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Abstract. Bus graphs are being used for the visualization of hyperedges, for
example in VLSI design. Formally, they are specified by bipartite graphs G =
(B ∪V,E) of bus vertices B realized by single horizontal and vertical segments,
and point vertices V that are connected orthogonally to the bus segments. The
decision whether a bipartite graph admits a bus realization is NP-complete. In
this paper we show that in contrast the question whether a plane bipartite graph
admits a planar bus realization can be answered in polynomial time.
We first identify three necessary conditions on the partition B = BV ∪ BH of
the bus vertices, here BV denotes the vertical and BH the horizontal buses. We
provide a test whether good partition, i.e., a partition obeying these conditions,
exist. The test is based on the computation of maximum matching on some aux-
iliary graph. Given a good partition we can construct a non-crossing realization
of the bus graph on an O(n)×O(n) grid in linear time.

1 Introduction
A classical topic in the area of graph visualization is orthogonal graph drawing; related
surveys can be found in [3, 11, 18]. In this drawing model each edge consists of a series
of subsequent horizontal or vertical line segments. Applications can be found in e.g.
VLSI design, cf. [17, 12]. In this application it may also be necessary to model hyper-
graphs. For example power buses on VLSI chips are often modeled as hyperedges, as
well as LANs in computer network visualization. Bus graphs - as being defined later -
and their generalizations are a possible approach to model hyperedges. A bus-style rep-
resentation might also be used when facing the visualization of highly interconnected
parts of a given graph. So, cliques can be represented in a compact and comprehensive
way using a bus-style model.

Fig. 1: An example of a plane bus graph with a planar realization.
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The bus graph approach is very much related to the classical topic of rectilinear
Steiner trees, where trees are being used to connect subsets of the vertices [8, 10]. Re-
lated are also works on rectangular drawings, rectangular duals and visibility graphs.
The latter graphs are highly related to bus graphs, because connections in bus graphs
enforce visibility constraints in realizations. Corresponding key concepts and surveys
can be found in [9, 15, 16] and in chapter 6 of [14]. We will use some of the methods
that have been developed in this area.

We are considering the bus graph model introduced by Ada et al. [1] A bus graph is
a bipartite graphG = (B∪V,E), whereE ⊆ V ×B and deg(v) ≤ 4 for all v ∈ V . We
call vertices in B bus vertices and vertices in V connector vertices. A plane bus graph
is a planar bus graph together with a planar embedding. A realization of a bus graph is
a drawing D, where bus vertices are represented as horizontal or vertical line segments
(bus segments), connector vertices are drawn as points, and the edges are horizontal or
vertical segments (connections), i.e. segments connecting perpendicular a point with a
bus segment. To distinguish between bus vertices and edges in a realization, the bus
segments are drawn with bold lines, see Figure 1. A planar realization is a realization
without crossings. We always assume to have a connected bus graph, since components
can be considered separately.

In [1] a relation of bus graphs to hypergraphs is mentioned: the bipartite adjacency
matrix of a bipartite graph can be read as incidence matrix of a hypergraph and vice
versa, if vertices are contained in at most four hyperedges. Ada et al. [1] considered the
problem to decide, if a bus graph has a realization and showed the NP-completeness.
In this paper we consider the problem to decide if a plane bus graph has a planar real-
ization. We show that this question in contrast to the previous result can be decided in
polynomial time.

The bus segments will be drawn either vertically or horizontally. So we assign a
labeling to the bus vertices that determines if they will be realized either vertically or
horizontally. This labeling ensures a planar realization, if it obeys some properties. The
paper is structured as follows: In Section 2 we provide necessary properties for the
labeling. After that in Section 3 we give a polynomial time algorithm that tests whether
a given maximal plane bus graph admits a labeling with these properties, which we call
a good partition. If it exists, the algorithm also returns a good partition. In Section 4 we
modify the approach so that it also works in cases where the bus graph is not maximal.
In Section 5 we show how to actually produce a realization of a plane bus graph with a
good partition. The approach is based on techniques from [2] and [6].

2 Preliminaries
In this paper we consider plane bus graphs G = (V ∪ B,E), i.e., planar bus graphs
together with a fixed planar embedding. A diamond in a plane bus graph is a cycle
z = (b, v, b′, v′) of length four with bus vertices b, b′ and connector vertices v, v′ such
that both v, v′ have a third bus neighbour in the bounded region defined by z. A pla-
nar realization of a plane bus graph G = (V ∪ B,E), induces labels H or V for the
bus vertices where H indicates that a bus is represented by a horizontal segment in
the realization, while V indicates that the bus is represented by a vertical segment. Let
Π = (BV , BH) denote the partition of B according to the label of the bus vertices.
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We observe three properties of a partition Π = (BV , BH) corresponding to a planar
realization:

(P1) Every connector vertex of degree ≥ 3 has neighbors in both classes.
(P2) A connector vertex v of degree 4 has cyclically alternating neighbors in both

classes.
(P3) A diamond has both bus vertices b, b′ in the same partition class.

