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The Koebe-Andreev-Thurston Circle Packing Theorem states that every triangulated
planar graph has a circle-contact representation. The theorem has been generalized in
various ways. The arguably most prominent generalization assures the existence of a
primal-dual circle representation for every 3-connected planar graph. The aim of this
note is to give a streamlined proof of this result.

1 Introduction

For a 3-connected plane graph G = (V,E) with face set F , a primal-dual circle representation of G
consists of two families of circles (Cx : x ∈ V ) and (Dy : y ∈ F ) such that:

(i) The vertex-circles Cx have pairwise disjoint interiors.

(ii) All face-circles Dy are contained in the circle Do corresponding to the outer face o, and all
other face-circles have pairwise disjoint interiors.

Moreover, for every edge xx′ ∈ E with dual edge yy′ (i. e., y and y′ are the two faces separated
by xx′), the following holds:

(iii) Circles Cx and Cx′ are tangent at a point p with tangent line txx′ .

(iv) Circles Dy and Dy′ are tangent at the same point p with tangent line tyy′ .

(v) The lines txx′ and tyy′ are orthogonal.

Figure 1 shows an example.

Theorem 1. Every 3-connected plane graph G admits a primal-dual circle representation. Moreover
this representation is unique up to Möbius transformations.

As a special case of this statement, G admits a circle packing representation: as a contact graph
of nonoverlapping disks.

The proof presented here combines ideas from an unpublished manuscript of Pulleyblank and
Rote, from Brightwell and Scheinerman [5] and from Mohar [23]. The motive for the write-up is
that the amount of calculations needed for the proof has been reduced significantly. We decided to
share this note with the community because Theorem 1 is an important result, and the proof seems
to be suited for a presentation in a class on Graph Theory or Computational Geometry.

In the next section we give a rather comprehensive account of the history of the theorem and link
to some of its applications. The proof of the theorem is given in Section 3.
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Figure 1: (a) a 3-connected graph G, (b) a primal-dual circle representation of G, (c) straight-line
drawings of G and the dual graph G∗, yielding a tessellation by kites.

2 History and Applications of the Theorem

In graph theory the study of circle contact representations can be traced back to the 1970’s and
1980’s; the term “coin representation” was used there. Wegner [35] and Jackson and Ringel [17]
conjectured that every plane graph has a circle representation. The problem was popularized by
Ringel [25] who even included it in the textbook from 1990 [16]. In a note written in 1991 [27]
Sachs mentions that he found a proof of the circle packing theorem which was based on conformal
mappings. This eventually lead him to the discovery that the theorem had been proved by Koebe
as early as 1936 [18].

In a the context of his study of 3-manifolds Thurston [33] proved that any triangulation of the
sphere has an associated “circle packing” which is unique up to Möbius transformations. As it
turned out, this result was also present in earlier work of Andreev [2]. Nowadays the result is
commonly referred to as the Koebe-Andreev-Thurston Circle Packing Theorem. At a conference talk
in 1985 Thurston emphasized on connections of circle packings and the Riemann Mapping Theorem.
A precise version was obtained by Rudin and Sullivan [26]. This line lead to the study of discrete
analytic functions and other aspects of discrete differential geometry, we refer to [31], [32], [4],
and [20] for more on the topic.

In the early 1990’s new proofs of the circle packing theorem where found. Colin de Verdière [6]
gave an existential proof based on ‘invariance of domain’, this proof can also be found in [24] and
in the primal-dual setting in [19]. Colin de Verdière [7] gave a proof based on the minimization of
a convex function and extended circle packings to more general surfaces. Pulleyblank and Rote
(unpublished) and Brightwell and Scheinerman [5] gave proofs of the primal-dual version (Theorem 1)
based on an iterative algorithm, similar to the proof given in this note. Mohar [22] analyzed an
iterative approach and showed that an ε-approximation for the radii and centers can be obtained in
time polynomial in the size of the graph and log(1/ε).

Primal-dual circle representations yield simultaneous orthogonal drawings of G and its dual G∗,
i. e., straight-line drawings of G and G∗ such that the outer vertex of G∗ is at infinity and each pair
of dual edges is orthogonal. The existence of such drawings was conjectured by Tutte [34].

