions Lup and Ldown. (Note that this time we have to change thede�nitions slightly, since we de�ned them for the case of open intervals. But Inconsists of closed intervals). We remain with the job of reverting the steps, i.e.,the pairs x; y with ax < ay � bx < by. Now let t � N(logn), i.e., if s = � td t2 e�then n � 2s. We will show that semi-transitive classes F0; F1; : : : ; Ft su�ce tocover the arcs of S(In). This will prove the theoremTheorem 3.8 dim(In) � N(logn) + 3Let M1;M2; : : : ;Ms be the antichain of subsets on level l t2 m of Bt and letf1; f2; : : : ; fn be di�erent column vectors in f0; 1gs, we assume that these functionsare in lexicographic order, i.e., for k < l if i is the least component (row) withfki 6= fli then fki = 0 and fli = 1.Lemma 3.5 (Lexicographic Property) If S � [n] with jSj � 2 and i is theleast component in which the vectors ffk : k 2 Sg are not identical, thenthere is a k0 2 S such that for l 2 S, fli = 0 for l < k0 and fli = 1 for l � k0.Proof. This is an easy consequence of the lexicographic ordering. 2



3.3. THE DOUBLY LOGARITHMIC BOUND 49Let y! x be an arc in S(In), i.e., ax < ay � bx < by. The distinguishingrow of y ! x is the least component i in which the vectors fax; fay; fbx; fbyare not all identical, we will denote this as d(y ! x) = i. It is an immediateconsequence of the lemma that we may classify an arc y! x as balanced, zero-dominant or one-dominant by the following scheme:� y! x is balanced if i = d(y! x) and (faxi ; fayi ; fbxi ; fbyi ) = (0; 0; 1; 1).� y ! x is zero-dominant if i = d(y ! x) and (faxi ; fayi ; fbxi ; fbyi ) =(0; 0; 0; 1).� y ! x is one-dominant if i = d(y ! x) and (faxi ; fayi ; fbxi ; fbyi ) =(0; 1; 1; 1).If y ! x is zero-dominant, then let j be the least component in which thevectors fax; fay; fbx are not all identical. We call j the tie-breaking row andwrite j = tb(y! x). Of course d(y! x) < tb(y! x).If y ! x is one-dominant, then let j be the least component in which thevectors fay; fbx; fby are not all identical. We call j the tie-breaking row andwrite j = tb(y! x). Again d(y! x) < tb(y! x).We now de�ne a labeling  of arcs with  (y! x) 2 f0; 1; : : : ; tg. The classesF0; F1; : : : ; Ft are then de�ned via this labeling: y! x 2 F (y!x).� If y! x is balanced we let  (y! x) = 0.� If y ! x is zero-dominant, i = d(y ! x) and j = tb(y ! x) we choosesome c 2Mi nMj and let  (y! x) = c.� If y ! x is one-dominant, i = d(y ! x) and j = tb(y ! x) we choosesome c 2Mj nMi and let  (y! x) = c.Lemma 3.6 Each of the classes Fc, 0 � c � t, is semi-transitive.Proof. In fact, we will proof that F0 is transitive, and no class Fc, 1 � c � t,does contain consecutive arcs, i.e., they are proper arc color classes in S(In).We �rst deal with F0. Let z ! y and y ! x both be balanced. As arcs inthe step graph they are steps and we have ax < ay � bx < by and ay < az �by < bz. Note that, since they are balanced we have fayd(y!x) = fayd(z!y) = 0 andfbyd(y!x) = fbyd(z!y) = 1. Therefore, d(y! x) = d(y! z), let d = d(y! x).



50 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSIf az � bx we have an arc z ! x in S(In). We claim that z ! x is alsobalanced. Since faxd 6= fbxd we have d(z ! x) � d. If d(z ! x) = d then z ! xis balanced.Otherwise, assume d0 = d(z! x) < d. In the distinguishing row d0 of z! xwe have either faxd0 6= fbxd0 or fazd0 6= fbzd0 . This contradicts either d(y! x) > d0 ord(z! y) > d0.The remaining case is bx < az, i.e., x < z. Recall that d = d(z !y) = d(y ! x) and note that d is the �rst component in which the vectorsfax; fay; fbx; faz; fby; fbz are not all identical. In the distinguishing row we then�nd the pattern (faxd ; fayd ; fbxd ; fazd ; fbyd ; fbzd ) = (0; 0; 1; 0; 1; 1) which violates thelexicographic property. Therefore, if x; z is not a step we cannot have both ofz! y and y! x in F0.Now let y! x be in Fc, 1 � c � t. Our claim is that z! y is not in Fc. Letd = d(y! x) and d0 = d(z! y).Assume that y ! x is zero-dominant, then (fayd ; fbyd ) = (0; 1), therefore,d0 � d.� If z! y is balanced then it is not in Fc:� If z! y is one-dominant then (fayd0 ; fbyd0 ) = (0; 1) and d = d0. As x! y iszero-dominant c =  (y ! x) 2 Md but  (z ! y) 62 Md since z ! y isone-dominant. Hence, c 6=  (z! y).� If z ! y is also zero-dominant then (fayd0 ; fbyd0 ) = (0; 0) and necessarilyd0 < d. In the tie-breaking row t = tb(z! y), however, the lexicographicproperty ensures (fayt ; fbyt ) = (0; 1), therefore, t = d. By de�nition c = (y! x) 2Md and  (z! y) 2Md0 nMd. Hence, c 6=  (z! y).Now assume that y! x is one-dominant.� If z! y is balanced then it is not in Fc:� If z ! y is zero-dominant then t = tb(y ! x) = tb(z ! y) is the �rstcoordinate with (fayt ; fbyt ) = (0; 1). By de�nition c =  (y! x) 2MtnMdwhile  (z! y) 2Md0 nMt. Hence, c 6=  (z! y).� If z ! y is also one dominant, then (fayd ; fbyd ) = (1; 1) and (fayd0 ; fbyd0 ) =(0; 1), hence d0 > d. The tie-breaking coordinate t = tb(y! x) is the �rst



3.3. THE DOUBLY LOGARITHMIC BOUND 51with (fayt ; fbyt ) = (0; 1), therefore, t = d0. By de�nition c =  (y ! x) 2Mt nMd while  (z! y) 62Md0 = Mt. Hence, c 6=  (z! y). 23.3.2 General Interval OrdersFor an interval order I with height(I) = n we now de�ne a mapping � : I! In+1.Let A1; A2; : : : ; An be an ordered sequence of maximal antichains covering all theelements of I. For x 2 X let �(x) = [�x; �x] if A�x is the �rst and A�x�1 is thelast antichain in this sequence containing x. Note that� �x < �y implies x < y� x < y implies �x � �y.Let F1; F2; : : : ; Ft be the family of semi-transitive classes constructed in The-orem 3.8 to cover the arcs of S(In+1). We have seen that dim(In+1) � t+ 3.Now de�ne F�i = fx! y 2 S(I) : �(x) ! �(y) 2 Fig.Lemma 3.7 With F�1; F�2; : : : ; F�t we have a family of semi-transitive classesof arcs of S(I).Proof. If c � 1 the class Fc does not contain consecutive arcs. This property istransferred to F�c, hence for c � 1 the class F�c is semi-transitive.For the case of c = 0 note that in F0 we never have an arc y ! x with�y = �x. This is true since f�y = f�x prevents y ! x from being balanced.With this additional information F�0 is easily seen to be semi-transitive as well. 2It remains to take care for those incomparabilities which are realized by thetwo linear extensions Lup and Ldown of In+1, as well as for the steps x; y with�y = �x. All this can be done with the two linear extensions:L�up takes x before y if �x < �y or �x = �y and �x > �y.L�down takes x before y if �x < �y or �x = �y and �x > �yAs a consequence we obtain:Theorem 3.9 If I is an interval order with height(I) � n then dim(I) � t+3,if t � N(log(n+ 1)).



52 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERS3.4 Colorings of Digraphs and Shift-GraphsIn the �rst part of this section we develop a theory of colorings for directed graphs.In Lemma 3.8{3.11 we exhibit relations between the chromatic number and thearc-chromatic number. As an application, we obtain estimates for the chromaticnumbers of shift-graphs.In the second part, we prove a combinatorial interpretation of the chromaticnumbers of shift-graphs (Theorem 3.12).I guess that all the material presented here belongs to the folklore of the �eld,parts of it can be found in [HE] and [FHRT]. However, when I �rst heard ofthe Erd�os and Hajnal result on the chromatic numbers of shift-graphs (Theorem3.11) it took me some time to reproduce their estimates. The techniques I usedare given in the �rst part.3.4.1 Colorings of Directed GraphsAn arc-coloring of a directed graph is an assignment of colors to arcs suchthat consecutive arcs obtain di�erent colors. The arc-chromatic number A(D)of a digraph D is the minimal number of colors in an arc-coloring of D. Thechromatic number �(D) of a digraph D is de�ned as the chromatic number ofthe underlying undirected graph GD, i.e., �(D) = �(GD). With the next lemmaswe exhibit some connections between A(D) and �(D).Lemma 3.8 For every digraph D chromatic and arc-chromatic numbersare related by: A(D) � dlog�(D) e.Proof. Given an arc-coloring ofD with l colors we will construct a vertex-coloringwith � 2l colors. As colors for the vertices we use boolean vectors of length l.Let cix denote the ith component of the color of x and de�ne cix = 1 i� there isan arc (y; x) of color i.Assume that two vertices u; v of the same color are connected by an arc(v; u). Then the color of the arc (v; u) has to appear as the color of some arc(w; v) conicting with the proper arc-coloring. 2With the next lemmas we investigate converses of Lemma 3.8. We begin witha special case which turns out to be paradigmatic.



