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We study drawings of plane quadrangulations such that every inner face4

realizes a prescribed area. A plane graph is area-universal if for every assign-5

ment of non-negative weights to the inner faces, there exists a straight-line6

drawing such that the area of each inner face equals the weight of the face.7

It has been conjectured that all plane quadrangulations are area-universal.8

We develop methods to prove area-universality via reduction to the area-9

universality of related graphs. This allows us to establish area-universality10

for large classes of plane quadrangulations. In particular, we use our tools11

to show area-universality of all quadrangulations with at most 13 vertices.12

1 Introduction13

A plane graph is a planar graph together with a crossing-free drawing. Let G be a plane14

graph and let F 0 be its set of inner faces. An area assignment is an assignment of a non-15

negative real number to every face f 2 F 0, i.e., a function A : F 0 → R+
0 . A (potentially16

degenerate) planar straight-line drawing D of G realizes the area assignment A if for17

every f 2 F 0 the area of f in D is A(f). A plane graph G is area-universal if it has a18

realizing drawing for every area assignment A.19

Ringel [18] considered straight-line drawings of plane graphs such that all faces have20

the same area. He gave an example of a plane triangulation that has no equiareal draw-21

ing, hence, a triangulation which is not area-universal. Thomassen [19] proved that plane22

cubic graphs are area-universal. Biedl and Velázquez [3] showed area-universality for the23

class of plane 3-trees, also known as stacked triangulations and Apollonian networks.24

Concerning counter examples, Kleist [12, 14] introduced a simple counting argument25

to show that no Eulerian triangulation is area-universal. Moreover, she showed that26

every plane graph is area-universal in the class of drawings where one bend per edge27
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is allowed. For triangulations with special vertex orders, Kleist [13] presented a suffi-28

cient criterion for their area-universality that only requires the investigation of one area29

assignment. Interestingly, if the sufficient criterion applies to one plane triangulation,30

then all embeddings of the underlying planar graph are also area-universal. Dobbins et31

al. [6] investigated the complexity of deciding whether a given graph is area universal32

and several related problems. They conjecture that the problem is complete for the33

complexity class 89R.34

In this paper, we focus on plane bipartite graphs. Since the property of area-universality35

is preserved under edge-deletions (see also Observation 1), we consider edge-maximal36

plane bipartite graphs known as quadrangulations. Regarding the area-universality of37

quadrangulations little is known. Evans et al. [9] showed that the m � n grid is area-38

universal for all m,n � 2, even with the additional requirement that the outer face of39

the drawing is a rectangle. Kleist [12] showed that 2-degenerate quadrangulations are40

area-universal and that in the class of drawings where one bend per edge is allowed all41

quadrangulations have realizing drawings for all area assignments where only half of the42

edges have a bend.43

The study of drawings in various drawing modes with prescribed face areas is summa-44

rized under the name cartograms. Cartograms date back to at least 1934 when Raisz [17]45

studied rectangular population cartograms, where the US population was visualized by46

representing the states with areas proportional to their population. This kind of vi-47

sualization is particularly useful when showing geo-referenced statistical data in order48

to provide insight into patterns, trends and outliers in the world around us [22]. Car-49

tograms have been intensely studied for duals of triangulations and rectilinear drawings50

with bends. The number of sides of the polygons representing a face has been improved51

in a series of papers from 40 sides [5], to 34 sides [11], to 12 sides [2]. Finally, Alam52

et al. [1] showed how to construct drawings with 8-sided faces, which is known to be53

optimal. Chang and Yen [4] studied contact representations of 2-connected outerplaner54

graphs and construct contact representations with 4-gons of prescribed area. Note that55

in the cartogram literature the problem is usually treated in the dual setting, i.e., weights56

are assigned to the vertices. We refer to Nusrat and Kobourov [16] for a survey of the57

cartogram literature.58

Area-universality has also been studied in the context of rectangular layouts, these are59

dissections of a rectangle into rectangles with prescribed contacts between the rectangles60

of the dissection. Eppstein et al. [8] showed that a rectangular layout is area-universal61

if and only if it is one-sided. The key ingredient in their proof is that the weak equiv-62

alence class of any rectangular layout is area-universal. The weak equivalence class is63

obtained by prescribing the contacts between the segments. The area-universality of the64

weak equivalence class has been shown by different techniques [7, 10, 21]. This area-65

universality result is very special because, up to affine transformations, the rectangular66

layout realizing a given area assignment is actually unique.67

Our Contributions: We study area universality of plane quadrangulations. To realize68

non-negative face areas, we extend the set of crossing-free straight-line drawings of a69

plane quadrangulation by all drawings which can be obtained as the limit of a sequence70
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of straight-line drawings (e.g. specified by the coordinates of the vertices). In particular,71

we allow degenerate drawings in which vertices and edges sharing a face may (partially)72

coincide; if two edges partially coincide their union forms a segment. In Section 2, we73

investigate operations that preserve area-universality. In Section 3, we use one of these74

operations, the edge contraction, to show area-universality of grids and large classes75

of angle graphs. In Section 4, we study strong area-universality, i.e., area-universality76

within a prescribed outer face. Shape restrictions are also the subject of Section 5; there77

we study convex drawings. In Section 6, we use our tools to show area-universality of78

all quadrangulations with at most 13 vertices. In some cases the argument relies on the79

known area universality of the class of double stacking graphs.80

2 Area-Universality Preserving Operations81

We begin with an easy observation which can also be found in [3] and [14].82

Observation 1. A subgraph of an area-universal plane graph is area-universal.83

Therefore, a proof for the area-universality of plane quadrangulations, i.e., maximal84

plane bipartite graphs, would imply area-universality of all plane bipartite graphs. The85

following lemma extends Observation 1 with a new operation. A set of edge contractions86

in a plane graph G is face-maintaining if the contractions do not change the number87

of faces in G, i.e., for a face of degree d at most d− 3 edges are contracted.88

Lemma 1. Let G be a plane graph that can be transformed into an area-universal89

plane graph G 0 by inserting vertices, inserting edges, and performing face-main-90

taining edge contractions. Then G is area-universal.91

Proof. Let A denote an area assignment of G. A face f in G corresponds to a (non-92