Another application of primal-dual circle representations is known as the Cage Theorem. It says
that every 3-connected planar graph can be represented as the skeleton of a convex 3-polytope such
that every edge of the polytope is tangent to a given sphere. This is a strengthening of Steinitz
Theorem which comes with a very simple proof, see e. g. [20]. The Cage Theorem was generalized
by Schramm [29] so that the polytope is caging any given smooth strictly convex body.

A stunning generalization of the Circle Packing Theorem is the Monster Packing Theorem of
Schramm [28]. The statement is as follows: if each vertex v of a planar triangulation G has a
prescribed convex prototype Pv, then there is a contact representation of G where each vertex is
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represented by a (possibly degenerate) homothet of its prototype. When the prototypes have a
smooth boundary, then there are no degeneracies. Contact representations of planar graphs with
other shapes than circles have received quite some attention over the years. here are some pointers
to the literature: triangles [8, 14, 1]; rectangles and squares [11, 30]; k-gons [13].

The Circle Packing Theorem has been used to prove Separator Theorems. The approach was
pioneered by Miller and Thurston and generalized to arbitrary dimensions by Miller et al. in [21].
The 2-dimensional case is reviewed in [24]. A slightly simpler proof was proposed by Har-Peled [15].

Not surprisingly the theorem also has applications in Graph Drawing. Eppstein [10] used circle
representations to prove the existence of Lombardi drawing (a drawing in which the edges are drawn
as circular arcs, meeting at equal angles at each vertex) for all subcubic planar graphs. Felsner et
al. [12] used circle representations to show that 3-connected planar graphs have planar strongly
monotone drawings, i. e., straight-line drawings such that for for any two vertices u, v there is a
path which is monotone with respect to the connecting line of u and v.

Eppstein [3] and [9] relates circle packings to mesh generation techniques.

3 Primal-Dual Circle Representation: The Proof

Before diving into details we give a rough outline of the proof. A primal-dual circle representation of
G induces a straight-line drawing of G and a straight-line drawing of the dual. Superimposing the
two drawings yields a plane drawing whose faces are special quadrangles called kites, see Figures 1c
and 3. After guessing radii for the circles, the shapes of the kites are determined. It is then checked
whether the angles of kites meeting at a vertex sum up to 2π. If at some vertex the angle sum does
not match 2π, the radii are changed to correct the situation. The process is designed to make the
radii converge and to make the sum of angles meet the intended value at each vertex. The second
part of the proof consists of showing that the kites corresponding to the final radii can be laid out
to form a tessellation, thus giving the centers of a primal-dual circle representation of G.

Proof of Theorem 1. Given a primal-dual circle representation of G, we can use a stereographic
projection to lift it to a primal-dual circle representation on the sphere. This spherical representation
has the advantage that the circle Do has no special role. On the sphere the face-circles can be
viewed as a family with pairwise disjoint interiors. Rotating this representation and mapping it
back to the plane, we can get a primal-dual circle representation of G or of the dual G∗ where any
prescribed element z ∈ V ∪F has the role of the outer face. This process can be reverted. Therefore,
we use the well-known fact that G or G∗ has a triangular face, which follows easily from Euler’s
formula, and assume that the outer face o of the given plane graph is a triangle.

Given a primal-dual circle representation of G we can use the centers of the circles Cx for x ∈ V
to obtain a planar straight-line drawing of G. Similarly the centers of the circles Dz for z ∈ F \ {o}
yield a planar straight-line drawing of G∗ \ {o}. Looking at the two drawings simultaneously and
adding appropriate rays for the edges yo of G∗ we see kites, i. e., quadrangular shapes with two
opposite right angles, tessellating the polygon formed by the centers of the outer vertices of G, see
Figure 1c.

The kites are in bijection with the incident pairs (x, y), where x is a primal vertex and y is a
dual vertex. Since the involved circles intersect orthogonally, the kite of x and y (see Figure 3) is
completely determined by the radii rx of Cx and ry of Dy. The angles at x and y are given by

αxy = 2 arctan
ry
rx

and αyx = 2 arctan
rx
ry
. (1)

The angle graph of a plane graph G = (V,E) is the graph G� whose vertex set is V ∪ F and
whose edges are the incident pairs xy with x ∈ V , y ∈ F , i. e., x is a vertex on the boundary of y.
The graph G� is plane, bipartite and every face is a 4-gon, i. e., G� is a quadrangulation. Let
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Figure 2: (a) A plane graph G. (b) Its re-
duced angle graph G�o. (c) Its
primal-dual completion (skeleton
graph of kites).
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Figure 3: The kite corresponding to the inci-
dent vertex-face pair x,y.