3.4. COLORINGS OF DIGRAPHS AND SHIFT-GRAPHS 53Lemma 3.9 Let Tn be a transitive orientation of the complete graph Kn,i.e., a transitive tournament, then A(Tn) = dlogn e.Proof. Since �(Tn) = �(Kn) = n we obtain A(Tn) � dlogn e from the previouslemma.For the converse, let n = 2m, and let the arcs of Tn be given by the pairs(i; j) with i < j and i; j 2 f0; 1; : : : ; 2m � 1g. Assign color m to all the arcs (i; j)with i < 2m�1 and j � 2m�1. The uncolored arcs then induce two independentsubtournaments on 2m�1 points each. The �rst consist of all arcs (i; j) with i; j 2f0; 1; : : : ; 2m�1 � 1g, the second of all arcs (i; j) with i; j 2 f2m�1; : : : ; 2m � 1g.By induction we can arc-color each of them with colors from f1; : : : ;m� 1g. Weobtain a proper arc-coloring of T2m using m colors. 2Lemma 3.10 Every graph G = (V;E) admits an acyclic orientation DG sothat A(DG) = dlog�(G) e.Proof. Let �(G) = k, and let c : V ! [k] be an optimal coloring of G. In DGan edge fu; vg 2 E is oriented as (u; v) i� c(u) < c(v). We use an arc-coloringof the transitive tournament Tk with dlog k e colors (Lemma 3.9) to color (u; v)with the color of (c(u); c(v)) in Tk. Therefore A(DG) � dlog�(G) e.From Lemma 3.8 we obtain the converse inequality. 2Lemma 3.11 For every digraph D chromatic and arc-chromatic numbersare related by: A(D) � N(�(D)).Proof. Let �(G) = k and let an optimal coloring c : V ! [k] be given. Ift = N(k), i.e., � td t2 e� � k, then let M1;M2; : : : ;Mk be an antichain of subsetson level l t2 m of Bt. To an arc (u; v) assign as color some element from the setMc(v) nMc(u). Consecutive arcs (u; v) and (v;w) obtain di�erent colors since thecolor of (u; v) is element of Mc(v) while the color of (v;w) is not in Mc(v). 2The line graph L(D) of a digraph D = (V;A) is the directed graph withvertex set A and arcs (a; b), a; b 2 A if head(a) = tail(b), i.e., a = (u; v) andb = (v;w) for vertices u; v;w 2 V. From this de�nition we immediately obtain:Lemma 3.12 If D = (V;A) is a digraph and L(D) is the line graph of Dthen �(L(D)) = A(D).



54 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSFrom the de�nition of shift-graphs (page 39) the next lemma is immediate.Lemma 3.13 The shift-graph G(n; 1) is the transitive tournament Tn.Higher shift-graphs can be obtained as line graphs, i.e., G(n; k + 1) =L(G(n; k)).We conclude this part with our main theorem on the chromatic number ofshift-graphsTheorem 3.10 logk n � �(G(n; k + 1) � Nk�1(logn)Proof. This is an easy combination of the preceding lemmas. 23.4.2 AsymptoticsHere we give the results of some computations which are required to obtain theErd�os, Hajnal theorem as a consequence of Theorem 3.10.Theorem 3.11 (Erd�os,Hajnal)a) The chromatic number of the double shift-graph G(n; 3) satis�es�(G(n; 3)) = log logn + (12 + o(1)) log log logn :b) The chromatic numbers of higher shift-graphs satisfy�(G(n; k)) = (1 + o(1)) logk�1 n :Proof. From Theorem 3.12 and Remark 3.4.3 below we obtain that �(G(n; 3))is the least integer t with 2( tt2) � n, that is, t � N(logn).Note that by Sterling's formula nn2 ! = 2nq�2n(1 + o(1)) :This and the fact that with n = N(m) we certainly have logn = o(1) logm givesN(m) = logm+ (12 + o(1)) log logm :



3.4. COLORINGS OF DIGRAPHS AND SHIFT-GRAPHS 55That is the � inequality of a).Relax the previous formula to obtainN(m) = (1 + o(1)) logmand note that this impliesNk(m) = (1 + o(1)) logkm ;i.e., the conclusion of b). 23.4.3 A Connection with Lattices of AntichainsA down set in an order P = (X;<) is a set M � X such that x 2M and y < ximplies y 2M. There is a one-to-one mapping between down sets and antichainsgiven by M ! Max(M) and A ! bA = fx 2 P : x � y for some y 2 Ag. Dueto a well known theorem of Dilworth the down sets (antichains) of an order Pform a lattice denoted by A(P). The order relation of this lattice is given by setinclusion, i.e., if M;N 2 A(P) then M < N i� M � N. Note, that we can viewA : P ! A(P) as an operator which maps posets to posets. Let Ak(P) denotethe poset resulting from k applications of A.The next theorem gives a surprising connection between the chromatic num-bers of shift-graphs and the size of certain down set lattices. (The case k = 3of the theorem can be found in [FHRT]). Let [t] denote the t element antichain,i.e., the poset consisting of c pairwise incomparable elements.Theorem 3.12 For all integers n and k the shift-graph G(n; k) is colorablewith t colors if there are at least n elements in the poset Ak�1([t]).Remark. Note that in the case of k = 2 this theorem will give an alternativeproof for Lemma 3.9.Proof. Suppose that a proper coloring of G(n; k) is given by c : �nk�! [t]. LetC0(x1; x2; : : : ; xk) = c(fx1; x2 : : : ; xkg),C1(x2; : : : ; xk) = fC0(x1; x2; : : : ; xk) : for some x1 < x2gand cC1 be the down set generated by C1 inA([t]). For j = 2 : : : k�1 we iterativelyde�ne Cj(xj+1; : : : ; xk) = f dCj�1(xj; xj+1; : : : ; xk) : for some xj < xj+1g



56 CHAPTER 3. THE DIMENSION OF INTERVAL ORDERSwhere dCj�1 is the down set generated by Cj�1 in Aj�1([t]).Next, we show that dCk�1(x) 6� dCk�1(y) for all k � x < y � n. Therefore, allthese sets are distinct. Suppose, on the contrary, that k � xk�1 < xk � n anddCk�1(xk�1) � dCk�1(xk). From this we conclude the existence of some xk�2 <xk�1 with dCk�2(xk�2; xk�1) � dCk�2(xk�1; xk) and iterating this argument we�nd x1 < x2 < : : : < xk�2 such that cC1(x1; : : : ; xk�1) � cC1(x2; : : : ; xk), i.e.,C1(x1; : : : ; xk�1) � C1(x2; : : : ; xk). We now let d = C0(x1; x2; : : : ; xk), fromd 2 C1(x1; : : : ; xk�1) � C1(x2; : : : ; xk) we obtain the existence of some x0 < x1such that C0(x0; x1; : : : ; xk�1) = d. This contradicts the assumption that c is aproper coloring.We close this direction of the proof with the observation that at the bottomof Ak�1([t]) there is a chain of k � 1 `empty' elements which can not occur asdCk�1(x) for x � k. These elements are ;; f;g; ff;gg; : : : ; ff� � � f;gg � � �g, the lastelement in this list is an ; enclosed by k� 2 pairs of braces.For the converse direction assume that Ak�1([t]) contains s � n elements andlet C(1); C(2); : : : ; C(s) be a linear extension of Ak�1([t]), i.e., if x < y we neverhave C(x) � C(y). Therefore, we can choose a down set C(x; y) in Ak�2([t])which is an element of C(y) n C(x). We claim that if w < x then there is anelement C(w; x; y) 2 C(x; y) n C(w; x), otherwise the down set C(x; y) would becontained in the down set C(w; x) but C(w; x) 2 C(x) and C(x; y) 62 C(x).Repeating this, we can associate a set of colors C(x2; x3; : : : ; xk) with eachk� 1 subset of [n], such that C(x2; x3; : : : ; xk) 2 C(x3; : : : ; xk) nC(x2; : : : ; xk�1).Finally, we �nd a color C(x1; x2; : : : ; xk) 2 C(x2; : : : ; xk) n C(x1; : : : ; xk�1). Thiscoloring of the k element subsets of [n] is a proper coloring of G(n; k). 2Remark. The problem of counting the antichains in A([t]) = Bt is a classicalone. The estimates assert that the number of antichains in Bt is approximatelythe number of subsets of the largest antichain, i.e., 2( tt2).3.5 References for Chapter 3[BRT] K.B. Bogart, I. Rabinovich and W.T. Trotter, A bound onthe dimension of interval orders, Journal of Comb. Theory (A) 21 (1976),319-328.
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Chapter 4Coloring Interval OrderDiagrams
4.1 Introduction and OverviewFor a nonnegative integer k, let Ik be the interval order de�ned by the openintervals with endpoints in f1; : : : ; 2kg. It has height 2k� 1 and is isomorphic tothe canonical interval order I2k�1 (see Chapter 3 for canonical interval orders).Two vertices v and w in Ik are a cover, denoted by v � w, exactly if the rightendpoint of the interval of v equals the left endpoint of the interval of w. Thediagram DIk of Ik is thus recognized as the shift graph G(2k; 2) (see Chapter 3for shift graphs). In general we denote by DI the diagram of an interval order I,and we denote the chromatic number of the diagram by �(DI).We again include a proof for the next lemma since we will need similar methodsin later arguments (for an alternative formulation and proof of this lemma seeLemma 3.9).Lemma 4.1 �(DIk) = dlog2 height(Ik) e = kProof. Suppose we have a proper coloring of DIk with colors f1; : : : ; cg. Witheach point i associate the set Ci of colors used for the intervals having their rightendpoint at i. Note that C1 = ;. For 1 � i < j � 2k, we have Cj 6� Ci; otherwisethe interval (i; j) would have the same color as some interval (l; i). This provesthat all of the 2k subsets Ci of f1; : : : ; cg are distinct; therefore 2c � 2k andc � k. 59



