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Abstract

Recently, by an ingenious construction Fiiredi, Rodel and Trotter
could bound the dimension of interval orders by 4loglogh(P) + 5.
The contribution of this note are height independent bounds for the
dimension of interval orders.

1 Introduction

Let P = (X, <p) and @ = (X, <) be two partial orders on a finite set X,
we say (Q is an extension of P if x <p y implies z <g y. Similarly a total
order L = x1,...,z, is a linear extension of P if z; <p z; implies i < j.

A set of linear extensions of P whose intersection is P is called a realizer
of P. In other words, a set L1,..., L, is a realizer of P if all incomparable
pairs z|y are realized, i.e. there are i,57 € {l,...,r} with z <z, y and
y <z; . The dimension, dim(P), of P is defined as the minimum size of a
realizer (for a survey see [KT]). By a theorem of Yannakakis it is NP-hard
to compute dim(P).

A poset P = (X, <p) is an interval order if there is a set of intervals
(I)zex on the real line such that z <p y iff I, is on the left of I, (for
a survey see [F]). For interval orders, bounds on the dimension have been
given in [BRT], [R] and [FRT]. The bound of Fiiredi, Rédel and Trotter
[FRT] that dominates the others can be stated as

dim(P) < 4loglogh(P) +5
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here h(P) denotes the height of the interval order P. The contribution of
this note are height independent bounds for the dimension of interval orders.
The dimension interval orders of is bounded by logarithmic functions of the
‘staircase length’ and the width of P.

In all subsequent considerations we assume that interval orders do not
contain duplicate intervals and are given in their canonical representation;
to obtain the canonical representation consider the lattice of maximal an-
tichains of P. For interval orders this lattice is a chain 4g < 41 < ... < A,,.
Associate with z € P the interval [, j] if i and j are the minimal respectively
the maximal k with xz € A;.

Most of our constructions of linear extensions rely on an easy observation.
If in every interval there is a marked point, then shrinking the intervals to
this points gives, if ties are broken, a linear extension. In fact every linear
extension of an interval order can be obtained by appropriate marks.

2 Staircases and colorings

Let P = (X, <) be an interval order and {(z.,z*) : z € X} be its canonical
representation. Construct the linear extensions L., L* by taking the lower,
respectively the upper end of the intervals as marks. More formaly: L, takes
z before y if x, < y,. or z, = y, and z* > y*; similarly L* takes x before y
if z* < y* or z* = y* and z. > y.. Let z|y be a pair not realized in L, U L*
if L, takes z before y then we have z, < y, < #* < y*. Two elements z,y
with this ordering of endpoints are called a step.

y

Figure 1: An example for a step

If we want to extend L, L* to a realizer of P we just have to add the steps
in reversed order. Let S(P) = (X,U) be the directed graph with arcs y — =
if x,y is a step, a path in S(P) corresponds to a sequence of steps, i.e. a
staircase. Since all paths in S(P) are going down a staircase we obtain:
S(P) is acyclic. We now want to partition the arcs of S(P) into classes
Fy, ... F,, such that P U Fj is acyclic for every i. We then can take linear
extensions L; of P U F; and obtain a realizer L,, L*, Lq,..., L, of P. The
next proposition gives an easy sufficient condition for the classes F;.



Proposition 1 If F' does not contain consecutive arcs, then PUF is acyclic.

Proof Let F be a family of nonconsecutive steps and let us assume that

[Z0,...,Zs,%0] is a cycle in P U F. We may require zy <p z1. For all
steps (zj,x;+1) € F we conclude (z;_1,z;) € P. In the interval represen-
tation we then have z7_; < 27, ;. Now let [yo,...,ys,yo] be the sequence

obtained by skipping the intermediate points z; of all triplets z; 1, x;, ;11
with (z;,2;41) € F. The interval endpoints of this sequence are strictly
increasing, i.e. y5 < y] < ... <wy; <yg. This contradicts the assumption.O

Let an arc-coloring of a directed graph be an assignment of colors to arcs such
that consecutive arcs obtain different colors. The arc-chromatic number of
a digraph is the minimal number of colors in an arc-coloring. An inmediate
consequence of proposition 1 then is:

Proposition 2 An arc-coloring of S(P) with k colors leads to a realizer of
P with k + 2 linear extensions.

A first attempt could rely on the fact that an edge-coloring of S(P) induces
an arc-coloring. With Vizing’s theorem we therefore get:

Proposition 3 dim(P) < ma}gc(number of steps containing x) + 3.
PSS

We now discuss another strategy leading to an arc-coloring of S(P). Take
an antichain-partition A = {A;,..., Ay} of the transitive closure of S(P)
and melt every antichain of A into a single point, this gives S4(P). Since
consecutive arcs of S(P) remain consecutive in S4(P) we see that every
arc-coloring of S4(P) induces an arc-coloring of S(P). The distinct arcs of
S4(P) can be seen as a subset of U, = {(i,7) : 4,5 € {1,...,h},i < j},
the arc set of the transitive tournament T} on h points. Therefore the arc-
chromatic number of T}, which is known to be [logh] (see [HE]) is an upper
bound for the arc-chromatic number of S4(P) and thus of S(P).

Note that the number h of antichains in A is just the maximal staircase
length of P. The bound obtained thus is:

Proposition 4 dim(P) < log(maximal staircase length of P) 4 2

Remark In the transformation leading to the realizer of the size given in
proposition 4 we did skip a lot of information which could be usefull to obtain
better bounds. First of all note that P U F' remains acyclic if we only put
the following relaxed condition on F': to each sequence 1 — zo — ... = 1
of arcs in F there is an arc 1 — z; in S(P). Furthermore the logarithm of
the height may be arbitrary far from the arc-chromatic number of S(P).



Figure 2: An order with large height but without steps

3 The width bound

The construction of this section is based on the following observation. If C;
and Cj are two chains in an interval order P, then all the incomparabilities
among elements of C; and C; can be realized by two linear extensions L1
and Lgi. The order of Lio is obtained by placing marks at the upper
interval end of elements of C; and at the lower ends of elements of C; for
Ly,; interchange the roles of C; and Cj.

Let a minimal chain partition C4,...,Cy of P be given. To a binary
vektor v = (v!,...,v") we associate the linear extension L, obtained from
marks placed at the upper interval end of elements contained in a chain C}
with v* = 1 and at the lower ends of elements in chains C; with v* = 0. Call
a set V of binary vectors of length w, such that for each pairi,j € {1,...,w}
there are u,v € V with v’ = 1,4/ = 0 and v* = 0,9/ = 1 an A,-set. From
the previous considerations the next proposition should be obvious.

Proposition 5 If V is an Ay-set then {L, : v € V'} is a realizer of P.

Let V = {v1,...,v5} be an Ay-set and v' = (v,...,vi) then from the
definition of A,-sets we see that W = {v!,... 0%} is an antichain in the
boolean lattice By. Therefore with Sperner’s theorem we get: the minimal
size of an A-set is

k

k
Blw) = min[( k ) > w]
5]
and hence the proposition.
Proposition 6 dim(P) < B(w)
Remark The magnitude of f(w) can be estimated by

logw < fB(w) < logw + log(logw + 1).



Conclusion

For each of the bounds given in proposition 3, 4 and 6 there are examples
on which the bound dominates all the other known bounds. On the other
side, however, we have not been able to decide wether the bounds are best
possible for certain families of interval orders.
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