G�o = (U,K) be the reduced angle graph, obtained by deleting the vertex corresponding to the outer
face of G from G�, see Figure 2(b). (Note that the outer face of the graph G in this example is a
pentagon, unlike in our setup, where we assume a triangular outer face.) The set K of edges of G�o
is in bijection to the kites of a primal-dual circle representation of G. We will need the following
property of G�o.

Claim 1. Every subset S of the vertices of G�o with |S| ≥ 5 induces at most 2|S| − 5 edges.

Proof. Since G�o is bipartite, every subset S induces at most 2|S| − 4 edges, with equality only
if S induces a quadrangulation. Since the outer face of G is incident to 3 vertices we have
|K| = 2(|U |+ 1)− 4− 3 = 2|U | − 5. Now let S ( U . Since G is 3-connected, there is no separating
4-cycle in G�. This implies that the outer face of the induced graph G�o[S] is not a 4-cycle, whence
G�o[S] has at most 2|S| − 5 edges.

We specify that the triangle formed by the three outer vertices should be equilateral. This is no
loss of generality, since it can be achieved for any primal-dual circle representation by applying a
Möbius transformation. After this normalization, the following equations hold:

∑
w : uw∈K

αuw =

{
π/3 if u is an outer vertex of G

2π else.

Define the target angles β(u) for u ∈ U such that β(u) = π/3 if u is an outer vertex and β(u) = 2π
for all other vertices and all bounded faces of G.

Given an arbitrary assignment r : U → R+ of radii, we can form the corresponding kites. The
angle sum at u ∈ U is then α(u) =

∑
w : uw∈K αuw. We aim at finding radii such that α(u) = β(u)

for all u ∈ U . Later we will show that such radii induce a primal-dual circle representation.
We first show that

∑
u α(u) =

∑
u β(u), i. e., any choice of radii attains the correct target angles

on average. Indeed,∑
u

α(u) =
∑
xy∈K

π = |K|π and

∑
u

β(u) =
(
(|V | − 3) + (|F | − 1)

)
2π + 3

π

3
=
(
|V |+ |F | − 1

)
2π − 5π = (2|U | − 5)π = |K|π.
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As a consequence, whenever α(u) 6= β(u) for some u, the following two sets are both nonempty:

U− = {u ∈ U : α(u) < β(u)} and U+ = {u ∈ U : α(u) > β(u)}

If we increasing the radius ru of a vertex u ∈ U+, we observe from (1) that for every incident edge
uw ∈ K, the angle αuw decreases monotonically to 0 as ru →∞. Hence, it is possible to increase ru
to the unique value where α(u) = β(u).

The core of the proof is the following infinite iteration.

repeat forever:
for all u ∈ U :
if u ∈ U+ then increase ru to make α(u) = β(u)

(2)

We claim that the radii converge to an assignment with α(u) = β(u) for all u. The increase of ru
may cause another element w ∈ U− to move to U+, but a transition from U+ to U− is impossible.
It follows that some element u0 must belong to U− indefinitely unless the iteration comes to a halt
with U− = U+ = ∅.

Since radii can only increase, u ∈ D implies that ru → ∞. We want to show that the set
D ⊆ U+ ( U of elements whose corresponding radii do not converge is empty. The subset of outer
vertices of V in D is denoted by Do. If u ∈ D and w ∈ U \D, then αuw converges to 0 according
to (1). Thus, for given ε > 0, the iteration will eventually lead to vectors of radii such that the

inequality
∑

w∈U\D : uw∈K

αuw ≤
ε

|U |
holds for each u ∈ D. We now consider the case |D| ≥ 5 and use

Claim 1: ∑
u∈D

α(u) ≤ ε+
∑

kite with x, y ∈ D

(αxy + αyx) = ε+
∑

xy edge of G�o[D]

π ≤ ε+ (2|D| − 5)π (3)

∑
u∈D

α(u) =
∑

u∈D∩U+

α(u) >
∑
u∈D

β(u) = 2π|D| − 5|Do|
3

π.