60 CHAPTER 4. COLORING INTERVAL ORDER DIAGRAMSA coloring ofDIk using k colors can be obtained by the following construction.Take a linear extension of the Boolean lattice Bk and let Ci be the ith set in thislist. Assign to the interval (i; j) any color from Cj n Ci. A coloring obtained inthis way is easily seen to be proper. 2We derive a lemma for later use and a theorem from this construction.Lemma 4.2 In a coloring of DIk which uses exactly k colors, every pointi 2 f1; : : : ; 2kg is incident with an interval of each color.Proof. The crucial fact here is that every subset of f1; : : : ; kg is the Ci for somei. Now choose any i 2 f1; : : : ; 2kg and a color c 2 f1; : : : ; kg, we have to showthat an interval of color c is incident with i.If c 2 Ci, then this is immediate from the de�nition of Ci. Otherwise, i.e., ifc 62 Ci, then there is a jc > i such that Cjc = Ci [ fcg and the interval (i; jc) iscolored c. 2With the next lemma we improve the lower bound: There are interval ordersI with �(DI) � 1 + log2(height(I)). Compared with Lemma 4.1, this is a minorimprovement, but we feel it worth stating, since later we will prove an upperbound of 2 + log2(height(I)) on the chromatic number of the diagram of I.Lemma 4.3 For each k there is an interval order I�k such that�(DI�k) � 1 + dlog2 height(I�k) e = kProof. Take I�k as the order obtained from Ik (see Lemma 4.1) by removing theintervals of odd length, i.e., the interval order de�ned by the open intervals (i; j)with i; j 2 n1; : : : ; 2ko and j� i � 0 (mod 2). The height of I�k is 2k�1�1 whichis the height of Ik�1; however, as we are now going to prove, a proper coloringof I�k requires at least k colors. Note that two intervals (i1; j1) and (i2; j2) withj1 � i2 induce an edge in the diagram of I�k if either j1 = i2 or j1 = i2 � 1.In I�k we �nd an isomorphic copy of Ik�1 consisting of the intervals (i; j) withboth i and j odd. Call this the odd Ik�1. The even Ik�1 is de�ned by the interval(i; j) with i and j even. Let Ci be the set of colors used for intervals with rightend-point 2i � 1, and let Di be the set of colors used for intervals with rightend-point 2i. From Lemma 4.1, we know that if both the odd and the even copyonly need k� 1 colors, then the Ci and the Di have to form linear extensions of



4.1. INTRODUCTION AND OVERVIEW 61the Boolean lattice Bk�1. Now de�ne Ci as the set of colors used for intervalswith left-endpoint 2i � 1. From Lemma 4.2, we know that Ci is exactly thecomplement of Ci. With the corresponding de�nition, Di and Di are seen to becomplementary sets as well. Note that a proper coloring requires Ci\Di = ;. Wetherefore have Ci � Di. A similar argument gives Di � Ci+1. Altogether we �ndthat the Ci have to be a linear extension of Bk�1 with Ci � Ci+1 for all i. Thisis impossible. The contradiction shows that at least k colors are required. 2Now we turn to the upper bound which we view as the more interesting aspectof the problem.Theorem 4.1 If I is an interval order, then�(DI) � 2 + log2 height(I)Proof. In this �rst part of the proof, we convert the problem into a purelycombinatorial one. The next section will then deal with the derived problem.Let I = (V;<) be an interval order of height h, given together with an intervalrepresentation. For v 2 V, let (lv; rv] (left open, right closed) be the correspond-ing interval. With respect to this representation, we distinguish the `leftmost'h-chain in I. This chain consists of the elements x1; : : : ; xh where xi has theleftmost right-endpoint rv among all elements of height i. It is easily checkedthat x1; : : : ; xh is indeed a chain. Now let ri = rxi be the right endpoint of xi'sinterval and de�ne a partition of the real axis into blocks. The ith block isB(i) = [ri; ri+1):This de�nition is made for i = 0; : : : ; h with the convention that B(0) extends tominus in�nity and B(h) to plus in�nity.In some sense these blocks capture a relevant part of the structure of I. Thisis exempli�ed by two properties.� The elements v with rv 2 B(i) are an antichain for each i. This gives aminimal antichain partition of I.� If rv 2 B(j), then lv 2 B(i) for some i less than j.Suppose we are given a sequence C1; : : : ; Ch of sets (of colors) with the followingproperty



62 CHAPTER 4. COLORING INTERVAL ORDER DIAGRAMS(�) Cj 6� Ci�1 [ Ci for all 1 < i < j � h.A sequence with this property will, henceforth, be called an �-sequence. The�-sequence C1; : : : ; Ch may be used to color the diagram DI with the colorsoccurring in the Ci. The rule is: to an element v 2 V with lv 2 B(i) andrv 2 B(j) assign any color from Cj n (Ci�1 [ Ci). This set of colors is nonemptyby the � property of the sequence Ci, since i < j. We claim that a coloringobtained this way is proper. Assume, to the contrary, that there is a coveringpairw � v such thatw and v obtain the same color. Let rw 2 B(k) and lv 2 B(i).Since w � v, we know that k � i. Due to our coloring rule, we know that thecolor of w is an element of Ck and the color of v is not contained in Ci�1 [ Ci;hence k < i � 1. This, however, contradicts our assumption that w � v, sincelxi 2 B(i� 1) and lv � rxi = ri gives w < xi < v.We have thus reduced the original problem to the determination of the min-imal number of colors which admits a �-sequence of length h. We will demon-strate in the next section, Lemma 4.4 and Lemma 4.5, how to construct a �-sequence of length 2n�2 + jn+12 k using n colors. This will complete the proof ofthe theorem. 2In the third section we give an upper bound of 2n�1 + jn+12 k for the maximallength of a �-sequence. From the proof, we derive some further properties �-sequences of this length necessarily satisfy. Finally, we apply the construction oflong �-sequences to the problem of �nding long cycles between two consecutivelevels of the Boolean lattice. A famous instance of this problem is the questionwhether there is a Hamiltonian cycle between the middle two levels of the Booleanlattice (see e.g. [KT], [Sa]). The best constructions known until now could guar-antee cycles of length 
(Nc) where N is the number of vertices and c � 0:85.We exhibit cycles of length � 14N.4.2 A Construction of Long �-SequencesLet t(n; k) denote the maximal length of a sequence Ci of sets satisfying:(1) Ci � f1; : : : ; ng,(2) jCij = k and(�) if i < j then Cj 6� Ci�1 [ Ci.



4.2. A CONSTRUCTION OF LONG �-SEQUENCES 63Lemma 4.4 t(n; k) �  n� 1k !+ 1Proof. The sequences actually constructed will have the additional property(4) jCi�1 [ Cij = k + 1 for all i � 2.The proof is by induction. For all n and k = 1 or k = n the claim is obviouslytrue.Now suppose that two �-sequences as speci�ed have been constructed onf1; : : : ; n�1g. First, a sequence of k-sets A = A1; : : : ; As of length s = �n�2k �+1,and second, a sequence of (k� 1)-sets B = B1; : : : ; Bt of length t = �n�2k�1�+ 1.Property (4) guarantees that there is a permutation � of the colors such thatAs = B�1 [ B�2 . Now letCi = ( Ai for 1 � i � sB�i�s+1 [ fng for s+ 1 � i � s+ t� 1The length of the new sequence is s + t� 1 = �n�1k �+ 1. Properties (1) and (2)are obviously true for the sequence Ci and property (4) is true for both the Aand the B sequence. These observations and the choice of � give property (4)for the C sequence. It remains to verify property (�). If i < j < s + 1, thisproperty is inherited from the A sequence. If s + 1 < i < j, it is inherited fromthe B sequence. In case i < s + 1 � j, we have n 2 Cj and n 62 Ci�1 [ Ci. Theremaining case is s+ 1 = i < j. Here the choice of � and the sacri�ce of B1 showthat Cs [ Cs+1 = As [ B�2 [ fng = B�1 [ B�2 [ fng. Again, property (�) can beconcluded from this property for the B sequence. 2For k = 2 and k = n � 1, we can prove that the inequality of Lemma 4.4 istight, but in general the value of t(n; k) is open.Problem 4.1 Determine the true value of t(n; k).Let T(n) denote the maximal length of a sequence Ci of sets satisfying:(1) Ci � f1; : : : ; ng and(�) if i < j then Cj 6� Ci�1 [ Ci.Lemma 4.5 T(n)� Xk�nk odd(  n� 1k !+ 1 ) = 2n�2 + �n + 12 �



