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2We proeed to a systemati study of these properties and report a number ofpositive and negative results, as well as a few still open questions whih resistedour methods. Our most striking result, desribed in Setion 3, is the existeneof two Hamilton path and yle deompositions for spherial arrangements,obtained via a short and easy to desribe onstrution based on wiring diagrams.Finding Hamilton paths and yles in graphs is an NP-hard problem, evenfor planar graphs, and even for arrangement graphs of Jordan urves (see [13℄).It is known that 4-onneted planar graphs always have a Hamilton yle (Tutte[23℄, see also [22℄ and [19℄). The same property holds for 4-onneted projetive-planar graphs (Thomas and Yu [21℄). It is therefore interesting to see if theHamilton yles ould be expliitly onstruted for partiular lasses of graphs.We have suh a simple onstrution for spherial arrangements and odd proje-tive arrangements.Two Hamilton path (2HP) and yle (2HC) deompositions for 4-regulargraphs have been studied in the graph theory ommunity. It is known, forexample, that under ertain onditions, the number of suh deompositions iseven [4℄. Also, Hamiltonian deompositions are known to exist in 4-regularCayley graphs [1℄. Our pseudo-irle and separating-irle arrangement graphsprovide new examples.Coloring verties of planar graphs with few (3 or 4) olors is known ei-ther via the Four Color Theorem, or for partiular lasses of planar graphs(suh as 3-olorability of outerplanar graphs and triangle-free planar graphs).4-edge olorability of 4-regular planar graphs arising from arrangements of pla-nar urves is known only for speial ases. There are some graph theoretialonjetures (see Jaeger and Shank[15℄) about 4-edge olorings of ertain irlearrangements: a simple proof of them would imply a simple proof for the FourColor Theorem (see also Jensen and Toft [16℄, page 45). Although our 4-edgeoloring result for spherial arrangement graphs does not seem to lead in thediretion of Jaeger and Shank's onjeture, some ideas might prove relevant.The paper is organized as follows. In setion 2 we present the de�nitions,preliminaries and basi results on onnetivity, oloring and Hamiltoniity per-taining to our three geometri models: projetive, Eulidean and spherial. Insetion 3 we present the wiring diagram tehnique for onstruting Hamiltonpath and yle deompositions for spherial arrangements and partial results inthe projetive setting. Open problems and onjetures follow the natural owof the paper.2 Arrangement Graphs: PreliminariesThe general objets of our study are arrangement graphs arising from �nite setsof urves obeying spei� intersetion rules and whih live in the Eulidean orprojetive plane or on the 2-dimensional sphere. In this setion we introduethree lasses of arrangements and their orresponding arrangement graphs. Weillustrate the de�nitions by examples and provide proofs of some elementarystrutural properties onerning onnetivity and oloring.



32.1 Projetive linesArrangements of straight lines are among the most basi objets one may studyin the real projetive plane P. Aordingly they have been and still are studiedunder a vast variety of aspets. See the overviews by Gr�unbaum [12℄ and Erd}osand Purdy [7℄ for further pointers to the �eld. Many ombinatorial propertiesof arrangements of lines do not depend on the fat that the lines are straight,but rather on the nature of their inidene properties. This leads to the naturalgeneralization, �rst done by Levi [18℄, to arrangements of pseudolines. See [10℄for a omprehensive survey.An arrangement of pseudolines in the projetive planeP is a family of simplelosed urves (alled pseudolines) suh that every two urves have exatly onepoint in ommon, where they ross. If no point belongs to more than two ofthe (pseudo)lines the arrangement is alled simple, otherwise it is non-simple.Pseudoline arrangements provide generi models for the (purely ombina-torial) oriented matroids of rank 3 (see [2℄). In this paper we will work onlywith this model. A few simplifying assumptions: We will work only with simplearrangements. We also simplify the terminology by dropping the pseudo pre�xfrom pseudoline: all the results of this paper hold in this more general ontext,and straightness of lines is no issue.With an arrangement we assoiate the ell omplex of verties, edges and2-dimensional regions into whih the lines of the arrangement deompose theunderlying spae P. Arrangements are isomorphi provided their ell omplexesare isomorphi. A projetive arrangement graph is the graph of verties andedges of an arrangement of pseudolines. See Figure 1 for an example.
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Figure 1: A projetive arrangement of pseudolines and its graph.Let G be the graph of a simple projetive arrangement of n � 4 lines. Thefollowing list ollets some basi fats about G:� G is 4-regular.� G has �n2� verties and n(n� 1) edges.� G is planar only for n = 4 but always projetive-planar.



