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Abstract
The Koebe-Andreev-Thurston Circle Packing Theorem states that every triangulated planar
graph has a circle-contact representation. The theorem has been generalized in various ways.
The arguably most prominent generalization assures the existence of a primal-dual circle repre-
sentation for every 3-connected planar graph. The aim of this note is to give a streamlined proof
of this result.

1 Introduction

For a 3-connected plane graph G = (V,E) with face set F , a primal-dual circle representation
of G consists of two families of circles (Cx : x ∈ V ) and (Dy : y ∈ F ) such that:
(i) The vertex-circles Cx have pairwise disjoint interiors.
(ii) All face-circles Dy are contained in the circle Do corresponding to the outer face o, and

all other face-circles have pairwise disjoint interiors.
Moreover, for every edge xx′ ∈ E with dual edge yy′ (i. e., y and y′ are the two faces separated
by xx′), the following holds:
(iii) Circles Cx and Cx′ are tangent at a point p with tangent line txx′ .
(iv) Circles Dy and Dy′ are tangent at the same point p with tangent line tyy′ .
(v) The lines txx′ and tyy′ are orthogonal.
Figure 1 shows an example.

I Theorem 1. Every 3-connected plane graph G admits a primal-dual circle representation.
Moreover this representation is unique up to Möbius transformations.

The proof presented here combines ideas from an unpublished manuscript of Pulleyblank
and Rote, from Brightwell and Scheinerman [2] and from Mohar [11]. The motive for the
write-up is that the amount of calculations needed for the proof has been reduced significantly.

(a) (b) (c)

Figure 1 (a) a 3-connected graph G, (b) a primal-dual circle representation of G, (c) straight-line
drawings of G and the dual graph G∗, yielding a tessellation by kites.
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The proof of the theorem is given in the next section. Before getting there we give a brief
account of the history of the theorem and links to applications.

In graph theory the study of circle contact representations can be traced back to the
1970’s and 1980’s; the term “coin representation” was used there. In a note written in 1991,
Sachs [13] mentions that he found a proof of the circle packing theorem which was based on
conformal mappings. This eventually lead him to the discovery that the theorem had been
proved by Koebe as early as 1936 [8].

In the context of his study of 3-manifolds, Thurston [14, Sec. 13.6] proved that any
triangulation of the sphere has an associated “circle packing” which is unique up to Möbius
transformations. This result was already present in earlier work of Andreev [1]. Nowadays
the result is commonly referred to as the Koebe-Andreev-Thurston Circle Packing Theorem.

In the early 1990’s new proofs of the circle packing theorem where found. Colin de Verdière
gave two proofs. The first is an existential proof using ‘invariance of domain’ [3]; the second
is based on the minimization of a convex function [4]. Pulleyblank and Rote (unpublished)
and Brightwell and Scheinerman [2] gave proofs of the primal-dual version (Theorem 1) based
on an iterative algorithm, similar to the proof given in this note. Mohar [10] analyzed an
improved iterative approach and proved its convergence in polynomial time.

Primal-dual circle representations yield simultaneous orthogonal drawings of G and its
dual G∗, i. e., straight-line drawings of G and G∗ such that the outer vertex of G∗ is at infinity
and each pair of dual edges is orthogonal. The existence of such drawings was conjectured
by Tutte [15].

The Circle Packing Theorem has been used to prove Separator Theorems. The approach
was pioneered by Miller and Thurston and generalized to arbitrary dimensions by Miller,
Teng, Thurston, and Vavasis [9]. The 2-dimensional case is reviewed in Pach and Agarwal [12,
Chapter 8]. A slightly simpler proof was proposed by Har-Peled [7].

The theorem also has applications in Graph Drawing. Eppstein [5] used circle repre-
sentations to prove the existence of Lombardi drawing (a drawing in which the edges are
drawn as circular arcs, meeting at equal angles at each vertex) for all subcubic planar graphs.
Felsner et al. [6] used circle representations to show that 3-connected planar graphs have
planar strongly monotone drawings, i. e., straight-line drawings such that for for any two
vertices u, v there is a path which is monotone with respect to the connecting line of u and v.