64 CHAPTER 4. COLORING INTERVAL ORDER DIAGRAMSProof. Let L(n; k) be the (n; k){sequence constructed in the preceeding lemma.We claim that L = L�1(n; 1)� L�3(n; 3)� L�5(n; 5)� : : : with appropriate per-mutations �j is a �-sequence of subsets of f1; : : : ; ng. The �k's can be foundrecursively. �1 = id and if �k�2 has been determined, then �k is chosen as apermutation, such that, the last set of the sequence L�k�2(n; k{2) is a subsetof the �rst set of L�k(n; k). Let Ci be the ith set in the sequence L. We nowcheck property (�). If the three sets Ci�1, Ci and Cj are in the same subsequenceL�k(n; k), then the property is inherited from this subsequence. If Ci 2 L�k(n; k)and Cj 2 L�k0 (n; k0) with k � k0 � 2, then jCi�1 [ Cij < ���Cj��� is a consequenceof property (4) for the subsequence L�k(n; k), and gives the claim in this case.There remains the situation where Ci�1 is the last set of its subsequence. Thechoice of the �k gives Ci�1 � Ci and the property reduces to Cj 6� Ci, which isobvious.The length of L is the sum over the length of the L�k(n; k) used in L. This isthe sum over �n�1k �+ 1 with k odd, which is 2n�2 + jn+12 k. 24.3 The Structure of Very Long �-SequencesTheorem 4.2 Let C = C1; : : : ; Ct be a �-sequence of subsets of f1; : : : ; ng.Then t � 2n�1 + jn+12 k.Proof. We start with some de�nitions. For 1 � i � t� 1, letSi = f S : Ci+1 � S � Ci [ Ci+1 g (4.1)and si = jSij. Observe that with ri = jCi n Ci+1j we have the equationsi = 2ri � 1: (4.2)We now prove two important properties of the sets Si� Si \ Sj = ; if i 6= j.Assume, to the contrary, that S 2 Si \ Sj and let i < j. From the de�nitionof the Si, we obtain Cj+1 � S � Ci [ Ci+1. This contradicts with property(�) for the sequence C.



4.3. THE STRUCTURE OF VERY LONG �-SEQUENCES 65� C \ Si = ; for all i.Assume, Cj 2 Si. If j � i, then Ci+1 � Cj gives a contradiction. If j = i+1,note that Ci+1 62 Si from the de�nition. If j < i+1, the contradiction comesfrom Cj � Ci [ Ci+1.ThereforeC and the Si are pairwise disjoint subsets of Bn, this gives the inequality2n � t+ t�1Xi=1 si (4.3)We now partition the indices f1; : : : ; t� 1g into three classes� I1 = fi : jCij = jCi+1jg; note, that i 2 I1 implies si � 1.� I2 = fi : jCij < jCi+1jg; trivially, si � 0 for i 2 I2.� I3 = fi : jCij > jCi+1jg; note, that if i 2 I3, then the corresponding si isrelatively large, i.e., si � 2jCi+1j�jCij+1�1. This estimate is a consequence ofEquation 4.2 and the fact that Ci+1 has to contain an element not containedin Ci.We �rst investigate the case I3 = ;. This condition guarantees that the sizesof the sets in C is a nondecreasing sequence. Since Bn has n + 1 levels, the sizeof the sets in C can increase at most n times, i.e., jI2j � n and jI1j � t� 1� n.It follows that: 2n � t+ Xi2I1 si + Xi2I2 si� t+ jI1j� t+ (t� 1� n)This gives 2t � 2n + (n+ 1). Hence, t � 2n�1 + jn+12 k in this case.The case I3 6= ; is somewhat more complicated. Let the number of descendingsteps be d and I3 = fi1; : : : ; idg. Let mj denote the number of levels the sequenceis decreasing when going from Cij to Cij+1, i.e., mj = jCij+1j � jCijj and sij �2mij+1 � 1. Again, we can estimate the size of I2, namely, jI2j � n + Pdj=1mij.It follows that:2n � t+ Xi2I1 si + Xi2I2 si + Xi2I3 si



66 CHAPTER 4. COLORING INTERVAL ORDER DIAGRAMS� t+ jI1j+ dXj=1(2mij+1 � 1)� t+ ((t� 1)� jI2j � jI3j) + dXj=1 2mij+1 � d� t+ (t� 1� n� dXj=1mij � d) + dXj=1 2mij+1 � dComparing this with the calculations made for the case I3 = ;, we �nd thatt � 2n�1 + jn+12 k would require �Pdj=1mij � 2d+Pdj=1 2mij+1 � 0. For each j,we have 2mij > mij � 2. Hence, the above inequality can never hold. 2Remark Let T�(n) = 2n�1 + jn+12 k be the upper bound from the theorem. Wehave seen that a �-sequence C of length T�(n) can only exist if I3 = ;. Moreover,the following conditions follow from the argument given for Theorem 4.2.1. There are exactly n increasing steps, i.e., jI2j = n.2. If i 2 I1, then si = 1, i.e., two consecutive sets of equal size have to be ashift: Ci+1 = (Ci n fxg) [ fyg with x 2 Ci and y 62 Ci.3. If i 2 I2 then si = 0, i.e., if jCij < jCi+1j, then there is an element x 2 Ci,such that, Ci+1 = Ci [ fxg.4. Every element of Bn is either an element of C or appears as the uniqueelement of some Si, i.e., as Ci [ Ci+1.From this observations, we obtain an alternate interpretation for a sequenceC of length T�(n) in Bn. In the diagram of Bn, i.e., the n-hypercube, considerthe edges (Ci; Ci+1) for i 2 I2 and for i 2 I1 the edges (Ci; Ti) and (Ti; Ci+1)where Ti is the unique member of Si, i.e., Ti = Ci [ Ci+1. This set of edges is aHamiltonian path in the hypercube and respects a strong condition of being levelaccurate. After having reached the kth level for the �rst time the path willnever come back to level k � 2 (see Figure 4.1 for an example, the bullets arethe elements of a very long �-sequence).Problem 4.2 Do sequences of length T�(n) exist for all n ?
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Figure 4.1: A level accurate path in B4We are hopeful that such sequences exist. Our optimism stems in part fromcomputational results. The number of sequences starting with ;; f1g; f2g; : : :fngis 1 for n � 4, 10 for n = 5, 123 for n = 6 and there are thousands of solutions forn = 7. The next case n = 8 could not be handled by our program, but MarkusFulmek wrote a program which also resolved this case a�rmatively.4.3.1 Long Cycles between Consecutive Levels in BnLet B(n; k) denote the bipartite graph consisting of all elements from levels k andk + 1 of the Boolean lattice Bn. A well known problem on this class of graphsis the following: Is B(2k + 1; k) Hamiltonian for all k ? Until now, it wasknown that this is the case for k � 9. Since the problem seems to be very hard,some authors have attempted to construct long cycles. The best results (see [Sa])lead to cycles of length 
(Nc) where N = 2�2k+1k � is the number of vertices ofB(2k+ 1; k) and c � 0:85.Theorem 4.3 In B(n; k), there is a cycle of length4 max( n� 3k� 1!+ 1; n� 3n� k� 2!+ 1)Proof. Note that the graphs B(n; k) and B(n; n� k� 1) are isomorphic, it thussu�ces to exhibit a cycle of length 4�n�3k�1� + 4 in B(n; k). To this end, take a



68 CHAPTER 4. COLORING INTERVAL ORDER DIAGRAMS�-sequence C1; : : : ; Ct of (k � 1)-sets on f1; : : : ; n � 2g. From Lemma 4.4, weknow that t � �n�3k�1�+1 can be achieved. Now consider the following set of edgesin B(n; k)� � Ci [ fng ; Ci [ Ci+1 [ fng � for 1 � i < t,� � Ci [ Ci+1 [ fng ; Ci+1 [ fng � for 1 � i < t,� � Ct [ fng ; Ct [ fn� 1; ng � and � Ct [ fn� 1; ng ; Ct [ fn� 1g �,� � Ci [ fn� 1g ; Ci [ Ci+1 [ fn� 1g � for 1 � i < t,� � Ci [ Ci+1 [ fn� 1g ; Ci+1 [ fn� 1g � for 1 � i < t,� � C1 [ fn� 1g ; C1 [ fn� 1; ng � and � C1 [ fn� 1; ng ; C1 [ fng �.The proof that this set of edges in fact determines a cycle of length 4t in B(n; k)is straightforward. 2With a simple calculation on binomial coe�cients, we obtain a �nal theoremTheorem 4.4 There are cycles in B(2k + 1; k) of length at least 14N.4.4 References for Chapter 4[FHRT] Z. F�uredi, P. Hajnal, V. R�odl and W.T. Trotter, Intervalorders and shift graphs, Preprint 1991.[KT] H.A. Kierstead and W.T. Trotter, Explicit matchings in themiddle two levels of the boolean lattice, Order 5 (1988), 163-171.[Sa] C. Savage, Long cycles in the middle two levels of the boolean lattice,SIAM Conference on Discrete Mathematics 1990.