The first two properties are obvious from the nature of a realization. The third property
is shown in the following lemma.

Lemma 1. Let G be a plane bus graph that has a realization inducing the partition
(BV , BH) of the set of buses B. For any diamond z = (b, v, b′, v′) the two bus vertices
b and b′ belong to the same class.

Proof. Suppose by contradiction that b ∈ BH and b′ ∈ BV . The interior of z in the
planar bus realization is a polygon with six corners. Four of the corners are at contacts
of connector edges and buses and two corners are at the connector vertices. Some of
these corners may degenerate so that the polygon actually only has four corners. We
account for four corners of size π/2 each, where the edges meet the buses. The other
two corners are at v and v′. Since b is horizontal and b′ vertical the angles at v and v′

have to be either π/2 or 3π/2. Because v and v′ have an additional bus neighbor in the
interior the angle at each of v and v′ is at least π. Hence, both these angles are of size
3π/2. The sum of interior angles is at least 4 ·π/2+2 ·3π/2 = 5π. A six-gon, however,
has a sum of angles of 4π. The contradiction shows that b and b′ belong to the same
class of the partition B = BV ∪BH . ut

Note that the outer cycle of G is a diamond when the outer face of G has cardinal-
ity 4.

A partition Π = (BV , BH) of the buses of a plane bus graph G is called a good
partition if it obeys properties (P1), (P2), and (P3).

Let ∆ = ∆(G) denote the degree of a plane bus graph G which is defined as the
maximum degree among the connector vertices of G. In the next section we consider
maximal plane bus graphs and test efficiently, if they admit a good partition. The test is
constructive, i.e., if the answer is yes, then a good partition is constructed.

3 Maximal Plane Bus Graphs
A maximal plane bus graph G is a plane bipartite bus graph, where all its faces have
cardinality 4. Let G = (V ∪ B,E) be a maximal plane bus graph. We assume, that G
has no connector vertices of degree 1 or 2, since they have no influence on the existence
of a good partition.

In this section we first assume ∆ = 3 for G and give an algorithm to test G if it
admits a good partition and if so the algorithm returns a good partition. After that we
allow ∆ = 4 and reduce this case with a simple modification to the case ∆ = 3.

Let G = (V ∪ B,E) be a plane maximal bus graph with ∆ = 3. The connector
graph CG = (VC , EC) of G consists of all the connector vertices VC = V and edges
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(v, v′) ∈ EC , if v and v′ are both incident to the same face of the plane embedding of
G. The connector graph is helpful because it allows the translation of the problem of
finding a good partition forG to the problem of finding an appropriate perfect matching
in CG, summarized in Proposition 1 and Proposition 2 and illustrated in Figure 2.

G CG

H

V

H

H H
V

V

V

Fig. 2: A maximal plane bus graph, the connector graph with a matching and its good
partition, and a corresponding bus representation.

The first property (P1) of a good partition Π of G requires that every connector
vertex v has two adjacent bus vertices in one partition class and one in the other. If b
and b′ are neighbors of v in G with the same label, then there is a connector vertex v′

sharing a face with v, b, and b′, since every face has cardinality 4. When looking at
v′ the two neighbors b and b′ are again the two in a common partition class. Hence,
property (P1) of a good partition of G induces a perfect matching on CG.

Conversely a perfect matching M of CG induces a labeling of the bus vertices. Re-
moving the matching edges from CG leaves a 2-regular graph, i.e., a disjoint collection
of cycles. The regions defined by this collection of cycles can be 2-colored with col-
ors V and H such that each cycle has regions of different colors on its sides. Let BV

be the set of bus vertices in faces colored with V , and BH be the set of bus vertices in
faces colored with H . This yields a partition satisfying (P1) because every connector
vertex is on a cycle and has a bus neighbour in each of the two faces bounded by the
cycle.

Since ∆ = 3, the second property (P2) is void.
Consider a diamond z = (b, v, b′, v′) in G. Each of v, v′, has exactly one edge e, e′,

in CG, that corresponds to a face of the outside of z. Since (P3) forces equal labels
for b, b′, the faces represented by e, e′ have equally labeled incident bus vertices (b, b′)
and thus e, e′ must be in a matching of CG. We define the set Ed of edges forced by
diamonds as the set of edges consisting of the two outside edges e, e′ in CG for each
diamond z of G. We have thus shown that a perfect matching M induced by a good
partition contains Ed.