4A less trivial result is given in the next proposition.Proposition 1 The graph of a simple projetive arrangement of n � 4 lines is4-onneted.Proof. Let G be suh a graph and u; v any two verties of G. To show 4-onnetedness we will exhibit four internally disjoint paths onneting u andv in G. In the arrangement A de�ning G let p1; p2 be the lines through uand let q1; q2 be the lines through v. If B = fp1; p2; q1; q2g ontains only threelines augment B by an arbitrary fourth line. Now onsider the graph H of thearrangement of the four lines in B. Note� The verties of H are also verties of G and u and v are verties of H.� To an edge e of H onneting verties w and w0 there is a path onnetingw and w0 in G suh that all edges of this path are supported by the linesupporting e. Call this the anonial path of e.� The anonial paths orresponding to the edges of H are pairwise inter-nally disjoint, i.e., they an only meet at endpoints.From these observations it follows that four disjoint paths between u and v inH an be lifted to disjoint paths in G by replaing edges by their anonialpaths. Fortunately there is only one projetive arrangement of four lines andhene only one projetive arrangement graph H with six verties. This graphis the skeleton graph of the otahedron. By the high regularity of this graphthere are only two ases to onsider, see Figure 2.
Figure 2: Four path between two verties of H: adjaent verties, non-adjaentverties.Partiularly nie pitures of arrangements of pseudolines and of their graphsare given by the wiring diagrams introdued in Goodman [9℄ (see also [11, 8℄and Figure 3). In this representation the n urves are restrited to n wireswith di�erent y-oordinates, exept for some loal swithes where adjaent linesross. These swithes are the verties of the graph. The half-edges extendingto the left and right of the piture have to be identi�ed in reverse order, asthe numbers indiate in Figure 3. Sometimes a further simpli�ation is madein drawings of wiring diagrams and the swithes are only indiated by vertialsegments, as in Figure 4.



5
1234
512345Figure 3: Wiring diagram of an arrangement of 5 pseudolines.The yli arrangement of n lines is the arrangement where line i has therossings with the other lines in the order 1; 2; : : : ; i � 1; i + 1; : : : ; n. Thevee-shape wiring diagram of the yli arrangement is the diagram where therossings form a triangle of briks (see Figure 4).12345678Figure 4: Wiring diagram of the yli arrangement of 8 lines.We lose this introdutory setion on projetive arrangement graphs withsome remarks on olorings.By Vizing's theorem the edge hromati number of a projetive arrangementgraph is either 4 or 5. If it is 4 every olor lass has to onsist of n(n � 1)=4edges. This is only possible if n � 0; 1 (mod 4).Conjeture 1 The neessary ondition n � 0; 1 (mod 4) is suÆient for thefour edge olorability of projetive arrangement graphs.With respet to the hromati number we observe the following:� �(G) � 3 for every projetive arrangement graph G. This is beauseG always ontains a triangle (atually it ontains at least n triangles,Levi[18℄).� The graph of the yli arrangement of 5 lines has � = 4. We also havefound an arrangement of 6 lines with � = 4.� The graph of the yli arrangement has � = 3 for every n > 5. To seethis for n � 0 (mod 3) olor all verties (swithes) in eah olumn of thevee-shape wiring diagram with the same olor, start with 1 and repeatusing 1,2,3 in yli order.For n � 1 (mod 3) do as in the previous ase but reolor the right leg ofthe vee-shape as 32 312 312 : : : 312 1. If n � 2 (mod 6) olor olumnsin order 123 123 : : : 123 12132 123 : : : 123 12. Finally, if n � 5 (mod 6)olor olumns in order 123 : : : 123 1323 123 : : : 123 121321, and reolor theright leg of the vee as 32 123 : : : 123 21. (In the last two ases the digit inboldfae orresponds to the olumn ontaining the apex of the vee.)