Chapter 5Interval Dimension andDimension
5.1 Introduction and OverviewA family fQ1; : : : ; Qkg of extensions of a partial order P is said to realize P orto be a realizer of P i� P = Q1 \ : : : \ Qk, i.e., x < y in P i� x < y in Qi foreach i, 1 � i � k. If we restrict the Qi to belong to a special class of orders andseek for a minimum size realizer we come up with a concept of dimension withrespect to the special class.Interval dimension, denoted idim(P), is de�ned by using interval extensions ofP. Since linear orders are interval orders we obtain the trivial inequalityidim(P) � dim(P) (5.1)It is well known that interval orders of large dimension exist (see Chapter 3).Hence, the gap between idim(P) and dim(P) may be arbitrarily large.Let I = fI1; : : : ; Ikg be an open interval realizer of P and let (ajx; bjx) be theinterval corresponding to x 2 P in a �xed representation of Ij. We now �nd abox embedding of P to IRk. With x 2 P we associate the box Qj (ajx; bjx) �IRk. Each of these boxes is uniquely determined by its upper extreme cornerux = (b1x; : : : ; bkx) and its lower extreme corner lx = (a1x; : : : ; akx). Obviously,x < y in P i� ux � ly componentwise. The projections of a box embedding ontoeach coordinate yield an interval realizer, so the concepts of box embeddingsand interval realizers are equivalent. For interval dimension the box embeddingsthus play the role of the point embeddings into IRk introduced by Ore for orderdimension. 69



70 CHAPTER 5. INTERVAL DIMENSION AND DIMENSIONA box embedding does not only depend on the realizer I of P, but also onthe representations of the Ij. Now we de�ne the poset B(I) of extreme cornersassociated with a box embedding or, equivalently, with an interval realizer I ofP. The vertices of B(I) are lx; ux for x 2 P. The order relation of B(I) is givenby the componentwise order in IRk.By de�nition we have an embedding of B(I) in IRk, so dimB(I) � k = idim(P).The starting point of our investigations was the following question concerning theinterplay between dimension and interval dimension:Is dimB(I) = idim(P) ?In the next section we de�ne a transformation P! B(P) such that idim(P) =dimB(P). We provide two interpretations of this transformation, a combinatorialone and a geometrical one. In the combinatorial interpretation the elements ofB(P) are subsets of P. For the geometrical one we present a normalizing procedureI ! I� for box embeddings and �nd B(P) = B(I�). From the proofs we obtainan a�rmative answer to the question above.In the third section we then investigate several consequences of the mainresult. First, we study the transformation P! B(P) on special partial orders ofheight 1. In particular we show that the standard example Sn of an n-dimensionalorder is an (almost) �xed point of the transformation P ! B(P) in particulardim(Sn) = idim(Sn).Second, we investigate the relationship with the split operation [Tr1]. This hasa surprising consequence for the iterated transformation P ! B(P) ! B2(P) !: : : Bk(P) ! : : :. For every n there are partial orders P such that 0 � dim(P)�dimBk(P) � 2 for all k � n but dim(P)�dimBn+1(P) � m, where m is arbitrary.Third, we relate the interval dimension of subdivisions of P to the dimensionof P, thus providing a theoretical framework for the examples of Spinrad [Sp].Finally, we show the comparability invariance of the transformation P! B(P),which, as a consequence, gives another proof that the interval dimension is acomparability invariant.5.2 Reducing Interval Dimension to DimensionIn the last section we de�ned the poset B(I) of extreme corners associated witha box embedding of P in IRk. We now show that B(I) inherits some structurewhich is independent of the realizer I leading to the box embedding.



5.2. REDUCING INTERVAL DIMENSION TO DIMENSION 71Lemma 5.1 Let B(I) be the poset of extreme corners of a box representa-tion of a partial order Pa) If the lower extreme corners of x and y are comparable in B(I), e.g.,lx � ly, then the predecessor sets of x and y in P are ordered by inclusion,i.e., PredP(x) � PredP(y).b) If the upper extreme corners of x and y are comparable in B(I), e.g.,ux � uy, then the successor sets of x and y in P are ordered by (reversed)inclusion, i.e., SuccP(x) � SuccP(y).c) If the lower extreme corner of x and the upper extreme corner of yare related by lx � uy then PredP(z) � PredP(x) for all z 2 SuccP(y) or,equivalently, PredP(x) � \z2SuccP(y)PredP(z).d) If ux � ly then \z2SuccP(x)PredP(z) � PredP(y).Proof. a) From lx � ly we obtain ajx � ajy for all j. Therefore in each Ij, x hasless predecessors than y, i.e., Predj(x) � Predj(y). The claim now follows fromPredP(x) = \jPredj(x) since the Ij realize P.b) The proof of this part is symmetric to part a).c) From lx � uy we have ajx � bjy. If z 2 Succ(y), then necessarily ajz � bjy � ajx.Hence, Predj(z) � Predj(x) for all j. The claim follows.d) From ux � ly we immediately obtain x � y, i.e., y 2 Succ(x), therefore,Pred(y) � \z2Succ(x)Pred(z). 2All statments except the conclusion part of b use only the sets PredP(x) and\z2SuccP(x)PredP(z). This irregularity is resolved with the next lemma.Lemma 5.2 \z2Succ(x)Pred(z) � \z2Succ(y)Pred(z) if and only if Succ(x) � Succ(y).Proof. The `if' direction is trivial. We now prove the `only if' direction. Letz 2 Succ(x) and note that y 2 \z2Succ(y)Pred(z). From the assumed inclusionwe obtain y 2 Pred(z), hence z 2 Succ(y). 2De�nition 5.1 With each vertex x of a partial order P = (X;<) we asso-ciate the lower set L(x) = PredP(x) and the upper set U(x) = \z2SuccP(x)PredP(z),



72 CHAPTER 5. INTERVAL DIMENSION AND DIMENSIONthe case x 2 Max(P) is settled by the convention U(x) = X.De�ne B(P) = fL(x); U(x) : x 2 Xg ordered by setinclusion.Note that this construction is in fact equivalent with Cogis' construction in thecontext of Ferrers dimension [Co1]. Cogis also uses L(x), but replaces U(x) bythe equivalent set fz 2 X : Succ(x) � Succ(z)g. He also proves Theorem 5.2, butin a di�erent way and without the geometrical interpretation that our approachis based on.The preceding lemmas prove that lx ! L(x) and ux ! U(x) together forman order preserving mapping from B(I) to B(P), hence,idim(P) � dimB(I) � dimB(P): (5.2)To get more structure into interval realizers we now introduce a procedurethat transforms an interval extension I = f (ax; bx) : x 2 Pg of P into its nor-malization I� = f (a�x; b�x) : x 2 Pg.� In the �rst step of the normalization we update left endpoints.a�x = maxfbz : z 2 Pred(x)g if x 2 P nMin(P),a�x = minfaz : z 2 Min(P)g otherwise.� In the second step we update right endpoints.b�x = minfa�z : z 2 Succ(x)g if x 2 P nMax(P),b�x = maxfbz : z 2 Max(P)g otherwise.Note that the interval order I� need not be isomorphic to I. In general I�is a suborder of I and a minimal interval extension (see [HMR] for minimalinterval extensions) of P if all the ax; bx were di�erent.If P is realized by I = fI1; : : : ; Ikg then I� = fI�1; : : : ; I�kg realizes P as well.We call the box embedding corresponding to I� the normalized box embeddingof I. For an example see Figure 5.1.After normalizing we have a realizer I� = fI�1; : : : ; I�kg of P, interval represen-tations (aj�x ; bj�x ) and an associated poset of extreme corners B(I�) = fl�x; u�x :x 2 Pg. The next theorem shows that the geometrically de�ned B(I�) and thecombinatorially de�ned B(P) are isomorphic.Theorem 5.1 If I� is a normalized realizer of P then B(I�) = B(P).
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r rrrrrrrFigure 5.1: P, an interval realizer of P and its normalizationProof. First observe that both partial orders have a least element generated byx 2 Min(P) as l�x and L(x), respectively, and a greatest element generated byx 2 Max(P) as u�x and U(x), respectively.Moreover, l�x ! L(x) and u�x ! U(x) de�nes an order preserving mapping bythe above remarks. To show the converse we distinguish four cases:U(x) � L(y). We know that x 2 U(x), so x 2 Pred(y). Since I�j is an intervalextension of P, we obtain bj�x � aj�y for all j. Hence u�x � l�y.L(x) � L(y). Remember that aj�x = maxfbjz : z 2 Pred(x)g and aj�y =maxfbjz : z 2 Pred(y)g. By assumption Pred(x) � Pred(y), so aj�x � aj�y andl�x � l�y.U(x) � U(y). By Lemma 5.2, this is equivalent to Succ(x) � Succ(y). Nowu�x � u�y follows symmetrically to the second case.L(x) � U(y). Since I�j is normalized, there are z0 2 Pred(x) and z1 2 Succ(y)with aj�x = bjz0 and bj�y = aj�z1. The hypothesis provides z0 � z1, hence aj�x =bjz0 � bj�z0 � aj�z1 = bj�y . The validity of this inequality for all j again givesl�x � u�y. 2Now we are going to prove our main theorem about interval dimension anddimension.Theorem 5.2 dimB(P) = idim(P).Proof. The inequality dimB(P) � idim(P) was a simple consequence of the def-inition of B(P). For the converse we need two arguments. We �rst show that a



