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Abstract. We prove that every planar graph has a representation using axis-parallel cubes in

three dimensions in such a way that there is a cube corresponding to each vertex of the planar

graph and two cubes have a non-empty intersection if and only if their corresponding vertices are

adjacent. Moreover, when two cubes have a non-empty intersection, they just touch each other.

This result is a strengthening of a result by Thomassen which states that every planar graph has

such a representation using axis-parallel boxes.

1 Introduction

An axis-aligned d-dimensional box, or d-box in short, is defined to be the Cartesian product of

d closed intervals. The boxicity of a graph G is defined as the smallest d such that G can be

represented as the intersection graph of d-boxes in IRd . A graph has boxicity at most one if and

only if it is an interval graph.

Roberts [12] showed that removing a perfect matching from a complete graph on 2n vertices

yields a graph of boxicity n. The octahedron graph is the instance with n = 3 from this series of

examples. This shows that the boxicity of planar graphs can be as large as 3. Thomassen [16]

proved that the boxicity of planar graphs is at most 3. In fact, he proved a stronger result: every

planar graph is the intersection graph of a family of closed axis-aligned boxes in 3-space such that

the intersection of any two boxes is contained in the boundary of both. We propose to call such a

representation a cuboidal layout.

The main contribution of this paper is to show the following strengthening of Thomassen’s

theorem:

Theorem 1 Every planar graph has a cube layout, i.e., a cuboidal layout where all cuboids are cubes.

The proof of the theorem is based on the representation of 4-connected triangulations as contact

graphs of homothetic triangles. As of today, the existence of such a contact representation only

has a nonconstructive proof. We review the result and related matters in the next section.

In Section 4, the proof of Theorem 1 is presented.

In [16], Thomassen first characterizes those planar graphs that can be obtained as intersection

graphs of closed axis-aligned rectangles in the plane such that two rectangles that intersect have

a segment on the boundary in common. Following [4], we call such a representation a rectangular
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layout. Thomassen’s result is: A planar graph G has a rectangular layout if and only if G is a proper

subgraph of a 4-connected triangulation.

If we allow the rectangles of a rectangular layout to intersect by overlapping each other in arbitrary

fashion, then the class of graphs that have such a representation is exactly the class of graphs with

boxicity at most 2. It is known that outerplanar graphs have boxicity at most 2 [13]. But the same

cannot be said about series-parallel graphs as there are series-parallel graphs that need boxicity 3 [3].

The boxicity of a special class of minimally 3-connected planar graphs was shown to be 2 in [5].

Bellantoni et al. show that every bipartite graph that has boxicity at most 2 is a “grid intersection

graph”, or the intersection graph of vertical and horizontal line segments in the plane [2]. Note that

grid intersection graphs are a subclass of the class of graphs with boxicity at most 2. It is shown

in [10] that every planar bipartite graph is a grid intersection graph.

The representation of graph as the intersection of axis-aligned cubes of equal size have also been

studied. A d-cube, or axis-aligned d-dimensional cube, is defined to be the Cartesian product of d

unit length intervals. The cubicity of a graph is defined to be the minimum d for which the graph

has a representation as the intersection of d-cubes. Obviously, the cubicity of a graph is at least

its boxicity. Chandran et al. [6] show that the ratio of the cubicity of a graph on n vertices to its

boxicity is at most ⌈log2 n⌉. It has to be noted that even though we show a contact representation

for planar graphs using cubes in 3-space, this does not imply that planar graphs have cubicity at

most 3, since the representation we construct uses cubes of varying sizes. In fact, the cubicity of

the star graph K1,n itself is ⌈log2 n⌉ [12], hence, there is no constant bound on the cubicity of planar

graphs.

It seems interesting to consider the minimum dimension in which a given graph G has a repre-

sentation as the intersection of axis-aligned cubes, not necessarily of the same size. Note that this

parameter, which we shall denote by vcub(G), will always be at least the boxicity and at most the

cubicity of the graph. The result of this paper implies that vcub(G) ≤ 3 if G is planar so that vcub

and boxicity are bounded by the same constant on planar graphs.

A class of graphs where vcub behaves more like cubicity is given by balanced complete bipartite

graphs. Roberts [12] observed that Kn,n has cubicity equal to 2⌈log2 n⌉ and boxicity equal to 2.

