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Abstract

Bus graphs are used for the visualization of hypergraphs, for example in VLSI design.
Formally, they are specified by bipartite graphs G = (B ∪ V,E). The bus vertices
B are realized by horizontal and vertical segments, and the connector vertices V are
realized by points and connected orthogonally to the bus segments without any bend;
this is called bus realization. The decision whether a bipartite graph admits a bus
realization, where connections may cross, is NP-complete. In this paper we show
that in contrast the question whether a planar bipartite graph admits a planar bus
realization can be answered in polynomial time.

First we deal with plane instances, i.e., with the case where a planar embedding is
prescribed. We identify three necessary conditions on the partition B = BV ∪ BH of
the bus vertices, here BV denotes the vertical and BH the horizontal buses. We provide
a test whether a good partition, i.e., a partition obeying these conditions, exists. The
test is based on the computation of a maximum matching on some auxiliary graph.
Given a good partition we can construct a non-crossing realization of the bus graph
on an O(n)×O(n) grid in linear time. In the second part we use SPQR-trees to solve
the problem for general planar bipartite graphs.

1 Introduction

A classical topic in the area of graph visualization is orthogonal graph drawing, as such it is
covered in all books on graph drawing [6, 21, 25]. In this drawing model each edge consists of
a series of subsequent horizontal or vertical line segments. Applications can be found in e.g.
VLSI design, cf. [29, 22]. In this application it may also be necessary to model hypergraphs.
For example power buses on VLSI chips are often modeled as hyperedges, as well as LANs in
computer network visualization. Bus graphs – as being defined later – and their generalizations
are a possible approach to represent hyperedges. A bus-style representation might also be used
when facing the visualization of highly interconnected parts of a given graph. So, cliques can
be represented in a compact and comprehensive way using a bus-style model as an alternative
model to edge bundling and confluent drawings [13, 9].
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The bus graph approach is very much related to the classical topic of rectilinear Steiner trees,
where trees are being used to connect subsets of the vertices [16, 20]. Bus graphs also relate to
rectangular drawings, rectangular duals and visibility graphs. The latter graphs are indeed close
to bus graphs, because connections in bus graphs enforce visibility constraints in realizations.
Corresponding key concepts and surveys can be found in [19, 27, 28, 11] and in chapter 6 of [25].
We will use some of the methods that have been developed in this area.

We are considering the bus graph model introduced by Ada et al. [1]. A bus graph is a bipartite
graph G = (B ∪ V,E), where E ⊆ V ×B and deg(v) ≤ 4 for all v ∈ V . We call vertices in B bus
vertices and vertices in V connector vertices. A realization of a bus graph is a drawing D, where
bus vertices are represented as horizontal or vertical line segments (bus segments), connector
vertices are drawn as points (connectors), and the edges are horizontal or vertical segments
(connections), i.e. connecting a point with a bus segment perpendicularly to that segment. In
any realization a bus may not be crossed. To distinguish between bus vertices and edges in a
realization, the bus segments are drawn with bold lines, see Figure 1. A planar realization is a
realization without crossings. A planar bus graph is a bus graph that admits a realization without
crossings, while a plane bus graph is a planar bus graph together with a planar embedding1. We
always assume to have a connected bus graph, since components can be considered separately.

Figure 1: An example of a plane bus graph with a planar realization.

In [1] a relation of bus graphs to hypergraphs is mentioned: the bipartite adjacency matrix of
a bipartite graph can be read as incidence matrix of a hypergraph and vice versa. If vertices are
contained in at most four hyperedges a bus graph realization may provide a good visualization of
the hypergraph. Ada et al. [1] considered the problem to decide if a bus graph has a realization
and showed the NP-completeness. In this paper we consider the problem to decide if a planar
bus graph has a planar realization. We show that this question in contrast to the previous result
can be decided in polynomial time.

The bus segments will be drawn either vertically or horizontally. We assign labels to the
bus vertices that determine whether they are to be realized vertically or horizontally and study
properties that have to be obeyed by this labeling to actually correspond to a planar realization.
In Section 2 we identify necessary conditions for the labeling - if they are satisfied we speak of a
good partition. In Section 3 we present an algorithm to test whether a maximal plane bus graph
admits a good partition. Subsequently in Section 4 we give a linear-time algorithm to produce a
planar realization on a grid of size O(n)×O(n) from a maximal plane bus graph together with a
good partition. The approach is based on techniques from [3] and [12]. In the next Section 5 we
extend the test for a good partition to non-maximal plane bus graphs. For an extension to (non-
embedded) planar bus graphs, we first recall main definitions for SPQR-trees in Section 6 and

1A planar embedding is a drawing of the vertices together with a description of the cyclic order of their adjacent
vertices. Often a drawing with curves representing the edges is used to illustrate an embedding.
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extend the results from Section 5 to biconnected planar bus graphs in an easy form (Section 7)
then to biconnected planar graphs without simplifications (Subsection 7.2) and finally to general
planar bus graph in Subsection 7.3.

2 Necessary Properties

Clearly non-planar bus graphs cannot be drawn in a planar way. So we focus on finding structures
in a planar bus graph. First we assume the bus graph G = (V ∪B,E) to be plane, i.e. a planar
bus graph together with a fixed planar embedding. Later we concentrate on planar bus graphs
without any given embedding. We assume any bus graph to be simple, i.e., there are no multiple
edges (multiple edges would necessarily be on top of each other).

A planar realization of a plane bus graph G = (V ∪ B,E) induces labels H or V for the bus
vertices where H indicates that a bus is represented by a horizontal segment in the realization,
while V indicates that the bus is represented by a vertical segment. Let Π = (BV, BH) denote
the partition of B according to the label of the bus vertices. We observe two natural properties
of a partition Π = (BV, BH) corresponding to a planar realization:

(P1) Every connector vertex of degree ≥ 3 has neighbors in both classes.

(P2) A connector vertex of degree 4 has cyclically alternating neighbors in both classes.

Properties (P1) and (P2) for a partition of the bus vertices are not sufficient to ensure a planar
representation. Also a third property for what we call ‘diamonds’ must be true. A diamond in
a plane bus graph is a cycle z = (b, v, b′, v′) of length four with bus vertices b, b′ and connector
vertices v, v′ such that both v, v′ have a third bus neighbour in the bounded region defined by z.
Note that the outer cycle of G may be a diamond.

Lemma 1 Let G be a plane bus graph that has a realization inducing the partition (BV, BH) of
the set of buses B. For any diamond z = (b, v, b′, v′) the two bus vertices b and b′ belong to the
same class.

Proof. Suppose for contradiction that b ∈ BH and b′ ∈ BV. The interior of z in the planar bus
realization is a polygon with six corners. Four of the corners are at contacts of connector edges
and buses and two corners are at the connector vertices. We account for four corners of size π/2
each, where the edges meet the buses. The other two corners are at v and v′. Since b is horizontal
and b′ vertical the angles at v and v′ have to be either π/2 or 3π/2. Because v and v′ have an
additional bus neighbor in the interior the angle at each of v and v′ is at least π. Hence, both
these angles are of size 3π/2. Therefore, the sum of interior angles is at least 4·π/2+2·3π/2 = 5π.
A six-gon, however, has a sum of angles of 4π. The contradiction shows that b and b′ belong to
the same class of the partition (BV, BH).