Conversely, if Ed is contained in a perfect matching M of CG, then the bus vertices
b, b′ of each diamond are in the same partition class and thus G has a partition, that
satisfies property (P3). The findings are summarized in the following proposition.
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Proposition 1. Let G be a maximal plane bus graph with ∆ = 3 and CG its connec-
tor graph and Ed the set of edges of CG forced by diamonds. Then G admits a good
partition, iff CG has a perfect matching M , with Ed ⊆M .

Now we allow ∆ = 4 for a maximal plane bus graph G. To transform G into a
plane bus graph G′ with ∆ = 3, we split every connector vertex v of degree 4 into
two connector vertices v′, v′′, both of degree 3 in the following way: let b1, b2, b3, b4
be the adjacent bus vertices of v in consecutive cyclic order around v. Remove v and
its incident edges and connect the new introduced vertices v′, v′′ with edges (b1, v

′),
(b2, v

′), (b3, v
′), (b3, v

′′), (b4, v
′′), (b1, v

′′). The connector graph CG is obtained from
CG′ by contracting the edges (v′, v′′) corresponding to the pairs v′, v′′ that have been
obtained by splitting a vertex of degree 4. Define the set Es of edges forced by splits of
CG′ as the set of these edges (v′, v′′).

If G has a partition satisfying property (P2), then we have to ensure alternating
labels for the neighbours of v in G. This forces (v′, v′′) ∈ Es to be a matching edge
in CG′ . Conversely if (v′, v′′) ∈ Es is a matching edge, then the common neighbours
b1, b3 have the same label. Since v′, v′′ have both degree 3 and two of their neighbours
have equal label, the third neighbour (for each of v′, v′′) has a different label, i.e. b2
and b4 have both different label compared to the label of b1, b3, hence, v obeys property
(P2). So in total a partitionΠ ofG satisfies property (P2), iff the edgesEs are contained
in a matching of CG′ . For notational simplicity we denote the connector graph CG′ of
the transformed graph G′ by CG. An example for a maximal plane bus graph with its
connector graph showing the edges of Ed ∪ Es is shown in Figure 3.

Proposition 2. Let G be a maximal plane bus graph with ∆ = 4 and CG its connector
graph and Ed, Es the edges of CG that are forced by diamonds and splits. The graph
G admits a good partition, iff CG has a perfect matching M , with (Ed ∪ Es) ⊆M .

Proof. The proof almost follows from Proposition 1 and the above considerations.
Splitting connector vertices of degree 4, however, may separate diamonds. We claim
that this is no problem. Let v be split into v′, v′′ as above. Any diamond containing v
has a cycle z with bus vertices b1 and b3. Condition (P3) for this diamond requires that
b1 and b3 belong to the same class of a good partition. This requirement, however, is
already implied by condition (P2) for the original connector vertex v. That is, separated
diamonds do not impose additional conditions on the matching. ut

Theorem 1. Let G be a maximal plane bus graph. A good partition for G can be com-
puted in O(n3/2) time, if it exists.

Proof. By Proposition 2 it suffices to test the connector graph CG for a perfect match-
ing M that contains (Ed ∪ Es). The extraction of the connector graph CG from G
requires linear time. The set Es can be computed while constructing CG. To identify
diamonds we consider the dual DG of the connector graph CG. The vertices of DG are
the bus vertices of G and edges correspond to faces of G′. Diamonds of G′ corresponds
to a double edge of DG the only exception is the diamond bounding the outer face.
Double edges of DG can be found and sorted so that the set Ed can be constructed
in O(n polylog(n)) time. To force Ed ∪ Es we simply delete all vertices incident to
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Es

Ed

Fig. 3: A maximal plane bus graph and its connector graph with the modifications,
where the dotted edges are forced and the fat edges complete the perfect matching.

these edges from the graph. If a vertex is incident to two edges from the set, then there
is no matching. For constructing a maximum matching of a graph there exist several
O(
√
nm) algorithms. For planar graphs this yields the claimed O(n3/2) complexity.3

Given the perfect matching the corresponding good partition can again be computed
in linear time. ut

4 Non Maximal Plane Bus Graphs
In this section we consider a plane bus graph G, that is not necessarily maximal. In a
first preprocessing step we remove all bus vertices and connector vertices with degree 1,
as well as their incident edge. These objects can easily be integrated in a realization of
the remaining graph.

In the following we describe how to extend G to a maximal plane bus graph G+

containing G as induced subgraph such that G+ has a good partition iff G has a good
partition (Lemma 2). The graph G+ will be called the quadrangulation of G.