2 Primal-Dual Circle Representation: The Proof

Before diving into details we give a rough outline of the proof. A primal-dual circle repre-
sentation of G induces a straight-line drawing of G and a straight-line drawing of the dual.
Superimposing the two drawings yields a plane drawing whose faces are special quadrangles
called kites, see Figures 1c and 3. After guessing radii for the circles, the shapes of the kites
are determined. It is then checked whether the angles of kites meeting at a vertex sum up
to 2π. If at some vertex the angle sum does not match 2π, the radii are changed to correct
the situation. The process is designed to make the radii converge and to make the sum of
angles meet the intended value at each vertex. The second part of the proof consists of
showing that the kites corresponding to the final radii can be laid out to form a tessellation,
thus giving the centers of a primal-dual circle representation of G.

Proof of Theorem 1. Given a primal-dual circle representation of G, we can use a stereo-
graphic projection to lift it to a primal-dual circle representation on the sphere. This spherical
representation has the advantage that the circle Do has no special role. On the sphere the face-
circles can be viewed as a family with pairwise disjoint interiors. Rotating this representation
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Figure 2 (a) A plane graph G. (b) Its reduced
angle graph G�

o. (c) Its primal-dual completion
(skeleton graph of kites).
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Figure 3 The kite corresponding to the inci-
dent vertex-face pair x,y.

and mapping it back to the plane, we can get a primal-dual circle representation of G or of the
dual G∗ where any prescribed element z ∈ V ∪ F has the role of the outer face. This process
can be reverted. Therefore, we use the well-known fact that G or G∗ has a triangular face,
(from Euler’s formula), and assume that the outer face o of the given plane graph is a triangle.

Given a primal-dual circle representation of G we can use the centers of the circles Cx for
x ∈ V to obtain a planar straight-line drawing of G. Similarly the centers of the circles Dz

for z ∈ F \ {o} yield a planar straight-line drawing of G∗ \ {o}. Looking at the two draw-
ings simultaneously and adding appropriate rays for the edges yo of G∗ we see kites, i. e.,
quadrangular shapes with two opposite right angles, tessellating the polygon formed by the
centers of the outer vertices of G, see Figure 1c.

The kites are in bijection with the incident pairs (x, y), where x is a primal vertex and y is a
dual vertex. Since the involved circles intersect orthogonally, the kite of x and y (see Figure 3)
is completely determined by the radii rx of Cx and ry ofDy. The angles at x and y are given by

αxy = 2 arctan ry

rx
and αyx = 2 arctan rx

ry
. (1)

The angle graph of a plane graph G = (V,E) is the graph G� whose vertex set is V ∪ F
and whose edges are the incident pairs xy with x ∈ V , y ∈ F , i. e., x is a vertex on the
boundary of y. The graph G� is plane, bipartite and every face is a 4-gon, i. e., G� is a
quadrangulation. Let G�o = (U,K) be the reduced angle graph, obtained by deleting the
vertex corresponding to the outer face of G from G�, see Figure 2(b). (Note that the outer
face of the graph G in this example is a pentagon, unlike in our setup, where we assume a
triangular outer face.) The set K of edges of G�o is in bijection to the kites of a primal-dual
circle representation of G. We will need the following property of G�o.
I Claim 1. Every subset S of the vertices of G�o with |S| ≥ 5 induces at most 2|S| − 5 edges.

Proof. Since G�o is bipartite, every subset S induces at most 2|S| − 4 edges, with equality
only if S induces a quadrangulation. Since the outer face of G is incident to 3 vertices we
have |K| = 2(|U |+ 1)− 4− 3 = 2|U | − 5. Now let S ( U . Since G is 3-connected, there is
no separating 4-cycle in G�. This implies that the outer face of the induced graph G�o[S]
is not a 4-cycle, whence G�o[S] has at most 2|S| − 5 edges. J

We specify that the triangle formed by the three outer vertices should be equilateral.
This is no loss of generality, since it can be achieved for any primal-dual circle representation
by applying a Möbius transformation. After this normalization, the following equations hold:

EuroCG’18



72:4 On Primal-Dual Circle Representations

∑
w : uw∈K

αuw =
{
π/3 if u is an outer vertex of G
2π else.

Define the target angles β(u) for u ∈ U such that β(u) = π/3 if u is an outer vertex and
β(u) = 2π for all other vertices and all bounded faces of G.

Given an arbitrary assignment r : U → R+ of radii, we can form the corresponding kites.
The angle sum at u ∈ U is then α(u) =

∑
w : uw∈K αuw. We aim at finding radii such that

α(u) = β(u) for all u ∈ U . Later we will show that such radii induce a primal-dual circle
representation.