If a diamond z = (b, v, b′, v′) of a plane bus graph G with the property that one of the connector
vertices has degree four and all its neighbours are in the closed bounded region defined by z, then
from Lemma 1 we see that G cannot admit a planar bus representation, since the angles incident
to v and v′ in the closed bounded region defined by z have to be π. Since our algorithm will
identify all diamonds it may reject instances that contain this kind of diamonds right away.

As a consequence of the lemma we state a third property to ensure a planar realization.

(P3) A diamond has both bus vertices in the same class.
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Definition 1 A partition Π = (BV, BH) of the buses of a plane bus graph G is called a good
partition if it obeys properties (P1), (P2), and (P3).

In the next section we consider maximal plane bus graphs and test efficiently whether they
admit a good partition. The test is constructive, i.e., if the answer is yes, then a good partition
is constructed.

3 Maximal Plane Bus Graphs

A maximal plane bus graph G is a plane bipartite bus graph that is a quadrangulation, i.e. all
faces have cardinality 4. Let G = (V ∪B,E) be a maximal plane bus graph. We assume w.l.o.g.
that G has no bus vertices of degree 1 and no connector vertices of degree 1 or 2, since these
connector vertices have no influence on the existence of a good partition. Clearly, if G has a
bus vertex or connector vertex of degree 1, then G is not maximal or not simple, and if G has a
connector vertex of degree 2, then removing this vertex with its incident edges results in a smaller
maximal plane bus graph that has a good partition if and only if G has a good partition. Also
recall that diamonds are defined by connector vertices of degree at least 3. Let ∆ = ∆(G) denote
the degree of a plane bus graph G which is defined as the maximum degree among the connector
vertices of G.

In this section we first assume that G has ∆ = 3; we give an algorithm to test if G admits a
good partition and if so the algorithm returns a good partition. After that we allow ∆ = 4 and
reduce this case with a simple modification to the case ∆ = 3.

Let G = (V ∪ B,E) be a maximal plane bus graph with ∆ = 3. The connector graph CG =
(VC , EC) of G consists of all the connector vertices VC = V and edges (v, v′) ∈ EC , if v and
v′ are both incident to the same face of the plane embedding of G. The connector graph is
helpful because it allows the translation of the problem of finding a good partition for G to the
problem of finding an appropriate perfect matching in CG, as summarized in Proposition 1 and
Proposition 2 and illustrated in Figure 2.

H

H

H

V

H

V

VV

CG

VV

G

Figure 2: A maximal plane bus graph, the connector graph with a matching (dotted edges) and
its good partition, and a corresponding bus representation.

We first show that a good partition Π of G can be used to define a perfect matching of CG. The
first property (P1) of a good partition requires that every connector vertex v has two adjacent
bus vertices in one partition class and one in the other. Let b and b′ be neighbors of v within the
same class. Since every face has cardinality 4 there is a connector vertex v′ such that v, b, v′, b′
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are the vertices of a face of G. The edge (v, v′) is called the reserved edge of v. Since b and b′

are the two adjacent bus vertices of v′ of the same class the reserved edge of v′ is (v′, v), i.e., the
same edge. Hence, the collection of reserved edges is a matching covering all the vertices of CG,
i.e., a perfect matching.

Now we show that a perfect matching M of CG can be used to define a labeling of the bus
vertices satisfying (P1). Removing the matching edges from CG leaves a 2-regular graph, i.e., a
disjoint collection of cycles. The regions defined by this collection of cycles can be 2-colored with
colors V and H such that each cycle has regions of different colors on its sides. Let BV be the set
of bus vertices in faces colored with V, and BH be the set of bus vertices in faces colored with H.
This yields a partition satisfying (P1) because every connector vertex is on a cycle and has a bus
neighbour in each of the two faces bounded by the cycle. Since ∆ = 3, the second property (P2)
is void.

Consider a diamond z = (b, v, b′, v′) in G. Each of v, v′, has exactly one edge e, e′, in CG,
that corresponds to a face of the outside of z. Let M be a matching defined as described above
starting from a good partition. We know from (P3) that b and b′ have the equal labels, therefore,
e and e′ must be the matching edges of v and v′ respectively. Conversely, if we aim at defining a
good partition as described above starting from a matching M then the two edges e and e′ must
belong to M , otherwise b and b′ would get distinct labels and, hence, violate (P3).

We define the set Ed of edges forced by diamonds as the set of edges consisting of the two
outside edges e, e′ in CG for each diamond z of G.

The considerations regarding the relation between good partitions and matchings of CG are
summarized in the following proposition.

Proposition 1 Let G be a maximal plane bus graph with ∆ = 3, connector graph CG, and the set
Ed of edges of CG forced by diamonds. Then G admits a good partition if and only if CG has a
perfect matching M , with Ed ⊆M .

Now we allow ∆ = 4 for a maximal plane bus graph G. To transform G into a plane bus
graph G′ with ∆ = 3, we split every connector vertex v of degree 4 into two connector ver-
tices v′, v′′, both of degree 3 in the following way: let b1, b2, b3, b4 be the adjacent bus vertices of v
in cyclic order around v. Remove v and its incident edges and introduce new vertices v′, v′′ with
edges (b1, v

′), (b2, v
′), (b3, v

′), (b3, v
′′), (b4, v

′′), (b1, v
′′), as illustrated in Figure 3. The connector

graph CG is obtained from CG′ by contracting the edges (v′, v′′) corresponding to the pairs v′, v′′

that have been obtained by splitting a vertex of degree 4. Define the set Es of edges forced by
splits of CG′ as the set of these edges (v′, v′′).

b1

b3

b2 b4
v

b1

b3

b2 b4

v′ v′′

Figure 3: A split of a connector vertex of degree 4 into two connector vertices of degree 3.

If G has a good partition, then by (P2) the labels of the neighbours of v in G alternate. Hence
(v′, v′′) will belong to the matching M of CG′ induced by the good partition. Since (v′, v′′) ∈ Es

we find that Es ⊂ M . Conversely if (v′, v′′) ∈ Es belongs to a perfect matching M of CG′ , then
b1, b3 have the same label in the partition induced by M . Since v′ and v′′ both have degree 3 and
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two of their neighbours have equal label, the third neighbour (for each of them) has a different
label, i.e. b2 and b4 have both different label compared to the label of b1, b3, hence v obeys
property (P2).

In summary: a partition Π of G that satisfies (P1) also satisfies property (P2) if and only if
all edges of Es are contained in the perfect matching of CG′ corresponding to Π.

For notational simplicity we denote the connector graph CG′ of the transformed graph G′

by CG. An example of a maximal plane bus graph with its connector graph showing the edges
of Ed ∪ Es is shown in Figure 4.

Proposition 2 Let G be a maximal plane bus graph with ∆ = 4, CG its connector graph, and
Ed, Es the edges of CG that are forced by diamonds and splits, respectively. The graph G admits
a good partition if and only if CG has a perfect matching M , with (Ed ∪ Es) ⊆M .

Proof. The proof almost follows from Proposition 1 and the above considerations. Splitting
connector vertices of degree 4, however, may separate diamonds. If z1 = (vl, b1, v, b3) and z2 =
(v, b1, vr, b3) are diamonds (in this case z3 = (vl, b1, vr, b3) is a diamond too), then splitting
the connector vertex v of degree 4 is separating them. We claim that separating diamonds
does not imply additional restrictions on the matching. Let v be split into v′, v′′ as above.
Any diamond containing v has a cycle z with the two bus vertices b1 and b3 belonging to the
diamonds. Condition (P3) for this diamond requires that b1 and b3 belong to the same class of a
good partition. This requirement, however, is already implied by condition (P2) for the original
connector vertex v. Hence the claim holds.