74 CHAPTER 5. INTERVAL DIMENSION AND DIMENSIONlinear extension L of B(P) induces an interval extension IL of P. Secondly, weprove that if L1; : : : ; Lk is a realizer of B(P), then the induced interval extensionsIj = ILj form an interval realizer of P.Let L = M1;M2; : : : ;Mr be a linear extension of B(P). For each x 2 P thereare i; j 2 f1; : : : ; rg such that Mi = L(x) and Mj = U(x). From L(x) � U(x) andx 62 L(x); x 2 U(x) we obtain that i < j. So we can associate with x the uniqueinterval (ax; bx) = (i; j). We now show, that the interval order IL induced bythe interval representation f (ax; bx) : x 2 Pg is an extension of P. If x < y in P,then U(x) � L(y), and thus, with Mi = U(x) and Mj = L(y), bx = i � j = ay,which implies x < y in IL.Let fL1; : : : ; Lkg be a realizer for B(P). The induced family of interval exten-sions fI1; : : : ; Ikg of P is an interval realizer i� all incomparabilities xjjy of P arerealized. If xjjy in P, then U(x) 6� L(y) since x 2 U(x) but x 62 L(y). Therefore,L(y) precedes U(x) in some Lj, which gives ajy < bjx. The symmetric argumentyields an i with aix < biy. Both inequalities together give xjjy in \jIj. 2This theorem together with Inequality 5.2 shows that dimB(I) is independentof the interval realizer I.5.3 ConsequencesIn the previous section we introduced the operation P ! B(P) mapping partialorders to partial orders. We will now investigate several connections to otherorder-theoretical topics and results. Since B(P) always has a greatest and a leastelement, we adopt the convention to call orders with this property closed anddenote by bQ the closure of any partial order Q, i.e., the order resulting from Qby adjoining a new greatest and a new least element.We �rst look at the e�ect of the operator B applied to special classes of orders.5.3.1 Crowns and the Standard ExamplesLet Sn denote the standard poset of dimension n, i.e., the set of all subsets of ann element set with either 1 or n� 1 elements ordered by setinclusion. ThenB(Sn) = cSn (5.3)



5.3. CONSEQUENCES 75Let Cr denote the r-cycle. The r-cycle is the 3{dimensional poset on 2relements fx1; y1; x2; y2; : : : ; xr; yrg with comparabilities.x1 < y1; y1 > x2; x2 < y2; : : : xr < yr; yr > x1B(Cr) = cCr (5.4)Let the diagram of T be a tree. The truncation of T, denoted by tr(T), is theinduced tree on the non-leaf vertices of T. ThenB(T) = dtr(T) (5.5)In particular 5.3 shows that the standard example Sn of a n-dimensional orderis (up to closures) a �xed point of the operation P ! B(P), thus showing againthat, for every n � 3, there is a poset P with dim(P) = idim(P) = n.5.3.2 B and the Split OperationWe now turn to the natural question, whether, for every closed order Q there issome P with Q = B(P). The next theorem answers this question a�rmatively.Moreover it turns out that the operation P ! B(P) is an almost left inverse ofthe split operation S which has applications in di�erent branches of poset theory,see, e.g., [Tr1, Fr, Fe]. The split S[P] of an order P is the poset of height one withminimal elements fx0 : x 2 Pg maximal elements fx00 : x 2 Pg and ordered pairsx0 < y00 i� x � y in P.Theorem 5.3 B(S[P]) = bP.Proof. For x 2 P let Pred[x] = Pred(x) [ fxg. Obviously, P is isomorphic tothe setsystem fPred[x] : x 2 Pg ordered by inclusion. We will show that the setsof B(S[P]) are just the `primed' sets Pred[x], i.e, (Pred[x])0 = fx0 : x 2 Pred[x]g,together with the greatest element fx0; x00 : x 2 Pg and the least element ;. WehaveL(x0) = ;, andU(x0) = \z002Succ(x0)Pred(z00) = \z2Succ[x](Pred[z])0. Since x 2 Succ[x], U(x0) � (Pred[x])0.On the other hand, Pred[x] � Pred[z] for z 2 Succ(x). Together, this givesU(x0) = (Pred[x])0. Similarly, we obtainL(x00) = Pred(x00) = (Pred[x])0. Finally,U(x00) = fx0; x00 : x 2 Pg by de�nition since Succ(x00) = ;. 2



76 CHAPTER 5. INTERVAL DIMENSION AND DIMENSIONIt is easy to verify that B(bP) = dB(P): (5.6)So we may generalize the theorem toBn(Sn[P]) = b__bPg n closures (5.7)Investigations on the e�ect of iterated splitting to the dimension [TM1] lead tothe inequality dimP � dimSn[P] � 2 + dimP for all n (5.8)As a consequence of (5.7) and (5.8) we obtain that, for every n there is an orderP such that dimP� dimBk(P) � 2 for all k < n:Just take P = Sn[Q] for some order Q. If we choose Q, however, to be an mdimensional interval order we obtain a large di�erence in dimension with the nextiteration, i.e., dimP� dimBn(P) � m� 1: (5.9)5.3.3 The Interval Dimension of SubdivisionsWith the next theorem we relate the interval dimension of subdivisions of P tothe dimension of P. Spinrad [Sp] showed that the dimension of a subdivisionof a partial order can be an arbitrary multiple of its dimension, thus answeringTrotter's Problem 4 in [Tr2]. With our result, we establish a theoretical frameworkfor his examples.In this context, partial orders and their diagrams are regarded as directedgraphs whose edges (x; y) correspond to ordered pairs and cover pairs x � yof P, respectively. An edge (x; y) is subdivided by placing a new vertex z inthe `middle' of the edge, i.e., (x; y) is replaced by (x; z) and (z; y). In the caseof partial orders we then have to ensure transitivity, i.e., all edges (a; z) witha 2 Pred[x] and (z; b) with b 2 Succ[y] are also added.The complete diagram subdivision DS(P) is the subdivision of all edges ofthe diagram of P. The complete subdivision CS(P) is the subdivision of all the



5.3. CONSEQUENCES 77edges of P, i.e., of the transitively closed relation. Since P is an induced suborderof each of its subdivisions Sub(P), and since Sub(P) is an induced suborder ofCS(P), we obtain dim(P) � dimSub(P) � dimCS(P): (5.10)With the next theorem we give an upper bound for idim Sub(P).Theorem 5.4 idimSub(P) � idimDS(P) = idimCS(P) = dim(P).Proof. Take any embedding of P into IRk with k = dim(P) and grow the pointsto obtain an embedding by `miniboxes'. An interval embedding of a subdivisionSub(P) is then obtained by adding the box with lower extreme corner ux andupper extreme corner ly for the point z subdividing the edge (x; y) { see Figure5.2. This gives idimSub(P) � dim(P) for every subdivision Sub(P).
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Figure 5.2: P, a minibox embedding of P and the box embedding of DS(P).To prove that idimDS(P) = idimCS(P) = dim(P) we will show that P can beembedded in B(DS(P)). This will give dim(P) � dimB(DS(P)). From Theorem5.2 we know idimDS(P) = dimB(DS(P)) so we obtain dim(P) � idimDS(P).To show that P can be embedded in B(DS(P)) we apply the normalizing pro-cedure to the box embedding I of DS(P) constructed in the �rst paragraph ofthe proof. During the normalization we can only shift the left endpoints ofintervals corresponding to elements in Min(P) and the right endpoints of ele-ments in Max(P). We then embed P into the lower extreme corners of the mini-boxes of the normalized representation I�. This gives dim(P) = k = idim(I�) =idim(DS(P)). 2