Let f be a face with cardinality 2k in G and let b1, . . . , bk be the bus vertices of
f in clockwise order. To quadrangulate f we first place a new bus vertex b∗f in the
inside. The bus vertex b∗f is then connected to the boundary of f by adding a triangular
structure for every consecutive pair bi, bi+1 of bus vertices including the pair bk, b1.
The triangular structure for bi, bi+1 consists of another new bus vertex ci and three
connector vertices v1i , v

2
i , v

3
i such that N(v1i ) = {bi, ci, bi+1}, N(v2i ) = {bi+1, ci, b

∗
f},

and N(v1i ) = {b∗f , ci, bi}. Figure 4 shows an example.
The graph G+ is obtained from G by quadrangulation every face f with cardinality

> 4 including, if necessary, the outer face. The following properties of the quadrangu-
lation G+ of G are obvious:
• G+ is planar and has O(n) vertices.
• All diamonds of G+ are diamonds of G.4

3 In [13] a slightly faster randomized algorithm for planar graphs has been proposed.
4 Note that the outer face of G+ has cardinality 4 if the outer face of G has cardinality > 4 this

is an additional diamond of G+. We ignore this diamond and the condition imposed by it on
good partitions of G+.
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Fig. 4: New vertices and edges added to quadrangulate a face f with cardinality 10.

In addition we have the following important lemma:

Lemma 2. Let G be a plane bus graph and G+ be its quadrangulation. Then G has a
good partition, iff G+ has a good partition.

Proof. The three defining properties (P1), (P2), and (P3) are stable under taking induced
subgraphs. Hence, a good partition of G+ immediately yields a good partition of G.

Now assume that G has a good partition. We aim for a partition of the bus vertices
of G+ that extends the given partition of the bus vertices of G. Since all bus vertices of
degree 4 and all diamonds of G+ already belong to G we don’t have to care of (P2),
and (P3). The following rules define the labels for the new bus vertices such that (P1) is
fulfilled for all new connector vertices:
• Label all central bus vertices b∗f with V .
• If bi and bi+1 are both labeled H , then the label of ci is defined to be V . Otherwise

the label ci is H .
It is straightforward to check that this yields a good partition of G+.

If vertices have been added to the outer face f∗ in the quadrangulation process, then
we can choose the outer face ofG+ such that it contains b∗f∗ and both bus vertices of the
(new) outer face are labelled V . This change in the outer face does not affect the plane
embedding of G. These considerations imply that when looking for a good partition of
G+ we may disregard the condition implied by the diamond defined by the outer face
if the outer face of G had cardinality > 4, c.f. footnote 4. ut
Theorem 2. Let G be a plane bus graph. A good partition for G can be computed in
O(n3/2) time, if it exists.

Proof. By Lemma 2 it suffices to test if the quadrangulation G+ of G has a good parti-
tion. Hence we first computeG+ in linear time. SinceG+ is a maximal plane bus graph
we can use the algorithm from Theorem 1 to check whether G+ has a good partition.
The running time is O(n3/2) and the algorithm returns a good partition if it exists. ut
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5 Planar Realizations
In the last two sections we analyzed the complexity of testing and computing a good
partition. In this section we assume the existence of a good partition for a plane bus
graph G and give a polynomial time algorithm to construct a planar realization for G.

Theorem 3. Let G be a plane bus graph admitting a good partition. Then G has a
planar realization on anO(n)×O(n) grid. If the good partition is given the realization
can be computed in O(n) time.

Let G be a plane bus graph admitting a good partition. Again we start with some
simplifications. First we recursively remove all connector and bus vertices of degree 1
and all connector vertices of degree 2.

Let G+ be the quadrangulation of G. The assumption about the existence of a good
partition of G together with Lemma 2 imply that G+ has a good partition which can by
Theorem 1 be computed efficiently.

Given the good partition of G+ we split all connector vertices of degree 4 into two
connector vertices of degree 3. For simplicity we continue denoting the resulting graph
G+.

The reduced bus graph R+ = (B+, ER) of G+ is the graph on the bus vertices of
G+ with edges (b, b′), iff b, b′ are incident to a common face and have different labels.
Diamonds with different labeled bus vertices are the only substructure that would cre-
ate double edges in R+ but diamonds have identically labeled bus vertices in a good
partition. Hence, there are no double edges in R+. From the three faces incident to a
connector vertex exactly two contribute an edge to R+. It follows that R+ is a quadran-
gulation, i.e., all faces have cardinality 4. Another approach to derive this is by observ-
ing that the edges of the matching M of Proposition 2 are in bijection with the faces of
R+.