Ed

Es

Figure 4: A maximal plane bus graph and its connector graph with the modifications, where the
dotted edges are forced and the dashed edges complete the perfect matching.

Theorem 1 Let G be a maximal plane bus graph. A good partition for G can be computed in
O(n3/2) time if it exists.

Proof. By Proposition 2 it suffices to test the connector graph CG for a perfect matching M
that contains (Ed ∪Es). The extraction of the connector graph CG from G requires linear time.
The set Es can be computed while constructing the modification G′ of the original bus graph
G, as well as CG. To identify diamonds we consider the dual DG of the connector graph CG.
The vertices of DG represent the bus vertices of G and edges have corresponding dual edges in
CG. A diamond of G′ corresponds to a double edge of DG; the only exception is the diamond
bounding the outer face. Double edges of DG can be found and grouped so that the set Ed can
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be constructed in O(n polylog(n)) time. To force Ed ∪ Es we simply delete all vertices incident
to these edges from the graph. If a vertex is incident to two edges from the set, then there is no
matching. For constructing a perfect matching of a graph there exist several O(

√
nm) algorithms,

e.g., see [23]. For planar graphs this yields the claimed O(n3/2) complexity.2

Given the perfect matching the corresponding good partition can again be computed in linear
time.

Notice that a perfect matching in a bridgeless planar 3-regular graph always exists by Petersen’s
theorem [26] and can be computed in linear time [2]. Unfortunately this efficient algorithm does
not support the requirement that edges of Es ∪ Ed have to participate in the matching.

4 Planar Realizations

In this section we show how to construct a planar realization from a maximal plane bus graph G
with a good partition. In the proof we use the following theorem about realizations.

Theorem 2 Planar bipartite graphs admit segment contact representations with interiorly disjoint
vertical and horizontal segments.

This theorem was obtained by Hartman et al. [18] and independently by de Fraysseix et al. [4].
In our application the bipartite graph will be a quadrangulation Q = (V ∪H,E). In the repre-
sentation vertices of V are represented by vertical line-segments, and vertices of H by horizontal
line-segments. The segments of two vertices u and v share a point (i.e., a point of contact where
one of the segments ends at an interior point of the other segment) if and only if (u, v) ∈ E. A
counting argument shows that all but four of the endpoints of segments are needed to represent
all edges of Q. Hence, the segment contact representation of Q can be seen as a dissection of a
rectangle into small rectangles. These small rectangles correspond to the faces of Q. A survey
on the topic can be found in [11], there and in [5] it is also shown that a segment contact rep-
resentation of a quadrangulation with n vertices on an n × n grid can be constructed in linear
time.

Now we are ready to show how to construct a planar realization from a maximal plane bus
graph G with a good partition.

Theorem 3 Let G be a maximal plane bus graph admitting a good partition. Then G has a planar
realization on a grid of size O(n)×O(n). The realization can be computed in O(n) time.

Proof. Let G be a maximal plane bus graph admitting a good partition. We start with some
simplifications. First we remove all connector vertices of degree 2 and bus vertices of degree 1.
Observe that there are no connector vertices and bus vertices of degree 1, since G is maximal and
simple. Second we split all connector vertices of degree 4 into two connector vertices of degree 3.
After these two modifications the new graph G′ is still a quadrangulation and in particular all
connector vertices have degree 3.

The reduced bus graph R′ = (B′, ER) of G′ is the graph on the bus vertices of G′ with edges
(b, b′) if and only if b, b′ are incident to a common face and have different labels. Diamonds with
different labeled bus vertices are the only substructure that would create double edges in R′ but
diamonds have identically labeled bus vertices in a good partition. Notice that a double edge in
R′ infers either a diamond or a degree 2 connector vertex, which does not exist in G′. Hence,
there are no double edges in R′. From the three faces incident to a connector vertex exactly two
contribute an edge to R′, by property (P1). A face that does not contribute an edge to R′ is

2In [24] a slightly faster randomized algorithm for planar graphs has been proposed.
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incident to two connector vertices and each of them contributing two edges to R′. These four
edges form a 4-face of R′. Since every face of R′ is of this type R′ is a quadrangulation. An
equivalent view on this is that the edges of the matching M of Proposition 2 are in bijection with
the faces of R′.

The construction of a planar realization is as follows. First we identify the two classes BV and
BH of the bipartition of the reduced bus graph R′ with black and white. Next we construct a
segment contact representation of R′. Later the following observation will be important:

(?) The rectangles in the segment contact representation correspond bijectively to the faces
of R′. Moreover, a vertex b is incident to a face f in R′ if and only if the segment Sb
contributes a side of the rectangle Rf corresponding to f .

From the segment contact representation of R′ we obtain a representation of the bus graph G′

in two steps. First clip the endpoints of all segments of the representation so that a disjoint
collection of segments remains. These segments serve as the bus segments for the representation
of the bus graph G′. It remains to insert the connector vertices and the edges of G′ into the
picture. To this end recall that each connector vertex belongs to a unique face of R′ and each
face of R′ contains exactly two connector vertices due to the degree 3 of all connector vertices.
The two connector vertices contained in a face f can easily be accommodated in the rectangle Rf ,
because of (?). Figure 5 shows this process.

Figure 5: (left) A face f of R′ with its two connector vertices. (middle) The placement of the
two vertices in Rf . (right) Addition of some connector vertices of degree 2 and 1.

At this point we have a representation of the slightly modified maximal plane bus graph G′. It
remains to transform the planar representation of G′ into a planar representation of the original
input graph G. These are the steps that have to be done:

• Merge pairs of connector vertices that have been created by splitting a connector vertex
of degree 4. This is straight-forward, since the two connector vertices are accommodated
in the same rectangle of the segment contact representation due to the created edge in Es

forced to be in the matching.

• Insert all bus vertices of degree 1 and all connector vertices of degree 2 that had been deleted.
Observe that if a connector vertex v of degree 2 was adjacent to two bus vertices with equal
label, then v is placed in the unique rectangle of the segment contact representation given
by the bijection in (?) from the face of R′, where v was removed. If a connector vertex v of
degree 2 was adjacent to two bus vertices with different labels, then v is placed in one of
the two rectangles of the segment contact representation given by the bijection in (?) from
the two faces f, f ′ of R′, where v was removed. This choice is arbitrary due to routing the
edge incident to f and f ′ arbitrarily.

This yields a representation of the input graph G.
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To complete the proof it remains to argue about the complexity. Let G = (V ∪ B,E) be a
maximal plane bus graph with n = |V | + |B|. The bus graph G′ is obtained by removing or
splitting some vertices, which can be done in linear time. The reduced bus graph R′ can be
computed from the plane graph G′ in O(n) time. Let n′ be the number of vertices of R′. A
segment contact representation of R′ on an n′ × n′ grid can be computed in O(n′) time [5]. The
compression of grid lines that do not contain any connector vertex or endpoint of a bus segment,
as well as the reinsertion of connector vertices and bus vertices and the merging of vertices that
were created by splitting a connector vertex of degree 4, leads to an O(n) × O(n) grid. Finally
each grid line is occupied by either a connector vertex, or a bus segment along the grid line, or
an end point of a bus segment, hence the total number of occupied grid lines is 3|B|+ 2|V |. This
is true even if we extend the graph at the beginning to match maximality (see the next section)
and remove the inserted vertices at the end.