78 CHAPTER 5. INTERVAL DIMENSION AND DIMENSIONNote that we obtained, in fact, a slightly stronger result: If CS(P) � Sub(P) �DS(P), then B(Sub(P)) = VS(P), where VS(P) denotes the vertical split of P, i.e.the order obtained from P by substituting each vertex by a 2{chain. In [TM2] adistinct proof for dim(P) = idimVS(P) has been given.5.3.4 Comparability Invariance of Interval DimensionFor the de�nition and basic facts on comparability invariance see [Ha]. LetComp(P) be the comparability graph of P. We will show that Comp(B(P)) isa comparability invariant of P in the sense that if Comp(P) = Comp(Q) thenComp(B(P)) = Comp(B(Q)). Together with Theorem 5.2 and the known factthat dimension is a comparability invariant, this gives an alternative proof of thecomparability invariance of interval dimension in the �nite case. The compara-bility invariance of interval dimension was �rst shown in [HKM].Theorem 5.5 Comp(B(P)) is a comparability invariant of P.Proof. Let A be an autonomous subset of P. It is enough (see e.g. [DPW]) toshow that Comp(B(P)) = Comp(B(PAAd)), where PAAd denotes the order resultingfrom substituting A by its dual Ad in P.Note �rst that B(A) = fL(a); U(a) : a 2 Ag is a closed suborder of B(P). LetgB(A) be B(A) without its greatest element 1B(A) and its least element 0B(A). Ourclaim is that gB(A) is autonomous in B(P). To see this, observe �rst that, for eacha 2 A, we can decompose Pred(a) into Pred(a) = Pred(A) [ PredA(a), hence,the same is valid for all elements of gB(A). On the other hand, the elements ofB(P) n B(A) either contain all of A or their intersection with A is empty. Now ifM 2 B(P) nB(A) contains all of A then it also contains Pred(A) and M is aboveall sets in gB(A). If M � Pred(A) then M is below all sets in gB(A). In all theother cases M is unrelated to all of gB(A). This gives the claim.To settle the theorem we again need an analogue of (5.6), namely B(Ad) =B(A)d. Consider a normalized box embedding of A in IRk. Its extreme cornersare an embedding of B(A) into IRk. Flip the embedding, i.e., reverse the relations,this gives an embedding of Ad and the extreme corners form an embedding ofB(A)d. 2As we have seen, autonomous sets in P induce autonomous sets in B(P). Theconverse, however, is far from being true. Take as P a prime interval order, then
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Chapter 6Tolerance Graphs
6.1 Introduction and OverviewAn undirected graph G = (V;E) is called a tolerance graph if there exists acollection I = fIx j x 2 Vg of closed intervals on the line and a (tolerance)function t : V! IR+ satisfyingfx; yg 2 E () jIx \ Iyj � min(tx; ty)where jIj denotes the length of the interval I. A tolerance graph is a boundedtolerance graph if it admits a tolerance representation fI; tg with jIxj � tx forall x 2 V.Tolerance graphs were introduced by Golumbic and Monma [GM]. We sum-marize two of the results proved there. If all tolerances tx equal the same valuec, say, then we obtain exactly the class of all interval graphs. If the tolerancesare tx = jIxj for all vertices x, then we obtain exactly the class of all permutationgraphs. Furthermore, the following theorem was proved.Theorem 6.1 Every bounded tolerance graph is the complement of a com-parability graph, i.e., a cocomparability graph.The most important article on tolerance graphs is due to Golumbic, Monmaand Trotter [GMT]. We summarize some of the results shown there in the nexttheorem.
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82 CHAPTER 6. TOLERANCE GRAPHSTheorem 6.2(1) A tolerance graph must not contain a chordless cycle of lengthgreater than or equal to 5.(2) A tolerance graph must not contain the complement of a chordlesscycle of length greater than or equal to 5.(3) A tolerance graph admits an orientation such that every chordless4 cycle is oriented as shown in Figure 6.1.
c ccc@@R ��	@@I���

Figure 6.1: Alternating orientation of C4Remark. A graph G is called alternatingly orientable if there is an orientationof G such that around every chordless cycle of length greater than 3 the directionsof arcs alternate. As a consequence of the preceding theorem, we obtain thattolerance graphs are alternatingly orientable, (see [Br] for more information onthis class of graphs).In this chapter we report on some results which may be useful for a completeanswer to the following open problems.Problem 6.1 Characterize tolerance and bounded tolerance graphs.Problem 6.2 Is the intersection of tolerance graphs and cocomparabilitygraphs exactly the class of bounded tolerance graphs?6.2 Tolerance Graphs and Orders of IntervalDimension 2The starting point of this work is a representation theorem for bounded toler-ance graphs. Let G = (V;E) be a bounded tolerance graph with representationfI; tg and Ix = [ax; bx]. We now de�ne interval subgraphs G1; G2 of G. Let



6.2. TOLERANCE GRAPHS AND INTERVAL DIMENSION 2 83G1 be represented by the intervals I1x = [ax + tx; bx] and G2 by the intervalsI2x = [ax; bx� tx]. It is easy to verify that G = G1 [G2. Since G1 and G2 are co-comparability graphs of interval orders P1 and P2, respectively, the comparabilitygraph of P = P1\P2 is the complement of G. Therefore G is the cocomparabilitygraph of an order with interval dimension at most 2. A special feature of theinterval realizer fI1; I2g of P is that jI1xj = jI2xj for all x 2 V. In the spirit ofthe term box embedding introduced in Chapter 5, we call such a representationa square embedding. The construction is illustrated in Figure 6.2.
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bxtxax tx bxaxFigure 6.2: The square corresponding to [ax; bx] and tolerance txConversely, let P = (X;<) be an order of interval dimension � 2 that admitsa square embedding. We claim that the cocomparability graph of P (CoComp(P))is a bounded tolerance graph. Let fI1; I2g constitute a square embedding ofP, and let the corresponding intervals of x be given by I1x = [a1x; a1x + lx] andI2x = [a2x; a2x+ lx]. We now �x some s 2 IR such that s � maxx2X( a2x�a1x ). Thecocomparability graph of P is the bounded tolerance graph given by the intervalsIx = [a2x; s+ a1x + lx] and the tolerances tx = s + a1x � a2x.We have thus shown the following strengthening of Theorem 6.1.Theorem 6.3 A graph G is a bounded tolerance graph i� G is the cocom-parability graph of an order P with interval dimension at most 2 whichhas a square representation.



84 CHAPTER 6. TOLERANCE GRAPHSCocomparability graphs of orders with interval dimension at most 2 are knownas trapezoid graphs. An observation similar to ours is used by Bogart et al.[BFIL] to show that the class of bounded tolerance graphs coincides with theclass of parallelogram graphs, i.e., trapezoid graphs where every trapezoid is aparallelogram.There exist orders of interval dimension 2 which do not admit a square rep-resentation. This is shown with the following example.Example. It is easy to see that the graph G given in Figure 6.3 is not alter-natingly orientable. An orientation which is alternating on the cycles (3; 4; 7; 8),(7; 8; 5; 6), (5; 6; 1; 2) and (1; 2; 4; 3)) and contains 3 ! 4 would require 7 ! 8; 5 !6; 1 ! 2; 4 ! 3 a contradiction. Therefore, G is not a tolerance graph.On the other hand, G = CoComp(P), and the order P has a box embeddingwhich proves that idim(P) = 2.' $$
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Figure 6.3: The graph G = CoComp(P) and the order P.Until now, we only dealt with bounded tolerance graphs. As a consequenceof the next theorem, we will obtain: Every tolerance graph which is a co-comparability graph is a trapezoid graph. This will be useful later when wecharacterize all tolerance graphs that are complements of trees and could be ofuse as well for a solution to Problem 6.2.



6.2. TOLERANCE GRAPHS AND INTERVAL DIMENSION 2 85Theorem 6.4 The intersection of cocomparability graphs and alternat-ingly orientable graphs is contained in the class of trapezoid graphs.The main ingredient into the proof of this theorem will be a characterizationof orders of interval dimension 2 (Lemma 6.1), which is due to Cogis [Co] (also[1]). Let P = (X;<) and x < y, z < t be a 2+2 in P. We call the pairs (x; t) and(z; y) the diagonals of the 2+2. With P we now associate the incompatibilitygraph FP.� As vertices of FP we take the pairs (x; y) and (y; x) whenever xjjy.� Two vertices of FP are connected by an edge i� they are the diagonals of acommon 2+2 in P.Lemma 6.1 (Cogis) idim(P) � 2 i� FP is bipartite.Cogis obtained this result in the more general context of the Ferrers-dimensionof directed graphs. His de�nition of the incompatibility graph associated with adirected graph is somewhat more involved (see [HM], pages 5-7, for details). Inthe case of an antireexive and transitive digraph (i.e., a partial order), however,an easy case analysis shows that we have chosen the right de�nition.Proof. (Theorem) We have to show that idim(P) > 2 implies that CoComp(P)is not alternatingly orientable.Let P with idim(P) � 3 be given. From Lemma 6.1 we know that FP containsodd cycles. Fix an odd cycle C = [(x1; y1); (x2; y2); : : : ; (x2k+1; y2k+1); (x1; y1)]in FP. If (xi; yi) and (xi+1; yi+1) are consecutive elements of C then, by thede�nition of FP, [xi; yi; yi+1; xi+1; xi] is a 4-cycle in CoComp(P). Therefore:(*) An alternating orientation of CoComp(P) will either contain the twoarcs xi ! yi and yi+1 ! xi+1 or the two arcs yi ! xi and xi+1 !yi+1.Assume that an alternating orientation A of CoComp(P) is given, w.l.o.g. wemay require x1 ! y1 to be in A. Using (*) we obtain that y2 ! x2 is in A. Using(*) again, we obtain that x3 ! y3 is in A. Repeating this argument we �nally�nd x2k+1 ! y2k+1 and hence y1 ! x1 in A. This contradicts the existence ofan alternating orientation. 2