empty) collection of faces Cf in G 0. We define A 0 such that for each inner face f of G it93

holds that A(f) =
∑
f 02Cf

A 0(f 0). Since G 0 is area-universal, there exists an A 0-realizing94

drawing D 0 of G 0. Simply deleting all vertices and edges of G 0 which are not in G yields95

a (degenerate) drawing D of G. By definition of A 0, D is A-realizing.96

There exists a further operation that preserves area-universality and is based on de-97

composition. For an illustration consider Figure 1. From a plane graph G with a simple98

cycle C, we obtain two plane graphs Gi and Ge by decomposing along C: Gi is the99

subgraph of G consisting of C and its interior, while Ge is the subgraph of G consisting100

of C and its exterior. Reversely, we obtain G from Gi and Ge by identifying the outer101

face of Gi with the inner face of Ge whose boundary is C.102

A plane graph G is strongly area-universal if for every area assignment A of G and103

every fixed polygonal placement of the outer face of area ΣA, there exists a realizing104

straight-line drawing of G within the prescribed outer face. Here we have used ΣA to105

denote the sum of all assigned areas, i.e., ΣA :=
∑
f2F 0 A(f). Since all triangles are106

affine equivalent, a plane graph with a triangular outer face has a realizing drawing (if107

it exists) within every triangle of correct area [14]. It follows that:108
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Ge
Gi

G

C

C

C

Figure 1: Decomposing G along C yields two plane graphs Ge and Gi. If Ge is area-
universal and Gi strongly area-universal, then G is area-universal.

Observation 2. Plane graphs with triangular outer faces (e.g. triangulations) are109

area-universal if and only if they are strongly area-universal.110

A similar result for quadrangulations would be a pleasant surprise.111

Lemma 2. Let G be a plane graph with a simple cycle C, and Gi and Ge obtained by112

decomposing G along C. If Ge is area-universal and Gi is strongly area-universal,113

then G is area-universal.114

Moreover, if Ge is strongly area-universal, then G is also strongly area-universal.115

Proof. Let A be an area assignment of G. For i 2 {i,e}, Ai denotes the induced area116

assignment of Gi. Note that the interior of C is a face f of Ge. In particular, it holds117

that Ae(f) = ΣAi. Since Ge is area-universal, we find an Ae-realizing drawing De of Ge.118

Since Gi is strongly area-universal, we find an Ai-realizing drawing Di of Gi whose outer119

face is the polygon representing C in De. Thus, identifying De and Di along C yields120

an A-realizing drawing of G.121

The ideas of this lemma have been used in [14] to show the strong area-universality of122

2-degenerate quadrangulations. Recall that a graph is k-degenerate if and only if every123

subgraph contains a vertex of degree at most k.124

Proposition 3 ([14]). Every 2-degenerate quadrangulation is strongly area-universal.125

It is easy to see that K4 is area-universal, i.e., a vertex of degree 3 can be inserted into126

a triangle so that the three small triangles partition the big triangle in any prescribed127

ratio. This yields the following:128

Lemma 4. Let T be a plane graph and T+ the plane graph where a vertex of degree 3129

is inserted (stacked) into a triangle of T . Then T is area-universal if and only if T+130

is area-universal.131

Since a plane 3-tree is obtained from a triangle by iteratively stacking vertices into132

faces, Lemma 4 yields the result from [3]: Plane 3-trees are area-universal.133
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3 Area-Universality via Edge Contractions134

In this section, we discuss some implications of the edge contractions of Lemma 1.135

Firstly, we show an alternative proof for the area-universality of grid graphs. The grid136

G(m,n) is the Cartesian product Pm � Pn of paths Pm and Pn on m and n vertices,137

respectively. Figure 2(a) illustrates G(9, 6). Area-universality of grid graphs was first138

proved in the context of table cartograms where additionally the outer face is required139

to be a rectangle [9]. Our new proof does not yield a rectangular outer face; however,140

it is straight-forward and very simple. The reader is invited to check that Proposition 3141

does not imply the area-universality of grid graphs, because G(m,n) is not a subgraph142

of a 2-degenerate quadrangulation if n,m � 3.143

m

n

(a)
A B

C

1 2 3 4

(b)

Figure 2: Illustration of Proposition 5 and its proof. (a) The grid graph G(m,n) and
(b) an area-universal triangulation ‘containing’ it.

Proposition 5. Every grid is area-universal.144

Proof. The idea of this proof is easy to convey by picture; see Figure 2. Contract the145

edges of every second column of G(m,n) to super vertices that are labeled by 1, . . . , k146

from left to right. Then, we add vertices and edges to enhance the resulting graph to147

a triangulation G as depicted in Figure 2(b). The graph G is a stacked triangulation148

since the interior of each triangle (i, i+ 1, C) with 1 � i � k− 1, and the graph induced149

by A,B,C, 1, . . . , k is a stacked triangulation. Thus, G is area-universal. Therefore,150

every grid graph can be transformed into a subgraph of an area-universal graph using151

face-maintaining edge contractions. Hence, by Lemma 1, grids are area-universal.152

The angle graph of a plane graph G is the graph QG with vertex set consisting of153

the vertices and faces of G and edges corresponding to face-vertex incidences. If G is154

2-connected, then QG is a quadrangulation. Clearly, an angle graph is bipartite where155

the two bipartition classes are the vertices V and the faces F of G. In the following we156

consider angle graphs of triangulations. For a plane graph G and its angle graph Q, their157

union (graph) G + Q, consists of the union of the vertex and edge sets of G and Q.158