Now we finished the construction of a planar realization for a given maximal plane bus graph
through the computation of a good partition for the bus vertices. In the next sections we gen-
eralize the result from Section 3. In Section 5 we deal with non-maximal plane bus graphs. In
Sections 6 and 7 we assume that the graph is biconnected but has no prescribed embedding.
Finally, in Subsection 7.3 we discuss the general case, i.e., non-embedded planar connected bus
graphs.

In all these cases we aim at arriving at a maximal plane bus graph together with a good
partition, if it exists; then Theorem 3 from this section can be applied as a black box.

5 Non-Maximal Plane Bus Graphs

In this section we consider a plane bus graph G with n vertices that is not necessarily maximal. In
a first preprocessing step we remove all connector vertices and bus vertices with degree 1, as well
as their incident edge. These vertices can easily be integrated in a realization of the remaining
graph. Notice that we do not delete any connector vertices of degree 2.

In the following we describe how to augment G to a maximal plane bus graph G+ containing G
as induced subgraph such that G+ has a good partition if and only if G has a good partition
(Lemma 2). The graph G+ will be called the quadrangulation of G.

Let f be a face with cardinality 2k in G and let b1, . . . , bk be the bus vertices of f in clockwise
order, possibly with bi = bj for some i 6= j. To quadrangulate f we first place a new bus vertex
b∗f in the inside. The bus vertex b∗f is then connected to the boundary of f by adding a triangular
structure for every consecutive pair bi, bi+1 of bus vertices including the pair bk, b1. The triangular
structure for bi, bi+1 consists of another new bus vertex di and three connector vertices v1i , v

2
i , v

3
i

such that N(v1i ) = {bi, di, bi+1}, N(v2i ) = {bi+1, di, b
∗
f}, and N(v3i ) = {b∗f , di, bi}. Figure 6 shows

an example.
The graph G+ is obtained from G by quadrangulating every face f with cardinality greater

than 4 including, if necessary, the outer face. The following properties of the quadrangulation G+

of G are obvious:

• G+ is planar and has O(n) vertices.

• All diamonds of G+ are diamonds of G.

Note that the outer face of G+ has cardinality 4. If the outer face of G has cardinality greater
than 4 this is an additional diamond of G+. We will prove that the condition imposed by this
diamond of G+ does not actually alter the existence of a good partition for G.
In addition we have the following important lemma:

9



b1
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d1

d2d3

d4

d5

b∗f

Figure 6: New vertices and edges added to quadrangulate a face f with cardinality 10.

Lemma 2 Let G be a plane bus graph and G+ be its quadrangulation. Then G has a good partition
if and only if G+ has a good partition.

Proof. The three defining properties (P1), (P2), and (P3) are stable under taking induced sub-
graphs. Hence, a good partition of G+ immediately yields a good partition of G.

Now assume that G has a good partition. We aim for a partition of the bus vertices of G+

that extends the given partition of the bus vertices of G. Since all connector vertices of degree
4 and all diamonds of G+ already belong to G we do not have to care of (P2) and (P3). The
following rules define the labels for the new bus vertices:

• Label all central bus vertices b∗f with V.

• If bi and bi+1 are both labeled H, then the label of di is defined to be V. Otherwise the label
di is H.

It is straightforward to check that (P1) is fulfilled for all new connector vertices, i.e., the con-
struction yields a good partition of G+.

If vertices have been added to the outer face f∗ in the quadrangulation process, then we can
choose the outer face of G+ such that both its incident bus vertices are labeled V and one of
them is b∗f∗ . This change in the outer face does not affect the plane embedding of G. These

considerations imply that when looking for a good partition of G+ we do not fail because of
the condition implied by the diamond defined by the outer face of G+ if this was not already a
diamond of G.

Theorem 4 Let G be a plane bus graph. A good partition for G can be computed in O(n3/2) time
if it exists.

Proof. By Lemma 2 it suffices to test if the quadrangulation G+ of G = (V ∪ B,E) has a good
partition. Hence we first compute G+ in linear time. Simple estimates on the basis of Euler’s
formula show that in going from G to G+ at most constant times |B| new vertices have been
introduced. Our analysis leads to a constant not larger than 13. Hence, G+ has n+ ∈ O(n)
vertices and since G+ is a maximal plane bus graph we can use the O(n3/2) time algorithm from
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Theorem 1 to check whether G+ has a good partition. The algorithm returns a good partition if
it exists. Notice that we have to remove all connector vertices of degree 2 from G+ to match the
requirement of Section 3.

6 Embedding Missing: SPQR-Trees

A planar bus graph can have many planar embeddings. Some of them may allow a planar
realization of this bus graph and some may not. From Theorem 3 we know that a plane embedding
has a planar realization if and only if the plane embedding admits a good partition. Therefore,
we now face the problem of deciding whether a planar bus graph has a plane embedding that
admits a good partition.

If the input graph has cut vertices we look at the blocks separately. In Subsection 7.3 we give
the details on how to merge solutions for the blocks. The main problem is how to handle each
block:

Problem 1 Given a planar biconnected bus graph find a planar embedding that admits a good
partition if such an embedding exists.

To tackle this problem we use SPQR-trees, a tool developed by Di Battista and Tamassia to
describe all combinatorially different planar embeddings of a biconnected graph in one structure.
Important references about SPQR-trees are [7, 8, 15]. As sources about SPQR-trees we also used
the Wikipedia article and the brief description from [10].

An SPQR-tree for a graph G is a tree T in which each node n ∈ T represents a graph Gn.
The vertex set of Gn is a subset of the vertices of G. Some edges of Gn are labeled as virtual,
while the others are real. Removing the virtual edges from Gn yields a subgraph of G and each
edge of G appears as a real edge in exactly one of the graphs Gn. If (n, n′) is an edge of the
SPQR-tree, then Gn and Gn′ share exactly one edge which is virtual in both; this virtual edge is
associated with the tree edge. Each virtual edge of Gn is associated with exactly one tree edge.
The given graph G can, hence, be reconstructed by repeatedly taking the union of graphs Gn and
Gn′ belonging to adjacent tree-nodes and deleting the virtual edge associated with the tree-edge
(n, n′).

The nodes of an SPQR-tree have three types3:

[S] If n is a S node, then Gn is a cycle of length at least three (the S represents “series”).

[P] If n is a P node, then Gn is a multigraph with two vertices and three or more edges (the P
represents “parallel”).

[R] If n is a R node, then Gn is a 3-connected graph with more than three vertices (the R
represents “rigid”).

If we require that no two S nodes and no two P nodes are adjacent in T , then the SPQR-tree
of G is unique. Moreover the size of T is linear in the size of G. Algorithmically the SPQR-tree
of a graph can be constructed in linear time.

We continue with some definitions for rooted SPQR-trees. A rooted SPQR-tree is an SPQR-
tree with a designated root node r, we denote the tree by Tr. Since every node n 6= r has a
unique parent n+ with respect to the root r, there is also a special virtual edge in Gn, which
is the virtual edge associated with (n, n+). In the sequel we will refer to this virtual edge as
the virtual up-edge of Gn. The two end-vertices of the virtual up-edge are the poles of Gn. An
example of a rooted SPQR-tree for a planar bus graph is shown in Figure 7.