86 CHAPTER 6. TOLERANCE GRAPHS6.2.1 Some ExamplesAfter having obtained the previous theorem I had the idea that the intersection ofcocomparability graphs with alternatingly orientable graphs and the intersectionof cocomparability graphs with tolerance graphs could be the same. In this partwe will separate several classes of graphs by examples.We �rst need a de�nition. Let P = (X;<) be an order of interval dimension2 with a realizer, i.e., a box embedding, I1 = f [a1x; b1x] : x 2 Xg, I2 =f [a2x; b2x] : x 2 Xg. We say x; y 2 X have crossing diagonals if the linesegments (a1x; a2x) ! (b1x; b2x) and (a1y; a2y) ! (b1y; b2y) intersect in IR2.Lemma 6.2 If an order P of interval dimension 2 has a box embeddingwithout crossing diagonals then G = CoComp(P) has an alternating orien-tation.Proof. We �rst indicate how to de�ne an alternating orientation on G. Usingthe coordinates of the box of x we de�ne two regions in the plane (see Figure6.4).R1(x) = f (u; v) : u � a1x and v � b2x and dist[(u; v); (b1x; a2x)] � dist[(u; v); (a1x; b2x)] gR2(x) = f (u; v) : u � b1x and v � a2x and dist[(u; v); (b1x; a2x)] � dist[(u; v); (a1x; b2x)] g.Note that if xjjy then the diagonal of the box of y has to intersect either R1(x)6
-

b2xa2x b1xa1x R1R2
Figure 6.4: The regions de�ned by a box.or R2(x). It can not intersect both, since, there are no crossing diagonals. If thediagonal of y intersects R1(x) we orient the edge fx; yg from x to y and if thediagonal of y intersects R2(x) we orient it from y to x.We now have to show that the orientation of G is alternating. Since G is acocomparability graph we only have to deal with cycles of length 4. A C4 in G



6.2. TOLERANCE GRAPHS AND INTERVAL DIMENSION 2 87corresponds to a 2+2 in P. With this remark, it is not hard to verify that ourorientation is alternating on the cycle. 2Consider the cocomparability graph G of the order P given in Figure 6.5.From Lemma 6.2 we know that G is alternatingly orientable, but due to a cyclicdependence among the boxes of a; b; c; and d there is no square representationof P. Therefore, G is not a bounded tolerance graph. But note that, wheneverany box is deleted from the picture, the representation can be transformed into asquare representation. Hence G is a minimal obstruction for the class of boundedtolerance graphs. The example is quite stable with respect to this property,
-
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Figure 6.5: The complement of this order is alternatingly orientable but not abounded tolerance graph.we may add an arbitrary subset of the following comparabilities to P, withouta�ecting it. 1 < 3; 2 < 4; 5 < 7; 6 < 8In Theorem 6.6 and Theorem 6.7 we will exhibit more examples containingseveral in�nite families of obstructions for the class of bounded tolerance graphs.It would be quite hard to give a rigorous proof that the graph G from theprevious example is no tolerance graph at all. Our aim, however, is to exhibitcocomparability graphs which possess an alternating orientation but are not tol-erance graphs. This can be done using some more notation.A vertex x of G is called assertive if for every tolerance representation fI; tgof G replacing tx by min(tx; jIxj) leaves the tolerance graph unchanged. Anassertive vertex never requires unbounded tolerance. Therefore, if every vertex ofa tolerance graph G is assertive then G is a bounded tolerance graph. In [GMT]the following su�cient condition for a vertex to be assertive is shown.



88 CHAPTER 6. TOLERANCE GRAPHSLemma 6.3 Let x be a vertex in a tolerance graph G = (X; E).If Adj(x) n Adj(y) 6= ; for all y with fx; yg 62 E, then x is assertive.Lemma 6.4 If G = (X; E) is not a bounded tolerance graph then 2G is nota tolerance graph. Here 2G is the graph on two copies X1; X2 of X withedges fx1; x2g for all x 2 X and fxi; yjg for all fx; yg 2 E. That is, wereplace each vertex of G by a 2 clique to obtain 2G.Proof. It is easy to check that every vertex in 2G meets the conditions of Lemma6.3, i.e., is assertive. Therefore, if 2G is a tolerance graph it will also be a boundedtolerance graph. This, however, is impossible since even G is not a boundedtolerance graph. 2Now consider the order given in Figure 6.6. The cocomparability graph ofthis order is just 2G if G is the graph corresponding to Figure 6.5. We have seenthat G is not a bounded tolerance graph, so 2G is not a tolerance graph, but 2Ghas an alternating orientation since again there are no crossing diagonals.6
-Figure 6.6: The complement of this order is alternatingly orientable but not atolerance graph.6.2.2 Cotrees and More ExamplesComplements of trees are cocomparability graphs. In [GMT] it is suggested totake them as an initial step towards a solution of Problem 6.2. Using Theorems6.3 and 6.4 we obtain
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Figure 6.7: Relations of tolerance graphs to other classes of graphs.Theorem 6.5 If T is the complement of a tree T, then the following con-ditions are equivalent:(1) T is a tolerance graph.(2) T is a bounded tolerance graph.(3) T is a trapezoid graph.(4) T is a tolerance graph.(5) T contains no subtree isomorphic to the tree T3 of Figure 6.8.Proof. If T is a tolerance graph then, by Theorem 6.4, T is the comparabilitygraph of an order of interval dimension 2, i.e., T is a trapezoid graph. Orderswhich have trees as comparability graphs are of height one. In a box realizer,of a height one order with interval dimension 2, we can grow the boxes of maxi-
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Figure 6.8: The trees T2 and T3.mal elements upwards and boxes of minimal elements downwards to make themsquares. Therefore, if T is a tolerance graph, then T is a bounded tolerance graph.If T is a bounded tolerance graph then, trivially, it is a tolerance graph, andby Theorem 6.3 it is a trapezoid graph. This gives the equivalence of (1),(2) and(3).For the equivalence of (3) and (5) we need a characterization of those treeswhich are the comparability graphs of orders of interval dimension 2. In chapter5 we showed that for every poset idim(P) = dimB(P) . If T is a tree then B(T)is the truncation of T, i.e., the tree obtained by cutting down the leaves of T(see page 75). Among the irreducible orders of dimension 3 there is only one tree,namely T2. From this we obtain that T3 is the unique tree among the obstructionsagainst interval dimension 3.For the remaining equivalence, i.e., to show the equivalence of (4) with (5) werefer to [GMT]. 2We now come back to minimal obstructions for the class of bounded tolerancegraphs. A quite simple observation will provide us with many examples.It is well known that a graph G is both a comparability graph and a cocom-parability graph i� G and G are comparability graphs of orders of dimension 2.An order P is called 3{irreducible if dim P = 3, but whatever vertex x we removefrom P we obtain an order of dimension 2, i.e., dim(Px) = 2 for all x.Now let P be 3{irreducible and G = Comp(P). G is not a bounded tolerancegraph since it is not a cocomparability graph. But if we remove any vertex x fromG then Gx will be the cocomparability graph of an order of dimension 2. Thisorder has an embedding by points, hence, a square embedding by minisquares.Therefore, Gx is a bounded tolerance graph.Theorem 6.6 If P is a 3{irreducible order then the comparability graph ofP is a minimal obstruction for the class of bounded tolerance graphs.



6.2. TOLERANCE GRAPHS AND INTERVAL DIMENSION 2 91Remark. A complete list of 3{irreducible orders has independently been com-piled by Kelly and by Trotter and Moore (see [KT]). They found 10 isolatedexamples and 7 in�nite families.We now turn to a second large class of obstructions. Recall that in the proof ofTheorem 6.5 we gave evidence that a height 1 order of interval dimension 2 admitsa square embedding, i.e., its cocomparability graph is a bounded tolerance graph.An order P is called 3{interval irreducible if idim(P) = 3 but whatever vertex xwe remove from P we obtain an order of interval dimension 2, i.e., idim(Px) = 2.Now let P be a 3{interval irreducible order of height 1 and G = CoComp(P).From idim(P) = 3 we conclude that G is not a tolerance graph. But if we removeany vertex x from G then Gx is the cocomparability graph of an order posessinga square embedding. Hence G is a bounded tolerance graph.Theorem 6.7 If P is a 3{interval irreducible order of height 1 then thecocomparability graph of P is a minimal obstruction for both the class oftolerance graphs and the class of bounded tolerance graphs.Remark. A complete list of the 3{interval irreducible orders of height 1 has beencompiled by Trotter [Tr]. There are 3 isolated examples and 6 in�nite families.We close this chapter with a last example. Let N(x) = Adj(x) [ fxg denotethe neighbourhood of a vertex x in G. A set of vertices fx1; x3; x3g is called anasteroidal triple if any two of them are connected by a path which avoids theneighbourhood of the remaining vertex. In [GMT] it is shown, that cocompara-bility graphs do not contain asteroidal triples, hence, bounded tolerance graphsare asteroidal triple-free as well. More information on asteroidal triple-free graphsis given in [COS].All examples of tolerance graphs which are not bounded tolerance graphsgiven in [GMT] are not asteroidal triple-free. Therefore, it seems plausible toconjecture that every tolerance graph which is not bounded contains an asteroidaltriple. Using Theorem 6.6 we now show that this is not true in general.Example. Let G be the comparability graph of the order H0 from the list of 3{irreducible orders, see Figure 6.9. This graph is a tolerance graph and asteroidaltriple-free, but, by Theorem 6.6 it can not be a bounded tolerance graph.
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