Note that the union is again a plane graph: Indeed, the vertex set of G +Q coincides159

with the vertex set of Q. Hence, G + Q can be understood as the quadrangulation Q160

together with the edges between the vertices of one bipartition class, namely V.161
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Proposition 6. The angle graph Q of an area-universal triangulation T is area-uni-162

versal.163

Proof. The graph T +Q can be seen as T where a vertex of degree 3 is inserted in every164

face. By Lemma 4, T +Q is area-universal. Thus, Observation 1 implies that Q is area165

universal.166

Note that the same approach shows that angle graphs of equiareal triangulations are167

equiareal. Moreover, a straightforward consequence of Proposition 6 is that angle graphs168

of stacked triangulations are area-universal.169

In order for its angle graph to be area-universal, it suffices for a triangulation to170

be close to area-universal. As shown in [12], every plane graph has an area-universal171

subdivision. The subdivision number s(G) of a plane graph G is the minimum number172

of subdivision vertices to be inserted into G such that it becomes area-universal. If G173

is area-universal, then clearly s(G) = 0. To generalize Proposition 6, we introduce the174

notion of a refined area assignment. If G1 is a subgraph of G2, then every face f of G1175

corresponds to a collection of faces Cf in G2. An area assignment A1 of G1 is refined176

by an area assignment A2 of G2 if A1(f) =
∑
s2Cf

A2(s). We also say A2 refines A1.177

Theorem 7. The angle graph Q of a plane triangulation T with s(T) � 1 is area-uni-178

versal.179

Proof. Figure 3(a) illustrates the proof. Let e be an edge of T such that subdividing e180

yields the area-universal graph T�. The strategy is as follows: For an area assignment181

A of Q, we define a refining area assignment A 0 of the union U := Q + T�. Let A� be182

the unique area assignment of T� such that A 0 refines A�. The drawing of T� realizing183

A� yields an A 0-realizing drawing of U.184

U := Q+T◦
qe

f1

f2

(a) The graph U := Q + T� where T
is the octahedron graph.

0 0

00

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3
qe qe

A(q1) A(q2)

A(q4) A(q3)

q1 q2

q4 q3

(b) Faces in the neighborhood of the subdivided edge e.

Figure 3: Illustration of Theorem 7 and its proof.

For the definition of A 0, note that every face f of Q corresponds to two faces in U.185

Let qe denote the face of Q that is split by the subdivided edge e in U. We arbitrarily186

partition the area A(q) assigned to face q between the two corresponding faces in U,187

for all faces q in Q except the four faces q1, q2, q3, and q4 sharing a boundary edge188

with qe. Let f1 and f2 denote the two faces adjacent to e in T . For qi, i 2 [4], assign189

area A(qi) to the triangular face from U which is neither incident to f1 nor to f2 in U;190
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assign an area of 0 to the triangular faces incident to f1 or f2. This defines the area191

assignment A 0 and A� is the area assignment of T� that is refined by A 0 of U.192

Let D� be an A�-realizing drawing of T�. Since each vertex f 2 F − {f1, f2} of U acts193

as a vertex of degree 3 stacked into a face of T�, we can insert f in D� by Lemma 4 such194

that the areas of A 0 are realized. To obtain an A 0-realizing drawing of U, it remains to195

insert f1 and f2. We call the highlighted (thick, red) edges in Figure 3(b) incident to f1196

and f2, the red edges of f1 and f2, respectively. By definition of A 0, the red edges must197

be contracted in every A 0-realizing drawing of U. Consequently, given a drawing T�, we198

easily insert f1 and f2 at the same location as the already placed vertex of the red edges,199

respectively. This yields an A 0-realizing drawing of U. Since A 0 refines A, deleting the200

edges of T� yields an A-realizing drawing of Q.201

This ties in with a result based on an operation called diamond addition. Let G be202

a plane graph and e an edge incident to two triangular faces consisting of e and the203

vertices u1 and u2, respectively. Applying a diamond addition of order k on edge e204

of G results in a graph G 0 in which the edge e is subdivided by vertices v1, . . . , vk which205

are also adjacent to u1 and u2, as illustrated in Figure 4. Two diamond additions are206

disjoint if the partitioned triangles are different.207

u1

e

u2

v1 v2 v3

G G′ u1

u2

Figure 4: A diamond addition on edge e.

Theorem 8 ([15]). Let G be a graph obtained from an area-universal graph G 0 by208

(multiple disjoint) diamond addition(s) adding k vertices in total. Then, s(G) � k.209

As a special case of graphs obtained by diamond additions, Kleist [13] studied double210

stacking graphs H`,k that can be obtained from the plane octahedron graph. Labeling211

the octahedron as in Figure 5, H`,k is obtained by applying one diamond addition of

v

1 2 ... `

1′
2′

...

k′

C

A B

v

C

A B

u w

Figure 5: A double stacking graph H`,k.
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212

order ` − 1 on Au and one diamond addition of order k − 1 on vw. The octahedron213

graph is the smallest graph of this class and has parameters ` = k = 1.214

With ideas similar to the ones used to show Theorem 7, we obtain the following215

results.216

Theorem 9. The angle graph Q of a plane triangulation T is area-universal if one of217

the following holds:218

(i) T is obtained from an area-universal triangulation T 0 by several disjoint dia-219

mond additions of an arbitrary order.220

(ii) T has a set of edges that is far apart such that subdividing each of them at221

most once yields an area-universal subdivision T�; a set of edges of T is far222

apart if the subgraph of the dual graph induced by the duals of these edges and223

their vertices is a collection of stars.224

The results imply the area-universality of several classes of angle graphs.225

Corollary 10. The angle graph Q of a plane triangulation T is area-universal if226

� T is a stacked triangulation,227

� T is 4-connected and has at most ten vertices, or228

� any (possibly a different) embedding of T is a double stacking graph H`,k.229

Proof. Stacked triangulations are area-universal, hence Proposition 6 implies the area-230

universality of its angle graphs. Theorem 8 can be used to show that triangulations with231

at most nine vertices and all embeddings of `k-double stacking graphs have subdivision232

number at most 1 [15]. Consequently, Theorem 7 implies that their angle graphs are area-233

universal. Moreover, 4-connected plane triangulations on ten vertices can be obtained234

from area-universal triangulations by at most two disjoint diamond additions. Thus,235

their area-universality follows from Theorem 9(i).236

It remains to show Theorem 9.237

Proof of Theorem 9. To prove (i), we consider a diamond addition of order k applied238

on an edge (u,w) of T 0. Let T 0
� denote the graph obtained from the triangulation T 0