We claim that vcub(Kn,n) is equal to ⌈log2 n⌉+ 1. The upper bound on vcub(Kn,n) can be seen as

follows. Let A and B be the two parts of the bipartite graph Kn,n. Number the vertices of part B

from 0 to n − 1. For v ∈ B, let b(v) denote number of v written in binary using k = ⌈log2 n⌉ bits

and let bi(v) denote the ith bit in b(v). Define the interval graph Ii , for 1 ≤ i ≤ k , by assigning

the vertices intervals as follows: For every vertex v ∈ A, assign the interval [0, 1]. For a vertex

v ∈ B, assign the interval [−2n, 0] if bi(v) = 0 and [1, 2n + 1] if bi(v) = 1. The interval graph

Ik+1 is defined by assigning the interval [0, 2n] to each vertex from B and by assigning disjoint unit

length intervals in [0, 2n] to the vertices in A. The intervals of the interval graph Ii can be seen

to be the projections of the k + 1-dimensional cubes assigned to the vertices on the ith coordinate

axis. We thus have a representation of Kn,n using cubes in ⌈log2 n⌉ + 1 dimensions. This bound

on vcub(Kn,n) can be shown to be tight as follows. Suppose there is a representation of Kn,n using

cubes in k = ⌈log2 n⌉ dimensions. Consider the smallest cube, say Q, in the representation. Let us

assume without loss of generality that the vertex corresponding to Q belongs to A. Let B be the

set of cubes corresponding to the vertices in B. Every cube in B intersects Q and since they are

bigger, each of them must contain at least one corner of Q. The cube Q has 2k corners. It can

be seen that if there are more than 2k−1 cubes in B, then any other cube that intersects all the

cubes in B will intersect the cube Q also. This cannot be the case if this is a valid representation

as the cubes corresponding to other vertices in A do not intersect Q but intersect all the cubes in

B. Therefore, |B| ≤ 2k−1 which implies that n ≤ 2⌈log2 n⌉−1, which is a contradiction.
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2 Contact representations by rectangles and squares

Suppose a graph G has a rectangular layout as described by Thomassen. Raising the rectangles

of a rectangular layout representing G into a third independent dimension yields a cuboidal layout

of G. This already yields Thomassen’s theorem for a large class of planar graphs. To extend this

construction to the general case it has to be shown that separating triangles can be handled. The

basic idea is to represent the inner and the outer part of a separating triangle on different layers in

the third dimension and enlarge the boxes of the separating triangle such that they can contribute

to the representations on both layers. Details are given in [16].

A similar approach for cube layouts would start with a square layout, i.e., with a rectangular

layout where all the rectangles are squares. Schramm [15] proves a representation theorem for

square layouts. In his model, it is possible that four squares touch in a single point, in this case the

representation does not specify which of the diagonals correspond to G, see Figure 1. We call such

a layout a weak square layout.

Figure 1: A planar graph with a weak square layout.

Theorem 2 If G is an induced subgraph of T ′ and T ′ is obtained from a triangulation without

separating cycle of length at most 4 by removing a vertex, then there is a weak square layout

representing G.

Schramm’s beautiful proof is based on the notion of an extremal metric. Lovasz [11] explains the

construction via a blocking pair of polyhedra. Planar graphs with separating cycle of length at most

4 also admit extremal metrics. However, in this case it may happen that the squares representing

some of the vertices degenerate to single points. This would happen when in the graph shown in

Figure 1, the dashed edge is removed and a more complex subgraph is engrafted into the resulting

4-face.

Schramm’s theorem yields cube layouts for a large class of planar graphs. Unlike in the case of

cuboidal layouts, we do not see a way of taking the 2-dimensional layout as a basis for the general

representation theorem.

3 Contact representations by triangles

In a triangle contact representation of a graph, the vertices are represented by a set of interiorly

disjoint triangles such that two triangles touch exactly if there is an edge between the corresponding

vertices.
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Figure 2: A planar triangulation with a triangle contact representation. The arrows indicate where

the top corners of triangles touch.

De Fraysseix et al. [7] proved that every planar triangulation admits a triangle contact represen-

tation. Actually, they showed that the triangles can be chosen to be isosceles over a horizontal

basis. During the Graph Drawing workshop in Bertinoro in 2007 [1], a stronger result was conjec-

tured: Every 4-connected planar triangulation has a triangle contact representation with homothetic

triangles.