By comparing these bounds, we see that |Do| = 3 and the subgraph G�o[D] of G�o induced by D has
2|D| − 5 edges. This implies that G�o[D] is connected and that the outer face of G�o[D] includes
the three outer vertices of G. Thus, by the edge count, G�o[D] is an internal quadrangulation, and
the outer face of G�o[D] coincides with the hexagonal outer face of G�o because this face bounds the
unique shortest cyclic walk through the 3 nonadjacent vertices of Do. Since G�o has no separating
4-cycles, we conclude that G�o[D] = G�o. This contradicts D ( U and shows that D must be empty.

If 3 ≤ |D| ≤ 4 and |Do| = 3, then we conclude from the above that D induces less than
2|D| − 5 edges of G�o. This yield the contradiction ε+ (2|D| − 6)π > 2π|D| − 5π. if |Do| ≤ 2, then

ε+ (2|D| − 4)π > 2π|D| − 5|Do|
3 π is again a contradiction.

If 1 ≤ |D| ≤ 2 and there is no edge, then ε > 2|D|π − 5|Do|
3 π is a contradiction because Do ⊆ D.

If there is an edge, then |Do| ≤ 1 and ε+ π > 4π − 5|Do|
3 π is a contradiction.

We have shown that all radii are bounded, and hence they converge. It follows that the angle
sums α(u) converge as well, and by the nature of the iteration (2), their limits α̂(u) are bounded by
α̂(u) ≤ β(u). Since

∑
u α̂(u) =

∑
u β(u), we must have α̂(u) = β(u) for all u.

Uniqueness up to scaling. Let r and r′ be two vectors of radii such that αr(u) = αr′(u) = β(u)
for all u and ru0 = r′u0

for some u0. Suppose that S = {u : ru > r′u} is nonempty and observe that
u0 ∈ S̄ = U \ S.

0 =
∑
u∈S

αr(u)−
∑
u∈S

αr′(u) =
∑
u∈S

∑
w∈U : uw∈K

αuw(r) −
∑
u∈S

∑
w∈U : uw∈K

αuw(r′) (4)

=
∑

u∈S,w∈S̄,uw∈K

(
αuw(r)− αuw(r′)

)
< 0 (5)
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The equality between (4) and (5) holds because the equation αuw + αwu = π is independent of the
radii, and hence the contributions of the edges uw with u,w ∈ S cancel. For the last inequality, note
that αuw(r) < αuw(r′) due to (1), because ru > r′u and rw ≤ r′w, and there is some pair uw ∈ K
with u ∈ S and w ∈ S̄. The contradiction proves uniqueness.

Laying out the kites. To finish the proof of Theorem 1, it remains to show that the kites defined
by the limiting radii r can be laid out in the plane with the intended side-to-side contacts, and that
the circles with radii given by r and centers as given by the laid-out kites have the properties (i)–(v),
i. e., they form a primal-dual circle representation of G.

We first show that if the kites can be laid out without overlap, they yield a primal-dual circle
representation. The kites induce a straight-line drawing of G and a straight-line drawing of the
dual G∗ with the outer vertex o at ∞ and edges yo being represented by rays. The point p where
an edge xx′ crosses its dual edge yy′ is a right angle of kites. This implies (v).

For a vertex u ∈ U , consider the set of kites containing u. These kites can be put together in the
cyclic order given by the rotation of u in G�o to form a polygon Pu. If u is not one of the three outer
vertices Vo, Pu is a convex polygon surrounding u, because α̂(u) = β(u) = 2π. By the geometry of
the kites, all edges incident to u have the same length ru, and the circle Cu of radius ru centered
at u is inscribed in Pu and touches Pu at the common corners of neighboring kites. For u ∈ Vo, the
polygon Pu has u as a corner, but the circle Cu still goes through the right-angle corners of the
kites. From the incidences of the kites, and since the polygons Pu for u ∈ V are pairwise disjoint,
we obtain that the family (Cx : x ∈ V ) satisfies (i) and (iii).