239

by subdividing the edge (u,w) with k additional vertices as in T ; in other words the240

edge (u,w) is replaced by a path P with k + 1 edges. Let A and B denote the two241

common neighbors of u and w in T 0 such that Auw and Buw are faces in T 0. Recall242

that Q is the angle graph of T and consider the union U := Q + T 0
�. Define H as the243

restriction of U to the interior of AuBw. Figure 6 depicts H for a diamond addition of244

order 3.245

Given an area assignment A of Q, we construct an area assignment A 0 of T 0 and an246

area assignment AU of U that refines both A and A 0. Observe that every face q of Q is247

either a face of U or corresponds to two faces of U.248

In the latter case, we partition the prescribed area of q equally between its two faces249

in U and obtain the area assignment AU of U. The restriction of AU to H is denoted AH.250

We define A 0 of T 0 as the area assignment refined by AU, where we identify the path P251
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u wu w
1
2c1

1
2c2

1
2c3

1
2c4

1
2c1

1
2c2

1
2c3

1
2c4

B

A

Figure 6: The graph H for a diamond addition of order 3; together with AH.

and the edge (u,w). From an A 0-realizing drawing D 0 of T 0, we construct an AU-252

realizing drawing of U as follows: First, we add all face vertices not adjacent to P using253

Lemma 4; recall that they act as vertex of degree 3 in a triangle. Next we discuss how254

to reinsert H.255

We show the realizability of AH by considering the top and bottom half of H inde-256

pendently. A tent graph Tk is a plane graph with the outer face v,x0,x1,x2, . . . , xk+1 and257

inner vertices y0, y1, . . . , yk where yi is incident to xi, xi+1 and v. Figure 7(a) shows T3.258

Observe that splitting H along P results in two tent graphs Tk.259

v

x0 xk+1x1 x2 . . .

y0 y1 yk. . .

(a) A tent graph Tk.

v

. . .b0 b1 bk

. . .a0 a1 ak+1

`

(b) An A-realizing drawing of Tk.

Figure 7: Illustration of Lemma 11 and its proof.

Lemma 11. Every area assignment A of a tent graph Tk has an A-realizing draw-260

ing within each triangle that has area ΣA and corners v, x0, xk+1. Moreover, the261

length of every segment xixi+1 can be made proportional to the area of the incident262

triangle.263

Proof. We denoted the assigned areas of Tk by ai and bi as depicted in Figure 7(b). We264

position xi on the segment x0xk+1 such that265

kxi+1 − xik =
bi∑
i bi

kxk+1 − x0k.266
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Then, in a realizing drawing the vertices yi lie on a line ` parallel to the segment x0xk+1267

such that for each point x on ` the triangle x0xk+1x has area
∑
i bi. Note that, by the268

placement of xi, each position of yi on ` realizes bi. Thus, we may use the freedom269

to realizing ai when placing yi on ` with the following procedure: Defining y−1 as the270

intersection of the segment vx0 with the line `, we suppose that yi−1 is placed already271

when we consider yi for i � 0. Move yi rightwards on the line ` starting at yi−1 and272

observe the area of the face vyi−1xiyi. Clearly, it starts at 0 and increases continuously.273

The intermediate value theorem guarantees a position, where the area equals ai. We274

place yi at the corresponding position and continue with yi+1. Due to the correct total275

area, the area of ak+1 is realized if all other face areas are correct. Thus, we obtain an276

A-realizing drawing of Tk.277

We use Lemma 11 to reinsert each of the two tent graphs of H. By definition of AH,278

the subdivision vertices on (u,w) are placed consistently when applying Lemma 11 to279

the two tent graphs when splitting H along P. Here we use the fact that the assigned280

areas of Q were split equally into two when defining AU. Since AU refines A, we obtain281

an A-realizing drawing of Q by deleting the edges of T 0
�, this is (i).282

Now, we show (ii). First, we consider the case when the set of subdivided edges of T283

forms only one dual star, i.e. T has a face f� such that subdividing each edge incident284

to f� (at most once) yields an area-universal graph T�. Theorem 7 shows the claim if285

exactly one edge of f� is subdivided. In the following, we show how to deal with the286

case of three subdivision vertices. The case of two subdivision vertices can be handled287

by a slight modification which is explained afterwards.288

We denote the three faces incident to subdivision vertices in T� by f�, f1, f2, f3 as289

illustrated in Figure 8; the corresponding vertices in Q are denoted by fv�, fv1, f
v
2, f

v
3.290

Moreover, we let v1, v2, v3 be the vertices of f� and let wi be the third vertex of fi as291

depicted.292

f1

f◦

f2f3

w3 v3 w2

v2v1

w1

(a) Neighborhood of f� in T�.

fv
1

fv
◦

fv
2fv

3

w3 v3 w2

v2v1

w1

(b) Neighborhood of fv
�
in U, where T� is

depicted in black and Q in gray.

Figure 8: Illustration of the notation for the proof of Theorem 9 (ii).

Note that two of the w-vertices may coincide implying that a v-vertex has degree 3.293

However, at most one v-vertex has degree 3; otherwise T is the complete graph on four294
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w3 = w2

v3

v2v1

w1

(a) Neighborhood of f� in T�
when v3 has degree 3.

fv
1

fv
◦

fv
2fv

3

w3 = w2

v3

v2v1

w1

0 0

0 0

(b) Neighborhood of fv
�
in U;

AU is given in orange.

fv
◦

v1 v2

fv
3 fv

2v3

w3 = w2

(c) The graph G.

Figure 9: Illustration of the proof of Theorem 9 (ii) for three subdivision vertices if there
exists a vertex of degree 3.

vertices which is area-universal. Therefore, it remains to consider two cases: One v295

vertex has degree 3 and none v-vertex has degree 3.296

We first consider the case that v3 has degree 3. Figure 9(a) illustrates the neighborhood297

of f� in this case. Our strategy is as follows: For an area assignment A of Q, we define an298

area assignment AU of the union Q+T� =: U. This yields a unique area assignment A� of299

T� such that AU of U refines A� of T�. From an A�-realizing drawing of T�, we construct300

an AU-realizing drawing of U. Deleting the edges of T� results in an A-realizing drawing301

of Q.302

For a given area assignment A of Q, we construct an area assignment AU of U such303

that the area of every face q of Q is partitioned between the two faces of T�. Let B304

denote the edges of T� bounding the region formed by the faces f1, f2, f3, f� in T�; note305

that B has four edges since the common vertex of f�, f2, f3 has degree 3. The edges of B306

divide four faces of Q in U. For all faces outside B (and not incident to B), the face307

areas of Q are partitioned arbitrarily between the two faces of U. The area of each of308

the four faces of Q divided by B is assigned to the subface outside B as indicated in309