As in the case of Schramm’s square layouts, the connectivity condition comes from examples

where some of the triangles degenerate to points. Such an example is obtained from the octahedron

graph by placing two vertices of degree 3 in opposite faces.
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Figure 3: A homothetic triangle contact representation of a planar graph.

Gonçalves, Lévêque and Pinlou [9] observe that the conjecture follows from Schramm’s Convex

Packing Theorem. This extremly strong and surprising result is apparently not well known, therefore

we include the statement:

Theorem 3 (Convex Packing Theorem) Let T be a planar triangulation with outer face {a, b, c}

and let C be a simple closed curve partitioned into arcs {Pa, Pb, Pc}. For each interior vertex v of T

prescribe a convex set Qv containing more than one point. Then there is a contact representation

of a supergraph (on the same vertex set but possibly with more edges) of T where each interior

vertex is represented with a homothetic copy of the convex set prescribed for it and each outer

vertex by one of the three arcs of C.

As in the cases discussed so far, the homothetic copies of some Qv may degenerate to a point.

Gonçalves et al. prove that if T is 4-connected, we can prevent this from happening by assigning

homothetic triangles to each interior vertex of T and by choosing C to be a triangle in such a way
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Figure 4: A homothetic triangle contact representation of the icosahedron graph and of a larger

triangulation. The triangles corresponding to the three vertices on the outer face are not shown.

that each of its sides can be one side of the triangle assigned to one of the three outer vertices.

The slopes of the three segments of C are chosen so that the triangles that are so assigned to the

outer vertices are homothetic to those given to the interior vertices. They also show that in that

case, we obtain a contact representation for T with homothetic triangles (i.e., with no additional

edges).

With an appropriate affine transformation, the triangles of the contact representation with ho-

mothetic triangles can be made equilateral. Thus the result of Gonçalves et al. can be stated

as:

Theorem 4 Every 4-connected planar triangulation has a triangle contact representation with aligned

equilateral triangles.

In [14], Schramm deduces Theorem 3 as a corollary of his Monster Packing Theorem. It seems

that Schramm’s proof can be turned into an iterative procedure that allows to produce arbitrarily

good approximations of the packings whose existence follows from the theorem. However, to apply

such a procedure on concrete instances may be completely impractical.

Surprisingly, there is another approach to triangle contact representation with equilateral triangles

that works well in practice. We include a brief sketch, some more details are given in [8]: The idea

is to use a Schnyder wood of a triangulation T to prescribe how triangles in a triangle contact

representation of T are supposed to touch. From this geometric information, a system of linear

equations whose variables are the sidelengths of the triangles is extracted. If the system has a

positive solution, this yields the intended triangle contact representation with equilateral triangles

of T . If the solution of the system contains negative variables, these can be used as sign-posts

indicating how to change the Schnyder wood for another try. The procedure has been implemented,

it produces nice pictures as e.g. Figure 4, and it has never failed but so far there is no proof of

Theorem 4 based on this approach.

4 Proof of Theorem 1

If G = (V, E) has a contact representation with sets (Cv )v∈V and H = (W,E[W ]) is an induced

subgraph of G, then (Cv )v∈W is a contact representation of H. Since every planar graph is an
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induced subgraph of a planar triangulation, it suffices to prove Theorem 1 for triangulations.

From now on, let G = (V, E) be a planar triangulation. We first assume that G is 4-connected

and demonstrate the basic idea with this case. Later, we extend the argument to the general case.

Let (Tv )v∈V be a triangle contact representation of G with homothets of the triangle with corners

(0, 0), (1, 0) and (0, 1). We may assume that the three outer vertices a1, a2, a3 are represented

as shown in Figure 5 and all the other triangles (Tv )v∈V \{a1,a2,a3} are contained in the region R

with corners (0, 1), (1, 1), (1, 0). Let xv , yv , tv be such that triangle Tv has corners (xv , yv ), (xv +

tv , yv ), (xv , yv + tv ). The cube Qv representing the vertex v is the product of intervals I
x
v , I
y
v , I
z
v

of length tv on the three coordinate axes, where I
x
v = [xv , xv + tv ], I

y
v = [yv , yv + tv ], I

z
v =

[2 − xv − yv − tv , 2 − xv − yv ]. Note that since for v ∈ V \ {a1, a2, a3}, Tv is contained in R, the

corresponding cube Qv is contained in the unit cube in IR
3. Also, for v ∈ V , the intersection of Qv

with the plane x + y + z = 2 projects along the z-axis to Tv . From the following two claims, it

follows that the family (Qv )v∈V forms a cube layout of G.