3Some descriptions also use type Q nodes, so that SPQR are the possible types.
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Figure 7: A plane bus graph G with a rooted SPQR-tree T and the associated graphs for each
node. In T one node r is designated to be the root. The associated graph Gn of each
node n 6= r is drawn with one of its feasible embeddings, while the virtual up-edge of
n is the dotted edge.

For n 6= r we arbitrarily choose and fix an orientation of the virtual up-edge of Gn and consider
the set G1

n, . . . , G
k
n of all embeddings of Gn that have the outer face to the left of this oriented

virtual up-edge. This set will be called the set of feasible embeddings. For S nodes we have k = 1,
for R nodes k = 2, and for a P node with `+ 1 parallel edges we have k = ` !.

Lemma 3 Let G be a biconnected plane graph with SPQR-tree T . Consider the plane graphs Gn

associated to the nodes of T , where the plane embedding of Gn is the one induced by the plane
embedding of G. All but at most one of these plane graphs Gn have a virtual edge on the outer
face.

Proof. Each of the plane graphs Gn has an outer face. There is at most one node r such that
the outer face of Gr contains no vertex from the set V (G) \ V (Gr). Now let n be a node with
n 6= r and consider a vertex vr in the outer face. In G there are two disjoint paths from vr to Gn.
These paths can be traced through T where they both reach n across the same tree edge (n′, n).
The virtual edge associated with (n′, n) is on the outer face of Gn.

A planar graph G may have exponentially many embeddings. Lemma 3 will be useful to bound
the set of embeddings that have to be explored by the algorithm. Indeed, if we correctly guess the
root, then we can restrict attention to the set of feasible embeddings of each Gn, since Lemma 3
leads to the implication: if n is not a root of T , then the induced plane embedding of Gn must
have the virtual up-edge on the outer face.

In the next section we make some simplifying assumptions and describe the key ideas for the
algorithm in the simplified setting.

7 The Algorithm

In the first subsection 7.1 we describe the basic algorithm for solving Problem 1 with simplifying
assumptions about the input graph G and its SPQR-tree T .

• At every node n of T all virtual edges of Gn are only incident to bus vertices.

• The input graph G is biconnected.

In Subsection 7.2 we add the details for dealing with virtual edges incident to connector vertices.
Finally, in Subsection 7.3 we remove the assumption that the input graph is biconnected.
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7.1 The basic algorithm

We are going to work with rooted SPQR-trees but since we do not know which root is a good
one we initialize the set R∗ of potential roots with the set of all nodes of T . Then we guess a
root node r ∈ R∗ and let Tr be the SPQR-tree with root r.

The tree Tr will be traversed bottom-up. In the traversal each node has to be processed.
However, n can only be processed if all its child nodes have been processed before. To control
this condition we use the notion of eligibility. At the very beginning all leaf nodes of Tr are
eligible. During the execution of the algorithm a node n of Tr becomes eligible as soon as all its
children have been processed.

When a node n is being processed we want to decide whether the graph G∗n represented by
the subtree Tr(n) of Tr rooted at n admits a good partition. (The graph G∗n is known as the
expansion graph of n with respect to r, see e.g. [14]). Note that G∗n still contains the virtual
up-edge so it is not even a true bus graph. Moreover G∗n may have many embeddings. To get
to a situation where we can make use of Theorem 3 we substitute all virtual edges including the
virtual up-edge with appropriate gadgets.

Actually, we need to know whether there is a good partition with the two poles in the same class
and whether there is a good partition with the two poles in different classes. The information
is then passed on from n to the parent node p(n) as a letter σn from the set {s, d, w} where the
meaning is s =same, d =different, and w =whatever.

Moreover, the component may contain a path of length two between the poles where the
intermediate connector vertex has degree three or four. Such a 2-path has the potential of being
combined with a 2-path from the father component to form a diamond. The potential of forming
a diamond on one side or on both sides is passed on from n to n+ as a number τ ∈ {0, 1, 2}.
If replacing the virtual up-edge by a component containing a 2-path may not create an extra
diamond, then τ = 0. If such a replacement may generate a diamond but replacing virtual up-
edge with the reflected component does not create an extra diamond, then τ = 1. If by adding
the component it is unavoidable to create an extra diamond, then τ = 2.

Figure 8: 2 components with τ = 2 imply the creation of a new diamond.

As an example for the use of this data suppose that (σn, τn) = (d, 2). If Gp(n) has a 2-path
between the two poles, i.e., between the vertices of the virtual edge of n in Gp(n), such that the
middle vertex has a neighbor in the 4-cycle defined by the two 2-paths, there is no good partition
because the new diamond would force the poles to have the same label but G∗n forces them to
have different labels. If (σn, τn) = (d, 1) and Gp(n) has only one 2-path between the two poles,
then the embedding of Gn in G∗p(n) can be reflected to avoid the creation of a diamond.

Depending on the structure of 2-paths in Gp(n) the pair (σn, τn) is condensed into a single letter
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information σ′n ∈ {s, d, w}. This condensation has to be done differently depending on the type
of the node n and will be described in detail when we deal with these types.

Figure 9 shows the gadgets that depending on σ′n are used to replace virtual edges of a feasible
embedding of Gn.

d

ws

Figure 9: The gadget replacing the virtual edges of Gn. The colored bus vertices are the vertices
of the virtual edge. In the s and d gadgets the shapes of the bus vertices represent the
two classes of the unique good partition.

(The definition of a feasible embedding was given before Lemma 3). The gadget for the case
s is a concatenation of two simple diamonds and forces the two colored bus vertices to belong to
the same class (Lemma 1). The gadget for the case d also has two diamonds. The key is that
the outer bus vertices of the two diamonds belong to different classes. The gadget for the case
w allows any assignment of the colored bus vertices to the classes. Note that all paths between
the poles of the gadgets have lengths at least 3, hence they will not be part of potentially new
diamonds.

We now describe our algorithm.

Processing an eligible node n:

(1) Choose a feasible embedding of Gn.

(2) For each virtual edge consider the set of 2-paths between the endpoints of the virtual edge
and compute the condensed letter σ′ on the basis of the value of (σ, τ). If it turns out that
there is no good partition, then break and call for a new root.

(3) Replace the virtual edges different from the virtual up-edge by the gadgets corresponding to
their condensed letter. This results in a graph G+

n

(4) Run the algorithm to compute a good partition twice: first with the virtual up-edge of G+
n

replaced by the s gadget and secondly replaced by the d gadget. Define σn = s if only the
first test is positive, and σn = d if only the latter case is positive, and σn = w if both tests
are positive.

(5) If there was a positive test, pass σn to the parent. Otherwise call for a new root.

We now come to a more detailed look at the parts of this algorithm. Depending on the type of
the node n in the SPQR-tree the number of feasible embeddings of Gn varies.
n is an S node. This case is easy. There are no 2-paths so that the condensed letter equals

the original letter for each virtual edge and τn = 0. Moreover, the letter σn that has to be
passed to the parent of an S node n can be computed directly from the letters obtained from the
children. If one of the children submitted a w, then σn = w. Otherwise it depends on the parity
of the number of children that submitted a d. If this number is even, then σn = s, otherwise
σn = d.

n is an R node. In this case, we have two feasible embeddings G1
n and G2

n where G2
n is

obtained from G1
n by a reflection of the component minus the virtual edge, i.e., the component
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stays on the same side of the virtual edge. Before showing that the two embeddings are equivalent
with respect to the value of σn we have to discuss how to compute the condensed letters for the
child components.