Figure 9(b). We define A� of T� as the unique area assignment refining AU.310

Given an A�-realizing drawing of T�, note that every vertex of Q outside B is of311

degree 3 and can be inserted with Lemma 4. We will redraw all vertices inside B. By312

definition of AU, two incident triangular faces of fv1 are supposed to be 0. Hence, we313

must place fv1 at the same location as w1. Then, we place the vertex fv� as a vertex of314

degree 2 in the quadrangle v1fv1v2w2 such that the area of the quadrangle v1fv1v2f
v
� is315

correct, this is possible by Proposition 3. It remains to realize the graph G illustrated316

in Figure 9(c). We later show that every area assignment of G is realizable within any317

fixed outer face of correct total area: This follows from Lemma 15 and the fact that G318

is the core of c(S3).319

Now, we turn to the case that no vi has degree 3. This implies that all wi are distinct.320

The resulting neighborhood of fv� is illustrated in Figure 10(a).321
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(a) Neighborhood of f� in T� and A�.
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fv
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fv
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fv
2fv

3

w3 w2

v2v1

w1

(b) Neighborhood of f� in Q+ T� and AU.

Figure 10: Illustration of the proof of Theorem 9 (ii) for three subdivision vertices of
high degree.

Let A be an area assignment of Q. In a first step, we define an area assignment AU of322

the union Q+ T� =: U. Note that every face of Q corresponds to two faces in U. Except323

for the faces incident to fv�, fv1, f
v
2, f

v
3, we arbitrarily partition the area A(q) of a face q324

of Q between its two faces in U. For the faces incident to fv�, fv1, f
v
2, f

v
3, we assign their325

area as depicted in Figure 10(b).326

let A� be the area assignment of T� refining AU. Since T� is area-universal there exists327

an A�-realizing drawing D� of T�. Most face-vertices of Q act as vertices of degree 3328

stacked into triangles of T�. Hence, by Lemma 4 and we can insert them in D� such329

that they realize the area of AU. It remains to insert the vertices fv1, f
v
2, f

v
3 and fv�. By330

definition of AU, we must place fvi as to coincide with wi, i.e., such that the edge fviwi331

is contracted. To place fv� in D�, we need some geometric considerations.332

The area of f� in D� is 0, therfore at each vi the two boundary edges of f� are collinear.333

If the slopes of the 3 supporting lines are pairwise different, then the triangle formed334

by the three lines is in f�, whence the triangle has area 0 which means that the three335

lines intersect in a point p. This point is the position of the three subdivision vertices336

in the drawing D� and can be used for fv�. If two of the lines have the same slope, then337

because they share one of the subdivision vertices they coincide. If the third line has a338

different slope, then the intersection point of the lines is a good position for fv�. If all339

three lines coincide there are many different foldings of the boundary of f�, we leave it340

as an exercise to show that in each case there is a position for fv� such that the edges to341

v1, v2, v3 can be drawn ’inside’ f�.342

If there are two subdivision vertices on the boundary of f� we use the area assign-343

ment AU and the corresponding A� as in the previous case. In the drawing D� we344

pretend that the third edge of f�. The considerations for the case of three subdivided345

edges show that there is a good position for fv�.346

Since the set of subdivided edges is far apart, every subdivided edge belongs to a star.347

We handle each star separately as described above; in particular, the star consists of348

one, two or three edges since T is a triangulation. By the independence, for every two349

stars, the edges of T surrounding the regions of the stars are disjoint; these edges form350

a so-called boundary cycle of a star. For an example consider Figure 11.351
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Figure 11: An set of subdivided edges that is far apart.

Note that in all cases, when defining AU from A, only the areas inside and adjacent352

to the boundary cycle are affected. Since these sets of faces in U are disjoint, the353

subdivision vertices can be handled independently. This finishes the proof.354

4 Strongly Area-Universal Quadrangulations355

In this section, we study strongly area-universal quadrangulations. Recall that a quad-356

rangulation is strongly area-universal if it is area-universal within every fixed outer face357

of the correct total area. A nice property of this class is that we can stack any strongly358

area-universal into a face of an (strongly) area-universal quadrangulation to obtain an359

(strongly) area-universal quadrangulation. Therefore, few small strongly area-universal360

quadrangulations can serve as building blocks in order to construct infinite and rich361

families of area-universal quadrangulations.362

Note that for n > k, the area of a convex n-gon strictly exceeds the area of any con-363

tained k-gon. Therefore, we immediately obtain that the plane bipartite graph depicted364

in Figure 12(a) is not strongly area-universal: Fixing the outer face as a regular hexagon,365

there exists no drawing in which the inner 4-face covers more than 2/3 of the area.366

Observation 3. Not all plane bipartite graphs are strongly area-universal.367

(a)

G GG

(b)

Figure 12: (a) A plane bipartite graph that is not strongly area-universal. (b) An illus-
tration of the proof of Proposition 12.

In contrast, we do not know of a quadrangulation that is not strongly area-universal.368

Neither do we know of an area assignment that requires a convex outer face. In fact369
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these two questions are closely related.370

Proposition 12. If there exists a plane quadrangulation G and an area assignment A371

such that every realizing drawing has a convex outer face, then there exists a plane372

quadrangulation H that is not area-universal. Moreover, if G is 3-connected, we373

can ensure that H is 3-connected.374

Proof. Suppose we are given a quadrangulation G and an area assignment A with the375

described properties. Let H0 denote the plane graph of K2,4, i.e., H0 has three bounded376

faces each being a quadrangle. For each bounded face of H0, we take a copy of G and377

identify the outer 4-cycle of the copy of G with the boundary of the face. This yields378

the quadrangulation H as schematically illustrated in Figure 12(b). If G is 3-connected,379

then H is also 3-connected.380

Assigning A to each copy of G, we claim that H has no realizing drawing. Suppose,381

by contradiction, that there exists a realizing drawing D. Due to the positive total area382

of the central copy of G, either the right or the left copy of G has a non-convex boundary383

cycle in D. Consequently, this copy induces an A-realizing drawing of G where the outer384

face is not convex and thus, we obtain a contradiction.385

Now, we present a family of plane graphs that have the property of being strongly386

area-universal. The family consists of the angle graphs of wheels, which are also known387

as pseudo-double wheels. The pseudo-double wheel Sk has 2k+ 2 vertices and consists388

of a cycle with vertices v1, v2, . . . , v2k and a vertex v adjacent to all vertices on the cycle389

with odd index and a vertex w adjacent to all vertices on the cycle with even index, see390

Figure 13. Up to the labeling the plane embedding of Sk is unique.391

v4

v1

v2k

v

w

v6

v3 v5 v7 . . .
v8

v2

Figure 13: Pseudo-double wheel Sk.