We first show that
∑

u α(u) =
∑

u β(u), i. e., any choice of radii attains the correct target
angles on average. Indeed,∑

u

α(u) =
∑

xy∈K

π = |K|π and

∑
u

β(u) =
(
(|V | − 3) + (|F | − 1)

)
2π + 3π3 =

(
|V |+ |F | − 1

)
2π − 5π = (2|U | − 5)π = |K|π.

As a consequence, whenever α(u) 6= β(u) for some u, the following two sets are nonempty:

U− = {u ∈ U : α(u) < β(u)} and U+ = {u ∈ U : α(u) > β(u)}

If we increasing the radius ru of a vertex u ∈ U+, we observe from (1) that for every incident
edge uw ∈ K, the angle αuw decreases monotonically to 0 as ru →∞. Hence, it is possible
to increase ru to the unique value where α(u) = β(u).

The core of the proof is the following infinite iteration.

repeat forever: for all u ∈ U : if u ∈ U+ then increase ru to make α(u) = β(u) (2)

We claim that the radii converge to an assignment with α(u) = β(u) for all u. The increase
of ru may cause another element w ∈ U− to move to U+, but a transition from U+ to U−
is impossible. It follows that some element u0 must belong to U− indefinitely unless the
iteration comes to a halt with U− = U+ = ∅. Since radii can only increase, u ∈ D implies that
ru →∞. We want to show that the set D ⊆ U+ ( U of elements whose corresponding radii
do not converge is empty. The subset of outer vertices of V in D is denoted by Do. If u ∈ D
and w ∈ U \D, then αuw converges to 0 according to (1). Thus, for given ε > 0, the iteration
will eventually lead to vectors of radii such that

∑
w∈U\D : uw∈K

αuw ≤
ε

|U |
for each u ∈ D. We now

consider the case |D| ≥ 5 and use Claim 1: (The cases 1 ≤ |D| ≤ 4 must be treated separately.)∑
u∈D

α(u) ≤ ε+
∑

kite with x, y ∈ D

(αxy + αyx) = ε+
∑

xy edge of G�o[D]

π ≤ ε+ (2|D| − 5)π (3)

∑
u∈D

α(u) =
∑

u∈D∩U+

α(u) >
∑
u∈D

β(u) = 2π|D| − 5|Do|
3 π.

By comparing these bounds, we see that |Do| = 3 and the subgraph G�o[D] of G�o induced
by D has 2|D| − 5 edges. This implies that G�o[D] is connected and that the outer face
of G�o[D] includes the three outer vertices of G. Thus, by the edge count, G�o[D] is an internal
quadrangulation, and the outer face of G�o[D] coincides with the hexagonal outer face of G�o
because this face bounds the unique shortest cyclic walk through the 3 nonadjacent vertices
of Do. Since G�o has no separating 4-cycles, we conclude that G�o[D] = G�o. This contradicts
D ( U and shows that D must be empty.
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We have shown that all radii are bounded, and hence they converge. It follows that the
angle sums α(u) converge as well, and by the nature of the iteration (2), their limits α̂(u) are
bounded by α̂(u) ≤ β(u). Since

∑
u α̂(u) =

∑
u β(u), we must have α̂(u) = β(u) for all u.

Uniqueness up to scaling. Let r and r′ be two vectors of radii such that αr(u) = αr′(u) =
β(u) for all u and ru0 = r′u0

for some u0. Suppose that S = {u : ru > r′u} is nonempty and
observe that u0 ∈ S̄ = U \ S.

0 =
∑
u∈S

αr(u)−
∑
u∈S

αr′(u) =
∑
u∈S

∑
w∈U : uw∈K

αuw(r) −
∑
u∈S

∑
w∈U : uw∈K

αuw(r′) (4)

=
∑

u∈S,w∈S̄,uw∈K

(
αuw(r)− αuw(r′)

)
< 0 (5)

The equality between (4) and (5) holds because the equation αuw + αwu = π is independent
of the radii, and hence the contributions of the edges uw with u,w ∈ S cancel. For the last
inequality, note that αuw(r) < αuw(r′) due to (1), because ru > r′u and rw ≤ r′w, and there
is some pair uw ∈ K with u ∈ S and w ∈ S̄. The contradiction proves uniqueness.