Let Q be a quadrangulation, we call the color classes of the bipartition white and
black and name the two black vertices on the outer face s and t. A separating decom-
position of Q is an orientation and coloring of the edges of Q with colors red and blue
such that:
• All edges incident to s are ingoing red and all edges incident to t are ingoing blue.
• Every vertex v 6= s, t is incident to a non-empty interval of red edges and a non-

empty interval of blue edges. If v is white, then, in clockwise order, the first edge in
the interval of a color is outgoing and all the other edges of the interval are incoming.
If v is black, the outgoing edge is the last one in its color in clockwise order (see
Figure 5).

Fig. 5: Edge orientations and colors at white and black vertices.
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Separating decompositions have been studied in [2], [6], and [5]. In particular it is
known that every plane quadrangulation admits a separating decomposition. To us sep-
arating decompositions are of interest because of their connection with segment contact
representations of the underlying quadrangulation. A proof of the following lemma can
be found in [4].

Lemma 3. A separation decomposition of Q can be used to construct a segment con-
tact representation of Q with vertical and horizontal segments, such that edges v → w
of the separating decomposition correspond to a contact of the segments Sv and Sw

where an endpoint of Sv is in the interior of Sw.

An illustration for the lemma is given in Figure 6.

s

s t

tt
s

Fig. 6: A quadrangulation Q, a separating decomposition of Q and a corresponding
segment contact representation of Q.

Identify the two classes V and H of the bipartition of the reduced bus graph R+

with black and white. Construct a separating decomposition ofR+ and a corresponding
segment contact representation. Later the following observation will be important:
(?) The rectangles in the segment contact representation correspond bijectively to the

faces of R+. Moreover, vertex b is incident to face f in R+ iff segment Sb con-
tributes a side of the rectangle Rf corresponding to f .

From the segment contact representation of R+ we obtain a representation of the bus
graph G+ in two steps. First clip the endpoints of all segments of the representation so
that a disjoint collection of segments remains. These segments serve as the bus segments
for the representation of the bus graph G+. It remains to insert the connector vertices
and the edges of G+ into the picture. To this end recall that each connector vertex
belongs to a unique face of R+ and each face of R+ contains exactly two connector
vertices. The two connector vertices contained in a face f can easily be accommodated
in the rectangle Rf , because of (?). Figure 7 shows the picture.

At this point we have a representation of the plane bus graph G+. It remains to
transform this into a representation of the original input graph G. These are the steps
that have to be done:
• Merge pairs of connector vertices that have been created by splitting a connector

vertex of degree 4.
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Fig. 7: A face f of R+ with its two connector vertices and the placement of the two
vertices in Rf .

• Delete all bus and connector vertices from the representation that have been intro-
duced to make the bus graph maximal.

• Insert all connector and bus vertices of degree 1 and all connector vertices of de-
gree 2 that had been deleted in the reverse order of the deletion.

This yields a representation of the input graph G.
To complete the proof of Theorem 3 it remains to argue about the complexity. Let

G = (V ∪ B,E) be the input bus graph with n = |V | + |B|. Simple estimates on the
basis of Euler’s formula show that in going from G to G+ at most 14|B| new vertices
have been introduced, hence, G+ has n+ ∈ O(n) vertices. The reduced bus graph R+

can be computed from the plane G+ in O(n+). A separating decomposition of R+ can
also be computed in linear time, details can be found in the PhD thesis of É. Fusy [7].
The segment contact representation of R+ associated to the separation decomposition
is computable in linear time with standard techniques, c.f. [3] or [4]. The number of grid
lines needed for the segment contact representation of R+ is bounded by the number of
bus vertices of R+, i.e., the size of the grid is O(n)×O(n). The clipping of endpoints
increases the number of grid lines by a factor of 3 and the insertion of connector vertices
may require an additional grid line for each vertex. The same holds for the reinsertion
of vertices of degree 1 and 2. All these steps can be done in linear time and keep the
size of the grid in O(n)×O(n).

6 Conclusion and Future Work
We have considered the class of plane bus graphs, that admit a planar realization and
have characterized this class by the existence of a good partition of bus vertices. To test
for the existence of a good partition we gave an O(n3/2) algorithm based on planar
matching. Given a good partition the representation can be computed in linear time.

It would be interesting to extend the approach from plane to planar bus graphs. The
problem here is that the connector graphs of different plane embeddings of a planar
graph differ.

It is also open to characterize the class of graphs that admit realizations, where
connections are allowed to cross apart from the knowledge, that the decision is NP-
complete. Another generalization would be to allow connections to cross bus segments
or bus segments to cross each other.
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