The smallest pseudo-double wheel S3 is also known as the cube graph. In this section,392

we show that the cube graph – and more generally, all pseudo-double wheels – are393

strongly area-universal.394

Theorem 13. The pseudo-double wheel Sk, k � 3, is strongly area-universal.395

We can combine Lemma 2 and Theorem 13 in order to construct further strongly396

area-universal graphs. A graph is a stacked pseudo-double wheel if there exists a set of397
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cycles such that decomposition along these cycles yields several pseudo-double wheels.398

A generalized stacked pseudo-double wheel can be decomposed into pseudo-double399

wheels and copies of the unique plane quadrangulation Q5 on five vertices. INote that400

Q5 is the plane graph that can be obtained by starting with a plane C4, inserting an401

edge between two non-incident vertices and then subdividing this new edge. It is easy402

to see that Q5 is strongly area-universal [12]. Together with Lemma 2 and Theorem 13,403

it follows that404

Corollary 14. Generalized stacked pseudo-double wheels are strongly area-universal.405

We proceed to prove Theorem 13. To do so, we first study a subgraph of Sk, namely406

the plane graph c(Sk), called the core, which is obtained by deleting v1. Figure 14407

illustrates the core of S5.408

v

w

A B
b1 b2 bk. . .

a1 ak−1. . .

(a) The core c(S5) of S5 with an
area assignment.

w

0 0

b11
b21

b11
b21

=
b1i
b2
i

b12
b22

b1k
b2k. . .

. . .

v

(b) The layout in case (i).

a21

w

a11 a12

a22

. . .

. . .

v

a1k−1

a1
1

a2
1
=

a1
i

a2
i

(c) The layout in case (ii).

Figure 14: Illustration of the proof of Lemma 15. The gray disks indicate that the
contained vertices are placed at the same position, the center of the disk.

Lemma 15. Let c(Sk) be the core of a plane pseudo-double wheel with an area assign-409

ment A. Let q be a quadrangle of area ΣA containing the diagonal AB and whose410

corners are identified with the vertices A,w,B, v. Then, c(Sk) has a A-realizing411

drawing within q.412

Proof. We distinguish two cases. We call the faces of c(Sk) incident to w the bottom413

faces and the faces incident to v the top faces of c(Sk). For simplicity, we denote the414

vertices v2 and v2k by A and B, respectively, and the face areas by ai for the top and by415

bi for the bottom faces. Consider also Figure 14(a).416

Case (i): If
∑
i bi > area(4AwB), we position the even vertices on the segment AB417

as illustrated in Figure 14(b). Note that adding the edges of consecutive even vertices418

and Av and Bv (and deleting w) results in a tent graph. We partition the face area419

bi of each bottom face into b1i and b2i such that the ratio b1i/b2i coincides for all i and420 ∑
i b
2
i = area(4AwB). By Lemma 11, the tent graph has a realizing drawing within421

the triangle vAB. Due to the same ratio, the vertex placement on AB also realizes the422

area for triangles incident to w. Figure 14(b) visualizes the realizing drawing of c(Sk).423
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Case (ii): If
∑
i ai > area(4vAB), we position the odd vertices on the segment AB as424

illustrated in Figure 14(c). Note that the graph in the bottom triangle is a tent graph.425

Therefore, we partition the area ai of a top faces into a1i and a2i such that the ratio426

a1i/a2i coincides for all i and
∑
i a
1
i = area(4vAB). As in case (i), we use Lemma 11 to427

find a realizing drawing of the tent graph. Figure 14(c) visualizes the realizing drawing428

of c(Sk).429

This lemma helps us to settle three out of four cases of Theorem 13.430

Proof of Theorem 13. For an area assignment A of Sk, we consider an arbitrary but431

fixed quadrangle q of area ΣA whose corners are identified with v1v2wv2k. We distinguish432

two cases depending on the shape of q. Note that q can be triangulated by the segment433

v2v2k or v1w (or both).434

In case 1, the segment v2v2k lies inside q. We distinguish two subcases based on435

the assigned areas a and b of the faces incident to v1 relative to the area of the trian-436

gle v1v2v2k.437

Case 1(i): a+b � area(v1v2v2k). We can position v such that the triangles v1v2v and438

v1vv2k realize a and b, respectively. The remaining graph corresponds to the core Sk439

which we realize in the quadrangle vv2wv2k containing the segment v2v2k by applying440

Lemma 15. Figure 15(a) visualizes the resulting layout.441

v1

v2k

v

w

v2

v3 v2k−1
a b

(a) Case 1(i)

v1

v

w

v3
v2k−1

a b

v2kv2

(b) Case 1(ii)

Figure 15: Illustration of case 1 in the proof of Theorem 13 in which the segment v2v2k is
contained in q. In case 1(i) the face areas incident to v1 are small; in case 1(ii)
the face areas incident to v1 are big. Both cases reduce to Lemma 15.