6An upper bound of 4 for the hromati number of every arrangement graphis straightforward beause of the degree: just use Brooks' theorem (see [3℄).Results about Eulidean arrangement graphs will allow us to �nd a 4-oloringvery eÆiently.Theorem 2 The hromati number of projetive arrangement graphs is at mostfour. A 4-oloring an be eÆiently found by a simple linear (in the number ofverties) time algorithm.2.2 Eulidean linesGiven an arrangement fp0; p1; : : : ; png of n + 1 lines in the projetive planewe may speify a line p0 as the \line at in�nity". This indues the Eulideanarrangement of the n lines fp1; : : : ; png in E = P n p0.The graph of an Eulidean arrangement is the graph of the bounded edgesof the arrangement. A nie thing about Eulidean arrangement graphs is thatthey ome with a natural planar embedding. The parameters of the graph Gof a simple Eulidean arrangement of n � 4 lines are as follows:� G has minimum degree 2 and maximum degree 4.� G has �n2� verties.� G has n(n� 2) edges.� G is 2-onneted.As in the ase of projetive arrangement graphs the wiring diagram is a usefulform of representing Eulidean arrangement graphs. To illustrate the power ofthis tool we give two examples onerning olorings.Proposition 3 The edge-hromati number of an Eulidean arrangement graphis four.Proof. Consider a wiring diagram W of the arrangement de�ning G. Notethat an edge e of G is assigned to a single wire, let w(e) be the number ofthis wire ounted from top to bottom. Color the edges on eah odd numberedwire alternating with olors 1 and 2 and the edges on even numbered wiresalternating with olors 3 and 4. The oloring thus obtained is a legal edgeoloring of G.Proposition 4 The hromati number of an Eulidean arrangement graph Gis three.Proof. Consider a wiring diagram W of the arrangement de�ning G and let theleft-to-right orientation of W indue an orientation on the edges of G. Note thefollowing fats about this oriented graph �!G :� �!G is ayli.� The indegree and the outdegree of verties of �!G are at most 2.



7A 3-oloring of G is obtained by oloring the verties in the order given by atopologial sorting of �!G . When it omes to olor v at most two neighbours (thein-neighbours) of v have been olored. Hene, one of the three available olorsan legally be assigned to v.The two oloring results are exempli�ed in Figure 5. The vertex oloringwas obtained by oloring from left to right and assigning olors in order ofpreferene 1-2-3. 1
1

1 121 33 42 1 22 3 21
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Figure 5: An Eulidean arrangement graph with 3-vertex oloring and 4-edgeoloring.Proof [Theorem 2℄. Let fp0; p1; : : : ; png be a projetive arrangement and G itsgraph. Delare p0 the line at in�nity and onsider the Eulidean arrangementfp1; : : : ; png with graph G0. Note that G0 is an indued subgraph of G. Theverties of G whih are not in G0 form an n-yle C = (v1; v2; : : : ; vn) (the edgesof G supported by p0) and every vertex of C has exatly two neighbours in G0.Fix a oloring of G0 with olors f1; 2; 3g (see Proposition 4) and for every vertexvi 2 C hoose a olor i 2 f1; 2; 3g whih has not been used for a neighbour ofvi in G0.If n is even we omplete a 4-oloring of G by oloring the verties of C ofeven index i with olor i and those of odd index with a new olor 4.If n is odd and it is possible to hoose the i suh that there is an i withi 6= i+1, w.l.o.g. i = 1, then we omplete the 4-oloring of G by oloring v1with 1 and the other verties of odd index with olor 4 and those of even indexi with i.In the remaining ase the two neighbours of all verties of C in G0 use thesame two olors, say 1 and 2, so that i = 3 for all i. In this situation we hoosea vertex x in G0 whih has two neighbours on C (this is possible sine thereexist triangles with a side on p0, see [18℄). W.l.o.g. we may assume that theseare the verties v1 and v2. Reolor x with olor 4 and hange 1 to the old olorof x. This brings us bak to the previous ase and ompletes the proof.2.3 Cirles on the sphereArrangements of pseudoirles on the sphere S onsist of a family f1; : : : ; ngof simple losed urves (alled irles) suh that� every two irles have exatly two points in ommon at whih they ross



8� for three di�erent indies i; j; k 2 f1; : : : ; ng irle k separates the twointersetions of i and j .The motivating examples for arrangements of irles are arrangements of greatirles on the sphere. In this ase S is a sphere entered at the origin and theirles are the interetions of planes ontaining the origin with S. In Figure 6suh an arrangement of four irles on the sphere is shown1.