Ta1

Ta3
Ta2

R

Figure 5: The triangles representing the outer vertices and the region R.

Claim A. If v , w ∈ E then Qv and Qw are interiorly disjoint but intersect on the boundary.

Proof. From the assumptions about triangle contact representation, it follows that the triangles

Tv and Tw are non-trivial, i.e., tv , tw > 0, and they have a contact point. We may assume that a

corner c of Tv belongs to a boundary segment B of Tw . There are several cases.

Let B be the vertical segment of Tw . In this case, xv+tv = xw and therefore, all points in Qv have

x-coordinate at most xw and all points in Qw have x-coordinate at least xw . It remains to be shown

that the two cubes intersect in the plane with equation x = xw . For the following considerations,

we restrict attention to this plane and drop the x-coordinate. The intersection of Qw with the plane

consists of all points p = (yp, zp) with yw ≤ yp ≤ yw + tw and 2−xw −yw − tw ≤ zp ≤ 2−xw −yw .

The point (yv , 2− xv − yv − tv ) = (yv , 2− xw − yv ) is a corner of Qv and satisfies these conditions,

i.e., it belongs to Qw .

The case where B is the horizontal segment of Tw is symmetric to the previous case. Just

exchange the roles of x and y coordinates.

Now let B be the diagonal segment of Tw . The supporting line of B has the equation x + y =

xw+yw+tw . Since c = (xv , yv ) is on this line, we have xw+yw+tw = xv+yv . All points of Qv have

z-coordinate at most 2− xv − yv and all points of Qw have z-coordinate at least 2− xw − yw − tw .

It remains to be shown that the two cubes intersect in the plane with equation z = 2 − xv − yv .

For the following considerations, we restrict attention to this plane and drop the z-coordinate. The

intersection of Qw with the plane consists of all points p = (xp, yp) with xw ≤ xp ≤ xw + tw and

yw ≤ yp ≤ yw + tw . The point (xv , yv ) is a corner of Qv and satisfies the conditions, i.e., it belongs

to Qw . △

Remark. A slightly more detailed analysis shows that if the contact of Tv and Tw is a corner of
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both, then the intersection of Qv and Qw is part of an edge of both. Otherwise, if the contact

of Tv and Tw is generic, then the intersection of Qv and Qw is a 2-dimensional rectangle, i.e., a

2-box. Thomassen’s construction of cuboidal layouts of planar graphs has the property that any

two cuboids that have a contact already intersect in a 2-box. In this sense, our cube layouts are not

quite as strong as Thomassen’s cuboidal layouts.

Claim B. If v , w 6∈ E then Qv and Qw are disjoint.

Proof. Since (Tv )v∈V is a triangle contact representation of G, it follows that the triangles Tv and

Tw are disjoint. A pair of disjoint homothetic triangles can be separated by a line which is parallel to

an edge of the triangles. Let S be such a separating line. If S is vertical (respectively horizontal),

the plane perpendicular to the x- (respectively y -) axis that contains S separates Qv and Qw . If S

is diagonal with equation x + y = r , then the plane with equation z = 2 − r is separating Qv and

Qw . △

From the preceding discussion, it is clear that if G = (V, E) is any graph that has a triangle contact

representation with homothetic triangles, then G has a cube layout in which the cube corresponding

to each interior vertex is contained in the unit cube in IR3.