Case 1(ii): a + b > area(v1v2v2k). We position v on the segment v2v2k such that v3442

and v2k−1 are forced to be on a line parallel to the segment v2v2k, i.e., v partitions v2v2k443

according to the ratio of a and b. The positions of v3 and v2k−1 on the line are such that444

the areas of the triangles v2wv3 and v2k−1wv2k realize b1 and bk. The graph induced445

by the vertices in the interior of vv3wv2k−1 is the core of a smaller pseudo-double wheel446

and contains the diagonal v3, v2k−1. Consequently, Lemma 15 yields a realizing drawing,447

see Figure 15(b).448

In case 2, the segment v1w lies inside q. We call the faces incident to v2 the left faces449

and the faces incident to v2k the right faces. We say the left (right) faces are small if450
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their assigned area is at most the area of the triangle v1, v2, w (v1, w, v2k). Otherwise,451

we call the left (right) faces big. Note that the left or right faces must be small. By452

symmetry, we assume without loss of generality, that the left faces are small. Then we453

can realize the left faces by triangular faces, by positioning v3 accordingly.454

v3

w

a

c d

b

x4 x6 x8

x5 x7

v2kv2

w

v
v1

(a) Case 2(i)

d

a

c

b

v

v2k−1
v3 v2kv2

w

v1

(b) Case 2(ii)

Figure 16: Illustration of case 2 in the proof of Theorem 13, in which the segment v1w
is contained in q. In case 2(i), the left and right faces are small; in case 2(ii),
the left faces are small and the right faces are big.

Case 2(i): the right faces are small as well; this case is illustrated in Figure 16(a).455

We reduce this case to subgraphs of two stacked triangulations. To do so, we contract456

the edge vv1 and realize the right faces by triangular faces with corner v2k−1. Denote457

the areas of the inner faces by xi as illustrated in Figure 16(a). There exists an i with458

4 � i � 2k− 1 such that459

a+ c+
i−1∑
j=4

xj � area(4v1v2w) and
2k−1∑
j=i+1

xj + b+ d � area(4v1wv2k).460

The exact layout depends on whether xi is the area of a top or bottom face of the core.461

If it is a top face, then its unique vertex with odd index is placed at w. If xi belongs462

to a bottom face, then the unique vertex with even index is placed at v. Afterwards we463

insert the remaining vertices. For j < i, we iteratively insert vj such that it realizes the464

face area xj by triangular face with a flat angle at vj+1 from left to right. For j > i, we465

follow the same strategy but in decreasing order.466

Case 2(ii): the right faces are big. Figure 16(b) depicts this case. Recall that v3 has467

been fixed already. Place v2k−1 on v1w such that the area of the quadrangle v1v3v2k−1v2k468

exceeds b but is not enough to also realize all top faces of the core, i.e., the striped faces469

incident to v in Figure 16(b). The remaining graph can be handled by Lemma 15: To do470

so, we choose vv3wv2k−1 as the outer face and insert an artificial vertex on wv2k−1.471
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5 Quadrangulations and Convexity472

A drawing of a planar graph is convex if each face is bounded by the boundary of a473

convex polygon. Convexity is a visually appealing property of drawings of planar graphs474

which has therefore been studied extensively in graph drawing. For example, Tutte’s475

spring embeddings [20] guarantee convex drawings for every 3-connected planar graph.476

In this section, we aim for convex realizing drawings, i.e., given an area assignment A of477

a quadrangulation Q, we want to find an A-realizing drawing of Q which is also convex.478

A planar graph is convex area-universal if for every area assignment there exists a479

convex realizing drawing. Although convex area-universality seems to be a very strong480

property, there are examples of convex area-universal graphs, such as the cube graph.481

Proposition 16 ([12]). The cube graph is convex area-universal.482

Indeed, this result can be generalized in two directions. First, the cube graph is483

convex area-universal for every convex outer face. Second, this holds not only for the484

cube graph but also for all pseudo-double wheels. We say a graph is strongly convex485

area-universal if for every area assignment A and every convex drawing of the outer486

face with total area ΣA, there exists a realizing drawing.487

Theorem 17. The pseudo-double wheel Sk, k � 3, is strongly convex area-universal.488

With Theorem 13 we have shown that pseudo-double wheels are area-universal the489

proof made ample use of Lemma 15. Since drawings obtained by using this lemma may490

contain non-convex faces we need an independent proof for Theorem 17.491

Proof. Let A be a given area assignment of Sk. We denote the areas assigned to the inner492

faces adjacent to the outer edges by a, b, c, d and the remaining areas by x4, x5, . . . , x2k−1493

where x2k−1 = c as depicted in Figure 17(a).494
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v2k
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v4 v6v3 v5 v7 . . .v8
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b c

d
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v8

v7

v6

v5
v9

v1

v2k

w
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(b) Case 1

v
v3

v9

v8
v6

v4

v7v5

v1

v2k

w

v2

(c) Case 2

Figure 17: Illustration of convex realizing drawings of Theorem 17. (a) shows a pseudo-
double wheel with a given area assignment. (b) and (c) illustrate the realizing
drawings in case 1 and case 2 of the proof, respectively.

Let q be a convex quadrangle of area ΣA with corners A,B,C,D which are identified495

with the outer vertices v1, v2, w, v2k of Sk, respectively. Considering the diagonal AC,496
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shows that at least one of the two following inequalities hold: a+ b � area(4ABC) or497

c + d � area(4ACD). By symmetry, we may assume that the first inequality holds.498

Hence, we may place v3 in the triangle ABC such that the areas a and b are realized499

by the triangular faces ABv3 and BCv3 where v and v4 are placed on Av3 and Cv3,500

respectively. Now we distinguish two cases.501

Case 1: d � area(4Av3D). By placing v on the segment Av3 we realize area d by502

a triangular face. Split the quadrangle vv3CD into two parts by the diagonal vC and503

determine i 2 [4, 2k− 1] such that504

i−1∑
j=4

xj � area(4v3Cv) and
2k−1∑
j=i+1

xj � area(4vCD).505

For all j < i, we realize the area xj by a triangle, (namely uvj−1vj for u = v if j is even506

and u = w if j is odd), by placing vj accordingly. Likewise for all j > i, we realize the507

area xj by a triangle, (namely uvjvj+1 for u = v if j is even and u = w if j is odd), by508

placing vj accordingly. Finally, by placing vi at v if i is odd and at w if i is even we509

the area xi with the convex quadrangle vvi−1wvi+1. Figure 17(b) visualizes the resulting510

drawing.511

Case 2: d > area(4Av3D). In this case we place v at v3 and v4 at w. We place v2k−1512

such that the area c and d are realized. In decreasing order, we place vi such that xi is513

realized by the triangle uvivi+1 with u = v if i is even and u = w if i is odd. This yields514

a realizing drawing within every convex outer face, see Figure 17(c).515

5.1 Not all Quadrangulations are Convex Area-Universal516

Plane drawings of K2,n have non-convex faces when n � 4. Tutte’s spring embedding [20]517

theorem, however, warrants that 3-connected quadrangulations have convex drawings.518