Let n′ be a child of n. For the condensation we distinguish between no extra diamond, in this
case σ′n′ = σn′ , and extra diamond, in this case if σn′ = d, then there is no good partition, and if
σn′ ∈ {s, w}, then σ′n′ = s. Now we use τn′ to decide between these cases. If τn′ = 0, then there
is no extra diamond. If τn′ = 1, then an extra diamond must be created if there are appropriate
2-paths of G1

n that connect the poles of n′ on both sides of the virtual edge of n′. If τn′ = 2, a
single appropriate 2-path of G1

n forces an extra diamond.

Lemma 4 G1,+
n and G2,+

n admit the same good partitions. Moreover, the letter σn computed on
the basis of G1,+

n reflects the behavior of the two poles in good partitions of G∗n.

Proof. Since property (P1) is independent from an embedding, G1,+
n and G2,+

n are equivalent
with respect to (P1). Properties (P2) and (P3) are invariant under reflections and independent
from the virtual edge, hence G1,+

n and G2,+
n are also equivalent with respect to (P2) and (P3).

Now let us look at the behavior of the poles in good partitions of G1,+
n and G∗n. We assume

that for all child nodes n′ of n the statement is true, i.e., σn′ reflects the behavior of the two
poles in good partitions of G∗n′ . First note that the gadgets have no paths of length 2 between

their poles. Therefore, all diamonds of G1,+
n are either diamonds of G1

n or diamonds inside of
gadgets. Diamonds of G∗n that are formed by a 2-path in G1

n and a 2-path in the child component
are accounted for when computing the condensed letter for the child component. Therefore,
replacing the virtual edge of a child by the gadget corresponding to the condensed letter induces
label restrictions on the poles of the child in G1

n which reflect the options of these labels in G∗n.
This shows that the letter σn computed on the basis of G1,+

n in step (4) of the procedure reflects
the behavior of the two poles in good partitions of G∗n.

n is an P node. In this case, we have many feasible embeddings. Let Σn = {σn′ :
n′ child of n}.

If {s, d} ⊆ Σn, then the requirements of two children are contradicting each other so that
there is no good partition of G∗n. If s ∈ Σn ⊆ {s, w}, then there is a child n′ requiring that the
labels of the two poles are the same and this choice is consistent with all the other children. The
choice of s is also compatible with additional diamonds that are formed by 2-paths from different
components. Hence, σn = s in this case.

In the remaining cases d is a valid option for all the children and we have to check whether d
is also valid for n. The only obstruction would be a diamond formed by 2-paths from different
components. The P node gives us the freedom of rearranging the order of the child components.
We order them by increasing value of τ . If two of the components have τ = 2 the creation of
an extra diamond is unavoidable and d not a valid option. Otherwise we can use the freedom of
reflecting child components with τ = 1 so that each of them would only form an extra diamond
with a 2-path further left whose central vertex has a neighbor to the right. This is avoided
by our choice of reflections. Based on these considerations we can determine σn and of course
τn = max(τn′ : n′ child of n).

Note that it follows that for P nodes we can skip the run of the procedure with gadgets replacing
the virtual edges and directly compute σn and τn on the basis of the settings for the child nodes.

The case of no good partition. It remains to discuss what has to be done when the
computation shows that there is no good partition for G∗n with the chosen embedding, i.e., the
case where the procedure asks for a new root . If there is an embedding of G that admits a good
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Figure 10: Reordering components with τ = 2 and τ = 1. The embedding at the left had to be
changed.

partition, then either n is the root or the virtual up-edge of node n has to be a different one. This
implies that the root node for such an embedding belongs to the subtree Tr(n) of Tr rooted at
n. Therefore, the set R∗ of potential roots is redefined to be R∗ ∩ V (Tr(n)) and a new tentative
root r is chosen from the new set R∗.

If R∗ becomes empty, then there is no good partition. Otherwise the root r of the tree becomes
eligible. Processing the root node is similar to processing any other node. The difference is in
the choice of the embedding. In the case of an S node there is only one embedding. In the
case of a P node we can argue as before that the embedding does not matter. The interesting
case is when the root is an R node. An R node is a 3-connected component and by Whitney’s
theorem specifying the outer face determines the embedding. Therefore, we can afford to check
independently for each embedding.

We have completed the description of the algorithm and conclude with the following lemma.

Lemma 5 For a given planar biconnected bus graph G with the property that all the poles in the
SPQR-Tree are bus vertices, the basic algorithm computes a good partition, if there is any.

Now we come to the discussion of the running time. Due to the change of root a node n may
have to be processed several times. We will see that our algorithm has a drastically reduced
running time compared to the straight-forward approach, consisting of testing every node n of T
as root.

Lemma 6 The number of calls to the procedure that processes the nodes is at most 2|V (T )|.

Proof. Consider a tree edge (n1, n2). If the root is on the side of n2 after processing n1, the
information σn1 is passed to n2. If the root is on the side of n1 after processing n2, the information
σn2 is passed to n1. This is all the exchange along this edge. Since each processing of a node
is followed by passing information over a tree edge, the number of calls to the procedure that
processes the nodes is bounded by twice the number of edges of T .

If the input graph has n vertices, then in linear time we get an SPQR-tree T whose size is
linear in n. Processing a node can be done in O(n3/2) time (Theorem 4). The root has at most
2n faces, hence processing the root can be done in O(n5/2) time. Actually we may have to test
more than one root but if f1, f2, . . . , fk are the numbers of faces of k roots that are checked, then
still

∑
fi ∈ O(n).

Proposition 3 If a given planar biconnected bus graph G has the property that all the poles in the
SPQR-tree are bus vertices, then we can solve Problem 1, i.e., decide whether G admits a good
partition in O(n5/2) time.
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7.2 Connector vertices as poles

In this subsection we discuss the details for dealing with virtual edges incident to connector
vertices, i.e., with situations where at least one of the poles of a tree node n is a connector
vertex. The overall idea will be to reduce -if possible- the scenario with connector vertices as
poles to the previous scenario with bus vertices as discussed in the previous subsection. This
discussion is necessary due to the fact that the order of the neighbors of connector vertices might
be important. We will explore two cases when (A) a connector vertex pole has degree 3 and (B)
a connector vertex pole has degree 4. Both cases include several subcases depending on the type
of node n and on the number of bus vertices adjacent to the connector vertex in pole Gn. The
discussion will consider all special cases which do not appear in the simpler case when the poles
are just bus vertices. In particular many of the embedding choices are performed when poles are
connector vertices. For the case distinction we need the following definition. The neighbors of a
connector vertex v in G are called v-exposed, note that exposed vertices are bus vertices.

Let (n, n′) be an edge in the SPQR-tree T and let (v, u) be the corresponding virtual edge.
We assume that v is a connector vertex in Gn and Gn′ and if u is also a connector vertex then
deg(u) ≤ deg(v).

We define a so-called move-operation as follows: In the case that b is the only v-exposed
neighbor in Gn′ , we move edge (v, b) from Gn′ to Gn such that the new virtual edge corresponding
to the tree edge (n, n′) is (b, u), cf. Figure 11 for a special case. By this operation, the separating
set has one connector pole less than before; we have simplified our scenario.