The general case. Let G = (V, E) be an arbitrary planar triangulation. Using the Convex Packing

Theorem, we obtain a packing with triangles homothetic to the triangle with corners (0, 0), (1, 0)

and (0, 1) within the triangular region R with corners (1, 1), (1, 0) and (0, 1). The three boundary

segments of R are assigned to the outer vertices, the horizontal segment belongs to a1, the vertical

to a2 and the diagonal to a3. Adding the outer triangles as in Figure 5, we obtain a triangle contact

representation (Tv )v∈V with homothetic triangles. Some vertices of G, however, may be represented

by degenerate triangles of size 0. Let V0 be the set of all vertices whose triangle is of size 0 and let

V1 = V \ V0. Note that T = (Tv )v∈V1 is a proper triangle contact representation of the subgraph

G[V1] = (V1, E[V1]) of G induced by V1. Consider a maximal subset W of V0 such that the induced

subgraph G[W ] = (W,E[W ]) of G is connected.

Edges are respected by contacts in the packing, therefore, all the degenerate triangles Tw corre-

sponding to vertices w ∈ W have to be the same point PW .

Consider the set S consisting of all vertices s from V1 whose triangle Ts contains PW . One of

the outer vertices ai is not in S, therfore, S is a separating set. Since planar triangulations are

3-connected |S| ≥ 3.

The triangles Ts of vertices in S are non-degenerate, interiorly disjoint, homothetic and share a

common point. It follows that |S| ≤ 3, hence, |S| = 3.

There is no vertex v 6∈ W ∪ S with PW ∈ Tv , otherwise, S would pairwise separate the three

vertices w ∈ W , v and ai 6∈ S and as G is 3-connected, there would be a K3,3 minor in G. This is

in contradiction to planarity.

Now, consider the cube layout (Qv )v∈V1 of G[V1] that can be obtained from its triangle contact

representation T as described previously. We focus our attention on the three cubes Qs of the

vertices in S. If PW is the point (xW , yW ), then all three cubes have q = (xW , yW , 2 − xW − yW )

as a corner and pairwise share a 1-box along edges of the cubes, Figure 6 illustrates the situation.

The figure also shows another cube QW with a corner in q and sidelength small enough such that

the intersection of QW with each of the cubes Qs for s ∈ S is a facet of QW .

We will use this cube QW together with the three cubes Qs for s ∈ S to accommodate a cube

layout of the subgraph of G induced by W ∪ S. To make the construction precise, we first label

the elements of S as s1, s2, s3 as in Figure 6. The sections of the cubes Qs1 , Qs2 and Qs3 with

the plane x + y + z = 2 are shown as black triangles. The figure also shows the section of QW
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Qs3

Qs2

Qs1

Figure 6: The three cubes Qs for s ∈ S and the cube QW between them.

with the plane x + y + z = 2 + ℓ where ℓ is the sidelength of QW as a light triangle. Recall that

q = (xW , yW , 2− xW − yW ) and note that the facet y = yW of QW is contained in Qs1 , the facet

x = xW of QW is contained in Qs2 , and the facet z = 2− xW − yW of QW is contained in Qs3 .

By induction on the number of vertices, we may assume that there is a cube layout of G[W ∪S]. In

fact, we can assume the following additional properties: All the cubes Qw for w ∈ W are contained

in the unit cube Q. The cubes representing the outer vertices si intersects the unit cube Q only on

facets. The facet y = 1 of Q is contained in Qs1 , the facet x = 1 of Q is contained in Qs2 , and the

facet z = 1 of Q is contained in Qs3 . Recall that for 4-connected triangulations, we have already

constructed such a cube layout and the cubes placed for the cube layout of G[V1] also obey these

properties.

Consider the unit cube Q together with all the cubes from the cube layout of G[W ∪ S] that

are contained in Q. We now describe the transformations that have to be applied to get these

cubes into QW such that together with the cubes corresponding to V1 they yield a cube layout of

G[V1∪W ]: First, apply a point reflection at the origin. This yields the required change of role of the

upper and lower facets of the bounding cube Q in each direction. Now it only remains to translate

and scale Q in order to make it identical with QW .

Let W1,W2, . . . ,Wk be the connected components of V \ V1 and let PWi denote the point that is

the degenerate triangle corresponding to each vertex in Wi . The set Si is defined for Wi in exactly

the same way as the set S was defined for W , i.e., Si is the set of vertices of V1 whose triangles

contain the point PWi . As before, Si is a separating set with |Si | = 3. Like we did for W , we can

find the cubes QWi corresponding to each point PWi in the cube layout of G[V1]. We can also find

the cube layouts for each G[Wi ∪ Si ] and place them in to QWi as described above so that we get

a cube layout for G.
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