Laying out the kites. To finish the proof of Theorem 1, it remains to show that the kites
defined by the limiting radii r can be laid out in the plane with the intended side-to-side
contacts, and that the circles with radii given by r and centers as given by the laid-out kites
have the properties (i)–(v), i. e., they form a primal-dual circle representation of G.

We first show that if the kites can be laid out without overlap, they yield a primal-dual
circle representation. The kites induce a straight-line drawing of G and a straight-line drawing
of the dual G∗ with the outer vertex o at ∞ and edges yo being represented by rays. The
point p where an edge xx′ crosses its dual edge yy′ is a right angle of kites. This implies (v).

For a vertex u ∈ U , consider the set of kites containing u. These kites can be put together
in the cyclic order given by the rotation of u in G�o to form a polygon Pu. If u is not one of the
three outer vertices Vo, Pu is a convex polygon surrounding u, because α̂(u) = β(u) = 2π. By
the geometry of the kites, all edges incident to u have the same length ru, and the circle Cu of
radius ru centered at u is inscribed in Pu and touches Pu at the common corners of neighboring
kites. For u ∈ Vo, the polygon Pu has u as a corner, but the circle Cu still goes through the
right-angle corners of the kites. From the incidences of the kites, and since the polygons Pu

for u ∈ V are pairwise disjoint, we obtain that the family (Cx : x ∈ V ) satisfies (i) and (iii).
The union of all kites forms an equilateral triangle T . This forces the radii of the three

outer vertices to be equal, whence the touching points of the outer circles are the midpoints
of the sides of T . Now, define Do as the inscribed circle of T . Let the family of circles defined
for dual vertices be (Dy : y ∈ F ). Properties (ii) and (iv) follow from the layout of kites.

The layout of kites is warranted by the following Lemma 2. When we apply this lemma,
the graph H is the bipartite primal-dual completion of G = (V,E). The vertices of H are
V ∪ F \ {o} ∪ E, and the edges of H are the pairs (z, e) ∈ (V ∪ F \ {o})× E for which z is
incident to the edge e. This graph is the skeleton of the laid-out kites, see Figure 2(c). J

I Lemma 2. Let H be a 3-connected plane graph. For every inner face f of H let Pf be
a simple polygon whose corners are labeled with the vertices from the boundary of f in the
same cyclic order. The corner of Pf labeled with v is denoted p(f, v) and αi,v denotes the
angle of Pf at p(f, v). If the following conditions are satisfied:

(i)
∑k

i=1 αi,v = 2π for every inner vertex v of H with incident faces f1, . . . , fk.
(ii)

∑k
i=1 αi,v ≤ π for every outer vertex v of H with incident faces f1, . . . , fk.

(iii) ‖p(f1, v)− p(f1, w)‖ = ‖p(f2, v)− p(f2, w)‖ for every inner edge vw of H with incident
faces f1, f2.

EuroCG’18
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Then there is a crossing-free straight-line drawing of H in which the drawing of every inner
face f can be obtained from Pf by a rigid motion, i. e., translation and rotation.

Proof. LetH∗ be the dual graph ofH without the vertex corresponding to the outer face ofH.
Further let S be a spanning tree of H∗. Then by (iii) we can glue the polygons Pf of all inner
faces f ofH together along the edges of S. This determines a unique position for every polygon,
up to a global motion. We need to show that the resulting shape has no holes or overlaps. For
the edges of S we already know that the polygons of the two incident faces are touching such
that corners corresponding to the same vertex coincide. For the edges of the complement S
of S we need to show this. Considering S as a subset of the edges ofH, the set S is a forest inH.
Let v be a leaf of this forest that is an inner vertex ofH, and let e be the edge of S incident to v.
Then for all incident edges e′ 6= e of v we already know that the polygons of the two incident
faces of e touch in the right way. But then also the two polygons of the two incident faces of e
touch in the right way because v fulfills property (i). Since the set of edges we still need to check
remains always a forest, we can iterate this process until all inner edges ofH are checked. After
gluing all the polygons Pf , every vertex v has a unique position, and because of property (ii),
all angles at the boundary of the union are convex. An easy double-counting argument with an
application of Euler’s Formula shows that the sum of angles at the outer vertices equals (d−2)π
if there are d outer vertices. This is just the right value for a d-gon, whence the boundary
of the union of the glued polygons Pf is a convex polygon and therefore nonintersecting. J
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