There are several cases that are treated differently. First we consider connector poles of degree
three.

(A) The degree of v is 3. There are two subcases depending whether at least one of n and n′

is a P node or none of them is. During the case distinction we disregard whether n′ is parent
of n or not. For both subcases we discuss the case that n as root at the end.

Neither n nor n′ is a P node. The type of one of n and n′ has to be R. Assuming that n is
of type R we know that Gn contains two v-exposed bus vertices. Let b be the exposed neighbor
of v in Gn′ . Since {b, u} is a separating set of size two we can conclude that n′ is a node of type S
and (v, b) is one of the edges of the cycle Gn′ .

We apply the above defined move-operation, cf. Figure 11. Afterwards, we treat n and n′ as
we treat R and S nodes in the base algorithm, since their new poles with respect to (n, n′) are
only bus vertices.

b

R

S

n

n′

(n, n′)

b
v

u
v

u

b

b
v

u
v

u(n, n′) (n, n′)

Figure 11: The movement of the virtual edge when n is an R node and n′ an S node.

One of n, n′ is P node, w.l.o.g. n is P node. In Gn′ there is only one v-exposed vertex. If
there were two, then the third exposed neighbor b and the separator {b, u} would reveal that n is
of type S. Hence, n has three neighbors n1, n2, and n3 in the SPQR-tree. Let bi be the neighbor
of v in ni. Since {bi, u} is separating each ni is of type S.
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Let b′i be the bus vertex closest to u on Gni , i.e, either b′i = u or it is the unique u-exposed
vertex (recall deg(u) ≤ deg(v)). The relevant information needed from Gni is the classifying
letter σni for the pair bi, b

′
i. This is obtained by running the procedure for eligible nodes.

When n becomes eligible and n is the root, then we can use one of the standard gadgets from
Figure 9 for each child together with v and u to check the existence of a good partition (this can
even be decided just on the basis of the three letters).

When n becomes eligible and n is not the root, then we skip n, however, when it comes to
processing the parent n1 (a node of type S) we use two of the standard gadgets, one for each
of n2 and n3 together with v and u. Figure 12 indicates how this is done.

v

u

v

u

Figure 12: Replacing the virtual edge in Gn1 by two gadgets. The left figure covers the case in
which v and u both are connector vertices, while at the right, we show the case when
v is connector and u is bus vertex. The red dashed edge is the virtual up-edge of n1.

(B) The degree of v is 4. The critical issue in this case is that we have to care of property
(P2) of a good partition, i.e., the cyclic alternation of labels around v.

In the basic case, where poles are bus vertices, see Subsection 7.1 and in the case where poles are
connector vertices of degree 3 the existence of a good partition for some embedding of G∗n could
be checked by replacing virtual edges of Gn with some simple gadgets that represent conditions
enforced by the descendant nodes and then check for a good partition of the new graph G+

n .
The present case is more complicated, since now the embedding is more subtle as before. The

next example illustrates this fact: Let u be a bus node, let b1, b2, b3 and b4 be v-exposed,
and assume that each {bi, u} is separating. The graph Gni corresponding to the neighbor ni
of n with separator {bi, u} has two bus vertices as poles, hence, there is a letter σi = σni

encoding conditions on appropriate embeddings (for admitting a good partition). Now suppose
that (σ1, σ2, σ3, σ4) = (s, s, d, d), then there is a good partition if and only if the Gni are arranged
in the embedding so that the letters alternate between s and d.

We go through several subcases depending on the number of v-exposed vertices in Gn dis-
regarding the type of n (only at the end, we need some extra considerations for the case where n
is a P node). Note that if n is not the root v is incident to precisely one virtual edge in G+

n , since
when considering node n all children have been processed before. As in case (A) we disregard
whether n′ is parent of n or not. For all subcases we discuss the case ’n is root’ at the end.
Node n contains 3 v-exposed vertices. Consider the fourth v-exposed vertex b together

with u to conclude that n′ is a node of type S and (v, b) is one of the edges of the cycle Gn′ .
We deal with this case by moving the edge (v, b) from Gn′ to Gn so that the new virtual edge
corresponding to the tree edge (n, n′) is (b, u), cf. Figure 11.

Node n contains 1 v-exposed vertex. Let b be this v-exposed vertex together with u to
conclude that n is a node of type S and (v, b) is one of the edges of the cycle Gn. We deal with
this case by moving the edge (v, b) from Gn to Gn′ so that the new virtual edge corresponding
to the tree edge (n, n′) is (b, u), cf. Figure 11 with interchanged roles of n and n′.
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Node n contains 2 v-exposed vertices. We consider two further subcases depending on
whether u is a bus vertex or not.
Vertex u is a bus vertex. Suppose that Gn contains two v-exposed vertices b1, b2. In this

case it is necessary that there is a good partition of G∗n where b1 and b2 have different labels.
This can be checked when processing node n by inserting a d gadget between b1 and b2. If such
a test fails, then we have to try with a new root from the subtree rooted at n.

Otherwise G∗n can be reflected, therefore the alternation condition (P2) for v can be satisfied
as soon as the remaining two v-exposed vertices are labeled differently. In the parent node of
n it is then enough to replace the virtual edge (v, u) with the gadget shown in the left part of
Figure 13. The w gadget encodes the fact that we can use reflections.

Vertex u is a connector vertex. In this case node n contains 2 u-exposed vertices (otherwise
we would have applied one of the previously described cases with u playing the role of v). Let b1,
b2 be the v-exposed vertices and b′1, b

′
2 be the u-exposed vertices of Gn. Insert d gadgets between

the pairs b1, b2 and b′1, b
′
2. Then check the existence of a good partition twice, first with b1, b

′
1

connected by an s gadget and then by a d gadget. If both fail we have to try with a new root,
otherwise let σn ∈ {s, d, w} be the outcome of the tests.

In the parent node of n it is sufficient to replace the virtual edge (v, u) with the gadget shown
in the right part of Figure 13. Since the degree of v and u remains unaffected the alternation
condition (P2) is ensured.

d

σn

uuw
dvdv

Figure 13: Replacement for a node n with 2 v-exposed vertices and 2 u-exposed vertices.

When n becomes eligible and n is the root, then we just use one of the standard gadgets from
Figure 9 for each child together with v and u to check the existence of a good partition.

In the case where n becomes eligible and n is not the root, then there is nothing else to do.
In the above cases for n with 3 v-exposed vertices and with 1 v-exposed vertex, the insertion of

gadgets was not necessary, while in the case of 2 v-exposed vertices, it was necessary. Nevertheless
in all cases, we have disregarded the type of n. If n is of type S or R, we treat n as in the base
algorithm, while if n is of type P , we have to consider property (P2). Therefore we consider this
as the final case, since n needs an additional treatment.

Node n is a P node.
Consider the vertex v of degree four. We distinguish two cases: Either v was a pole before

we applied the move-operation to the virtual edge, or in the case, that we did not apply the
move-operation, v is still a pole and case ”‘Node n contains 2 v-exposed vertices”’ applies.

Suppose first that n is the root. Then there are at most four components providing information
that can be captured by one of the gadgets from Figure 9 or 13 and thus at most six possible orders
are possible to arrange the components cyclically around v in Gn. It is an easy combinatorial
sorting problem to find a good partition if it exists.