The union of all kites forms a triangle T . T is an equilateral triangle, because its angles are 60◦.
This forces the radii of the three outer vertices to be equal, whence the touching points of the outer
circles are the midpoints of the sides of T . Now, define Do as the inscribed circle of T . Let the
family of circles defined for dual vertices be (Dy : y ∈ F ). Properties (ii) and (iv) follow from the
layout of kites.

The layout of kites is warranted by the following Lemma 2. When we apply this lemma, the
graph H is the bipartite primal-dual completion of G = (V,E). The vertices of H are V ∪F \{o}∪E,
and the edges of H are the pairs (z, e) ∈ (V ∪F \ {o})×E for which z is incident to the edge e ∈ E
in G. This graph is the skeleton of the laid-out kites, see Figure 2(c).

This concludes the proof of Theorem 1.

Lemma 2. Let H be a 3-connected plane graph. For every inner face f of H let Pf be a simple
polygon whose corners are labeled with the vertices from the boundary of f in the same cyclic order.
The corner of Pf labeled with v is denoted p(f, v) and αi,v denotes the angle of Pf at p(f, v). If the
following conditions are satisfied:

(i)
∑k

i=1 αi,v = 2π for every inner vertex v of H with incident faces f1, . . . , fk.

(ii)
∑k

i=1 αi,v ≤ π for every outer vertex v of H with incident faces f1, . . . , fk.

(iii) ‖p(f1, v) − p(f1, w)‖ = ‖p(f2, v) − p(f2, w)‖ for every inner edge vw of H with incident
faces f1, f2.

Then there is a crossing-free straight-line drawing of H in which the drawing of every inner face f
can be obtained from Pf by a rigid motion, i. e., translation and rotation.

Proof. Let H∗ be the dual graph of H without the vertex corresponding to the outer face of H.
Further let S be a spanning tree of H∗. Then by (iii) we can glue the polygons Pf of all inner
faces f of H together along the edges of S. This determines a unique position for every polygon,
up to a global motion. We need to show that the resulting shape has no holes or overlaps. For
the edges of S we already know that the polygons of the two incident faces are touching such that
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corners corresponding to the same vertex coincide. For the edges of the complement S of S we need
to show this. Considering S as a subset of the edges of H, the set S is a forest in H. Let v be a leaf
of this forest that is an inner vertex of H, and let e be the edge of S incident to v. Then for all
incident edges e′ 6= e of v we already know that the polygons of the two incident faces of e touch in
the right way. But then also the two polygons of the two incident faces of e touch in the right way
because v fulfills property (i). Since the set of edges we still need to check remains always a forest,
we can iterate this process until all inner edges of H are checked. After gluing all the polygons Pf ,
every vertex v has a unique position, and because of property (ii), all angles at the boundary of the
union are convex. Let Vo be the set of outer vertices of H and let d = |Vo|. We claim that∑

v∈Vo

∑
i

αi,v = (d− 2)π.

If deg(f) = k, then the sum of angles of Pf is (k − 2)π. Summing this over all polygons Pf we
obtain

∑
f (deg(f)− 2)π = (2|E| − 2|F |)π − (d− 2)π. Using properties (i) and (ii) We also have∑

f (deg(f)− 2)π = (|V | − d)2π +
∑

v∈Vo

∑
i αi,v. Using Euler’s Formula this yields the claim.

The claim show that the sum of angles at the outer vertices is just the right value for a d-gon,
whence the boundary of the union of the glued polygons Pf is a convex polygon and therefore
nonintersecting.
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[14] D. Gonçalves, B. Lévêque, and A. Pinlou, Triangle contact representations and duality,
Discr. and Comput. Geom., 48 (2012), pp. 239–254.

[15] S. Har-Peled, A simple proof of the existence of a planar separator, arXiv, 1105.0103 (2011).

[16] N. Hartsfield and G. Ringel, Pearls in Graph Theory: A Comprehensive Introduction,
Academic Press, 1990.

[17] B. Jackson and G. Ringel, Colorings of circles, Amer. Math. Monthly, 91 (1984), pp. 42–49.

[18] P. Koebe, Kontaktprobleme der konformen Abbildung, Ber. Verh. Sächs. Akad. Leipzig, Math.-
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