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here h(P ) denotes the height of the interval order P . The contribution ofthis note are height independent bounds for the dimension of interval orders.The dimension interval orders of is bounded by logarithmic functions of the`staircase length' and the width of P .In all subsequent considerations we assume that interval orders do notcontain duplicate intervals and are given in their canonical representation;to obtain the canonical representation consider the lattice of maximal an-tichains of P . For interval orders this lattice is a chain A0 < A1 < : : : < Am.Associate with x 2 P the interval [i; j] if i and j are the minimal respectivelythe maximal k with x 2 Ak.Most of our constructions of linear extensions rely on an easy observation.If in every interval there is a marked point, then shrinking the intervals tothis points gives, if ties are broken, a linear extension. In fact every linearextension of an interval order can be obtained by appropriate marks.2 Staircases and coloringsLet P = (X;<) be an interval order and f(x�; x�) : x 2 Xg be its canonicalrepresentation. Construct the linear extensions L�; L� by taking the lower,respectively the upper end of the intervals as marks. More formaly: L� takesx before y if x� < y� or x� = y� and x� > y�; similarly L� takes x before yif x� < y� or x� = y� and x� > y�. Let xjjy be a pair not realized in L� [L�if L� takes x before y then we have x� < y� < x� < y�. Two elements x; ywith this ordering of endpoints are called a step.x yFigure 1: An example for a stepIf we want to extend L�; L� to a realizer of P we just have to add the stepsin reversed order. Let S(P ) = (X;U) be the directed graph with arcs y ! xif x; y is a step, a path in S(P ) corresponds to a sequence of steps, i.e. astaircase. Since all paths in S(P ) are going down a staircase we obtain:S(P ) is acyclic. We now want to partition the arcs of S(P ) into classesF1; : : : ; Fr, such that P [ Fi is acyclic for every i. We then can take linearextensions Li of P [ Fi and obtain a realizer L�; L�; L1; : : : ; Lr of P . Thenext proposition gives an easy su�cient condition for the classes Fi.2



Proposition 1 If F does not contain consecutive arcs, then P[F is acyclic.Proof Let F be a family of nonconsecutive steps and let us assume that[x0; : : : ; xs; x0] is a cycle in P [ F . We may require x0 <P x1. For allsteps (xi; xi+1) 2 F we conclude (xi�1; xi) 2 P . In the interval represen-tation we then have x�i�1 < x�i+1. Now let [y0; : : : ; yt; y0] be the sequenceobtained by skipping the intermediate points xi of all triplets xi�1; xi; xi+1with (xi; xi+1) 2 F . The interval endpoints of this sequence are strictlyincreasing, i.e. y�0 < y�1 < : : : < y�t < y�0. This contradicts the assumption.2Let an arc-coloring of a directed graph be an assignment of colors to arcs suchthat consecutive arcs obtain di�erent colors. The arc-chromatic number ofa digraph is the minimal number of colors in an arc-coloring. An inmediateconsequence of proposition 1 then is:Proposition 2 An arc-coloring of S(P ) with k colors leads to a realizer ofP with k + 2 linear extensions.A �rst attempt could rely on the fact that an edge-coloring of S(P ) inducesan arc-coloring. With Vizing's theorem we therefore get:Proposition 3 dim(P ) � maxx2P (number of steps containing x) + 3:We now discuss another strategy leading to an arc-coloring of S(P ). Takean antichain-partition A = fA1; : : : ; Ahg of the transitive closure of S(P )and melt every antichain of A into a single point, this gives SA(P ). Sinceconsecutive arcs of S(P ) remain consecutive in SA(P ) we see that everyarc-coloring of SA(P ) induces an arc-coloring of S(P ). The distinct arcs ofSA(P ) can be seen as a subset of Uh = f(i; j) : i; j 2 f1; : : : ; hg; i < jg,the arc set of the transitive tournament Th on h points. Therefore the arc-chromatic number of Th which is known to be dlog he (see [HE]) is an upperbound for the arc-chromatic number of SA(P ) and thus of S(P ).Note that the number h of antichains in A is just the maximal staircaselength of P. The bound obtained thus is:Proposition 4 dim(P ) � log(maximal staircase length of P ) + 2Remark In the transformation leading to the realizer of the size given inproposition 4 we did skip a lot of information which could be usefull to obtainbetter bounds. First of all note that P [ F remains acyclic if we only putthe following relaxed condition on F : to each sequence x1 ! x2 ! : : :! xlof arcs in F there is an arc x1 ! xl in S(P ). Furthermore the logarithm ofthe height may be arbitrary far from the arc-chromatic number of S(P ).3



Figure 2: An order with large height but without steps3 The width boundThe construction of this section is based on the following observation. If Ciand Cj are two chains in an interval order P , then all the incomparabilitiesamong elements of Ci and Cj can be realized by two linear extensions L1;0and L0;1. The order of L1;0 is obtained by placing marks at the upperinterval end of elements of Ci and at the lower ends of elements of Cj ; forL0;1 interchange the roles of Ci and Cj .Let a minimal chain partition C1; : : : ; Cw of P be given. To a binaryvektor v = (v1; : : : ; vw) we associate the linear extension Lv obtained frommarks placed at the upper interval end of elements contained in a chain Ciwith vi = 1 and at the lower ends of elements in chains Ci with vi = 0. Calla set V of binary vectors of length w, such that for each pair i; j 2 f1; : : : ; wgthere are u; v 2 V with ui = 1; uj = 0 and vi = 0; vj = 1 an Aw-set. Fromthe previous considerations the next proposition should be obvious.Proposition 5 If V is an Aw-set then fLv : v 2 V g is a realizer of P .Let V = fv1; : : : ; vkg be an Aw-set and vi = (vi1; : : : ; vik) then from thede�nition of Aw-sets we see that W = fv1; : : : ; vwg is an antichain in theboolean lattice Bk. Therefore with Sperner's theorem we get: the minimalsize of an Aw-set is �(w) = mink [ kdk2 e! � w]and hence the proposition.Proposition 6 dim(P ) � �(w)Remark The magnitude of �(w) can be estimated bylogw < �(w) � logw + log(logw + 1):4



ConclusionFor each of the bounds given in proposition 3, 4 and 6 there are exampleson which the bound dominates all the other known bounds. On the otherside, however, we have not been able to decide wether the bounds are bestpossible for certain families of interval orders.References[BRT] K.B. Bogart, I. Rabinovich and W.T. Trotter, A Bound onthe Dimension of Interval Orders, Journal of Comb. Theory (A)21(1976), 319-328.[F] P.C. Fishburn, Interval Orders and Interval Graphs, Wiley, New-York, 1985.[FRT] Z. F�uredi, V. R�odel and W.T. Trotter, Interval Orders andShift Graphs, Preprint 1989.[HE] C.C. Harner and R.C. Entriger, Arc colorings of Digraphs,Journal of Comb. Theory (B)13 (1972), 219-125.[KT] D. Kelly and W.T. Trotter, Dimension Theory for OrderedSets, in `Ordered Sets', I. Rival ed., 171-212, D. Reidel PublishingCompany, 1982.[R] I. Rabinovich, An Upper Bound on the Dimension of Interval Or-ders, Journal of Comb. Theory (A)25 (1972), 68-71.
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