If n is an inner node then there are at most three children providing information that can
be captured by appropriate gadgets. Again the provided information from the children can be
captured by one of the gadgets from Figure 9 or 13. We skip considering n and move the gadgets
to the parent n′ of n, where we have again at most six possible orders of these components
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cyclically arranged around v. In Gn′ it is the same combinatorial sorting problem (as if n was
root) to find a good partition if it exists.

All in all we have to check a constant number of sortings, i.e. different embeddings, and the
result can be encoded by a gadget in the parent node.

Lemma 7 Let G∗n be the bus graph represented by Tr(n) computed according to the above cases.
If G admits a plane embedding with a good partition, then G∗n has a good partition.

Proof. We consider a connector vertex v and distinguish the cases whether v is a pole or not. In
the latter case v is a vertex of Gn for a unique node n in T with no incident virtual edge. Thus
properties (P1), (P2), (P3) are satisfied by Theorem 4 which will be used as black-box. Consider
the pole vertex v of degree 3. After the movement of the virtual edge v becomes a vertex in
a unique Gn without incident virtual edges and thus again Theorem 4 ensures properties (P1),
(P3), while (P2) is irrelevant for v. Consider the pole vertex v of degree 4. We aim at ensuring
property (P2), since (P1) is irrelevant and diamonds are handled in the calls of Theorem 3 for
the graphs G+

m associated to tree nodes m, i.e., (P3) is already ensured.
Since v is a pole it belongs to at least two components. Suppose v is in precisely two components

of vertices n′, n in T . Then n′, n are adjacent and of types S,R or R,S or R,R. The first case
is covered by “n has 3 v-exposed vertices“ (and n′ has 1 v-exposed vertex), the second case is
covered by ”n has 1 v-exposed vertex” (and n′ has 3 v-exposed vertices), and the last case is
covered by “n has 2 v-exposed vertices“ (the 2 v-exposed vertices in n′ are fixed due to the
embedding and (P2) is ensured due to the black-box (Thm.4) after inserting a gadget for the 2
v-exposed vertices of n).

Suppose v is in more than two components of vertices in T . Then there is exactly one P node n
with pole v. The adjacent nodes n1, . . . , nk are of type S or R. Note that k may have values k = 4
or k = 3 (k ≥ 3 because of definition of P node and k ≤ 4 because of the degree of v).

If k = 4, then n1, . . . , n4 all have the same type S. This case is covered, when 3 of the nodes
were processed and n becomes eligible, i.e. then n contains 3 v-exposed vertices together with
the fourth v-exposed vertex due to the movement of the virtual edge. Still n is a P node and (P2)
is ensured after finding a feasible sorting of n1, . . . , n4 in the case ”Node n is a P node”.

If k = 3, then let w.l.o.g. n1 be an R node and let n2, n3 be S nodes.
In the case that n has no parent, i.e. n is the root, we first move the virtual edges of n2, n3 and

then arrange the d gadget from n1 together with the remaining 2 v-exposed vertices from n2, n3.
Applying the case “Node n is a P node” we solve the combinatorial problem for the feasible
sorting of the v-exposed vertices around v.

Assume n has a parent ni; we consider the cases i = 1 and i 6= 1. If i = 1, i.e. n1 is the parent
of n, then n2, n3 were processed and n becomes eligible with the 2 v-exposed vertices from n2, n3
due to the movement of the virtual edge. These 2 v-exposed vertices are linked by a d gadget
from Figure 13 which belongs to n1. In n1 (P2) is ensured by Theorem 4.

Otherwise if i 6= 1, then i = 2 or i = 3. n1 and one of n2, n3 are processed and n becomes
eligible with 3 v-exposed vertices, while two of them (those from n1) are linked by a d gadget
from Figure 13. Since the parent ni is an S node, its v-exposed vertex is assigned to n due to the
movement of the virtual edge. It is again just a combinatorial problem to find a feasible sorting
of the v-exposed vertices ensuring (P2), which is covered in “Node n is a P node”.

In the end we considered all possible cases for a connector vertex pole.

We conclude with

Proposition 4 Problem 1 can be solved in O(n5/2) time, i.e. a good partition for a planar bicon-
nected bus graph can be computed efficiently if it exists.
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7.3 Not biconnected input graphs

Now suppose that the input graph G is not biconnected. We use the block-cutpoint-tree of G, i.e.,
the tree that represents the maximal biconnected components of G, see [17]. We assume that the
biconnected components are already processed as described in Subsections 7.1 and 7.2.

Let G1 and G2 be two connected bus graphs, possibly with connector vertices of degree one
and without fixed embedding. For vertices a1 of G1 and a2 of G2 that are both bus or both
connector vertices, let G1 ⊕a1 a2 G2 denote the graph obtained by gluing G1 and G2 together by
identifying a1 and a2. G is the result of this operation. We summarize the first few cases in the
following lemma, and discuss the missing case afterwards:

Lemma 8 Let G1 and G2 be two connected bus graphs, both having a good partition regarding
embeddings with G1 having a1 on the outer face or G2 having a2 on the outer face. If a1, a2
are connector vertices with degG1

(a1) + degG2
(a2) ≤ 3 or a1, a2 are bus vertices, then the graph

G1 ⊕a1 a2 G2 also has a good partition.

Proof. Compute good partitions of G1 and G2 with corresponding embeddings as required. Either
they combine to a good partition of G1 ⊕a1 a2 G2 or exchanging all labels in G2 yields a labeling
that can be combined with the labeling of G1.

The remaining case where G = G1 ⊕a1 a2G2 is a bus graph is when a1, a2 are connector vertices
with degG1

(a1) + degG2
(a2) = 4.

If degG1
(a1) = 2 = degG2

(a2), then a good partition of G exists if and only if each of G1 and G2

has a good partition and the neighbors of a1 in G1 and the neighbors of a2 in G2 are labeled
differently. This can be checked by inserting d gadgets before computing good partitions.

If degG1
(a1) = 3 and degG2

(a2) = 1, then it is again sufficient to have good partitions for G1

and G2 separately. Condition (P1) at a1 requires that both labels appear in the neighborhood of
a1. Embedding G2 in the face with the two identical labels allows to satisfy (P2) in graph G.

The results are summarized in the following theorem, while a planar embedding will be pro-
duced as a byproduct of a good partition if it exists.

Theorem 5 A good partition for a planar bus graph can be computed in O(n5/2) time if it exists.

8 Conclusion and Future Work

We have considered the class of planar bus graphs that admit a planar realization and have
characterized this class by the existence of a good partition of the bus vertices. To test for
the existence of a good partition we gave an O(n5/2) algorithm based on planar matching and
SPQR-trees. Given a good partition the representation can be computed in linear time.

It is still open to characterize the class of bus graphs that admit realizations, where connections
are allowed to cross (C1-realizations) apart from the knowledge that the decision problem is NP-
complete.

Another generalization would be to allow connections to cross bus segments (C2-realizations)
or bus segments to cross each other (C3-realizations). Apart from the question if the decision
problem is NP-complete, we could ask here for a given Cj-representation, if there exists a Ci-
representation for i < j.

Furthermore it is interesting to consider the realizability question with generalized bus graphs,
i.e. bipartite graphs where the bus vertices have degree at most six or eight, regarding a real-
ization with vertical and diagonal segments, or with vertical, horizontal and diagonal segments,
respectively.
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