In [12], it was asked whether all 3-connected quadrangulations are convex area-universal.519

Here we answer this question in the negative.520

Theorem 18. There is a 3-connected quadrangulation that is not convex area-universal.521

Proof. We show that the 3-connected quadrangulation Q, depicted in Figure 18(b),522

has an area assignment which does not allow for a convex drawing in any (even non-523

convex) outer face. The construction is based on a non-realizable area assignment A524

of the octahedron graph G [14]. The area assignment is such that the white faces in525

Figure 18(a) have small area ε > 0 and the gray faces have area 1.526

Proposition 19 ([14], Theorem 1). For small enough ε > 0, the octahedron graph has527

no drawing where the white faces have area of at most ε and the gray faces have528

area of at least 1.529

We show that a convex drawing of Q induces an A-realizing drawing of G, yielding a530

contradiction. Let Q 0 be the subgraph of Q which is induced by the black vertices in531

Figure 18(b). Note that Q 0 contains a 1-subdivision of the octahedron. We call the two532

bipartition classes of Q 0 the squared and circled vertices.533
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(a) The octahedron graph G. There exists
no drawing of G in which each white face
has area 0 and each gray face has area 1.

(b) The quadrangulation Q and its black
subgraph Q 0. There exists no con-
vex drawing of Q in which each white
face has area 0 and each gray face has
area 1/3.

Figure 18: Illustration of Theorem 18 and its proof.

Lemma 20. For small enough ε > 0, Q 0 has no drawing where the white faces have534

area ε, the gray faces have area 1, and each segment between two squared vertices535

is contained in some white face.536

Proof of Lemma 20. Suppose, Q 0 has such a drawing D. Because each segment be-537

tween two squared vertices is contained in some white face, these segments together538

with the squared vertices form a straight-line drawing D 0 of G where the white faces539

have area at most ε and the gray faces have area of at least 1. The red dotted graph in540

Figure 18(b) illustrates D 0. This contradicts Proposition 19.541

Suppose, by contradiction that for every ε > 0, Q has a convex drawing in which each542

white face has area ε/3 and each gray face area 1/3. However, the induced drawing of Q 0
543

yields a counter example to Lemma 20. A contradiction. Consequently, Q is not convex544

area-universal.545

Remark. Since we did not use the shape of the outer face in the proof of Theorem 18, the546

quadrangulation Q does not even have an A-realizing drawing where we only require547

that each inner face is convex.548

Remark. The construction of Q in the proof of Theorem 18 is based on the octahedron549

graph and Proposition 19. More generally, a white/gray-coloring of any Eulerian trian-550

gulation yields non-realizable area assignment [14]. This fact allows the construction of551

a large family of quadrangulations that are not convex area-universal.552
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6 Small Quadrangulations553

In this section we show that our methods are strong enough to prove area-universality for554

quadrangulations with up to 13 vertices via reductions to know area-universal graphs.555

Theorem 21. Every quadrangulation on at most 13 vertices is area-universal.556

Proof. First, it follows from Lemma 2 and Proposition 3 that a minimal non-area-557

universal quadrangulation has minimum degree 3. Thus, the smallest quadrangulation558

of interest is the cube graph on eight vertices. Figure 19 displays all quadrangulations on559

up to 13 vertices with minimum degree 3. We denote them by Q1, . . . , Q9 as illustrated.560

n = 13

n = 8 n = 10 n = 11

n = 12

Q1 Q2

Q4

Q3

Q5 Q6

Q7 Q8 Q9

Figure 19: The planar quadrangulations on up to 13 vertices with min-degree 3. A single
(double) checkmark indicates (strong) area-universality for all embeddings.
The red edges form auxiliary area-universal triangulations.

Since all embeddings of a pseudo-double wheel Sk are equivalent, Theorem 17 proves561

the (strong) area-universality of pseudo-double wheels. Specifically, this shows the562
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(strong) area-universality of Q1 = S3, Q2 = S4 and Q4 = S5. Moreover, Q5 is a stacked563

cube graph and Q9 is obtained from the cube by first adding a subdivided diagonal to a564

face and then stacking a cube graph in one of the two new faces. Since the cube graph565

is the double wheel S3, both quadrangulations are area-universal by Corollary 14.566

We reduce all remaining quadrangulations to area-universal triangulations. The quad-567

rangulation Q3 on 11 vertices is a subgraph of a stacked triangulation T , for which every568

embedding of T is area-universal. In Figure 19, the vertices and edges of the stacked569

triangulation are highlighted in red.570

The three remaining quadrangulations are subgraphs of an area-universal graph family571

which was shown to be area-universal by Kleist [13].572

Theorem ([13], Theorem 3). Any (embedding of a) double stacking graph H`,k is area-573

universal if and only if ` � k is even.574

More precisely, Q6, Q7, Q8 are subgraphs of an area-universal double stacking graph575

with some additional vertices of degree 3 stacked into triangular faces. Thus, their576

area-universality follows from Observation 1 and the above theorem. In Figure 19 the577

vertices which remain after iterative removal of degree-3 vertices are highlighted in red.578

The quadrangulation Q6 on twelve vertices reduces to the double stacking graph H2,2;579

the quadrangulations Q7 and Q8 on thirteen vertices reduce to the double stacking580

graph H2,1. The vertices in the interior of red dotted curves in Figure 19 are added by581

diamond additions on the respective edge.582

7 Conclusions and Future Work583

In this paper we develop several useful tools for the study of area-universality. With the584

help of these tools we provide a very simple proof that grid graphs are area-universal.585

We also prove that all quadrangulations with at most 13 vertices are area-universal. The586

natural question, whether all quadrangulations are area-universal remains an interesting587

open problem.588
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