Figure 6: An arrangement of four irles on the sphere.If we identify points on the frontside of the sphere with their antipodalounterparts on the bakside we obtain a projetive arrangement of n lines. Ifwe remove the horizon-irle we obtain two isomorphi Eulidean arrangements.Let G be the graph of a simple irle arrangement of n � 3 irles. Wesummarize some elementary fats about G:� G is 4-regular.� G has n(n� 1) verties and 2n(n� 1) edges.� G is planar.In Figure 7 we show planar embeddings of the unique simple irle arrangementgraphs of tree, four and �ve irles. In eah ase one of the irles is bold-dashed,the other irles an be obtained by rotations.The onnetivity of irle arrangement graphs is as high as the degree allows:Proposition 5 The graph of a simple irle arrangement of n � 3 irles is4-onneted.Proof. Given the graph G of a simple irle arrangement and two vertiesu; v of G we exhibit four internally disjoint paths onneting u and v. LetB = f1; 2; 3; 4g be the irles de�ning the two verties. We distingusishthree ases depending on the size of B. If jBj = 2, i.e., if the two verties are1Thanks to Cinderella [20℄ for this piture.



9
Figure 7: Cirle arrangement graphs of tree, four and �ve irles.antipodal the four paths are given by the four ars onneting u and v alongthe two yles. If jBj = 3 the three yles indue the �rst graph of Figure 7and the two verties are adjaent in this graph. Sine the graph is isomorphito the graph of Figure 2 we an refer to that �gure whih shows the four paths.In the last ase jBj = 4 the two verties are the nonadjaent verties of aqudrilateral fae of the indued graph of the four irles (this is the seondgraph of Figure 7). Its symmetry allows us to assume that the quadrilateral isthe entral one of the drawing, in whih ase the four paths an be hoosen asshown in Figure 8.

Figure 8: Four onneting paths for the white verties.Wiring diagrams are again a useful representation for this lass of arrange-ments. This is how the wiring diagram of an arrangement of n great irlesan be obtained: Imagine the sphere to be a globe with the great irles drawnonto it. Now observe the shadow of the frame while the sphere moves on a fullrotation around its axis. Label the irles suh that in the initial position theyour in the order 1; 2; : : : ; n and start drawing them on n wires. When theframe passes a rossing the two irles involved in it hange their order and inthe wiring diagram a swith has to be drawn. After a half rotation every twoirles have interhanged their order. Hene all irles are in reversed ordern; : : : ; 2; 1. The seond half of the rotation is an upside down opy of the �rsthalf. After the full rotation the frame reahes its initial position. Figure 9 showsthe wiring diagram of a irle arrangement with the two halfs emphasized. Toread the graph of a irle arrangement from the wiring diagram the half-edgesextending to the left and right have to be identi�ed in the same order as thenumbers indiate in Figure 9.The proess desribed above for the onstrution of the wiring diagram isknown as sweeping an arrangement. With some are in tehnial details it



10
4321 43212341Figure 9: Two opies of the wiring diagram of a projetive arrangement gluedtogether, the seond opy taken upside down, give a wiring diagram of a irlearrangement.an be shown that arrangements of pseudoirles on the sphere are sweepableand also admit wiring diagrams whih deompose into two halfs, one being themirror image of the other (see [8℄ for related results). The diagram shown inFigure 9 has the additional property that from left to right the �rst rossing ofevery irle i, i 6= 1, is the rossing with irle 1. Every irle arrangementhas a wiring diagram with this property, whih we all the one-down property.To transform an arbitrary diagram into one with the one-down property, moveall the swithes whih blok the visibility of irle 1 from the left to the rightside.Using a diagram with the one-down property we will show in Setion 3that the edge set of a irle arrangement graph an be deomposed into twoHamiltonian yles. Sine eah Hamiltonian yle has n(n� 1) edges, an evennumber, we may alternatingly use olors 1 and 2 for the edges of one of theHamiltonian yles and olors 3 and 4 for the eges of the other Hamiltonianyle. This proves the following proposition as a orollary.Proposition 6 Cirle arrangement graphs are four edge olorable.Conerning vertex olorings, we have a onjeture and an eÆient proedurefor 4-oloring. The existene of suh a oloring is implied by Brooks' theorem,but our proedure is muh simpler.Conjeture 2 Cirle arrangement graphs are 3-vertex olorable.We have veri�ed this onjeture for all yli arrangements of irles. Theseare the arrangements obtained from Figure 4 by gluing a mirror image of theorresponding wiring diagram.Proposition 7 Cirle arrangement graphs are four vertex olorable.Proof. Let f0; 1; : : : ; ng be a irle arrangement andG its graph. Delare 0 tobe the equator and onsider the Eulidean arrangements on the two hemispheresof Sn0. Let G0 and G00 be the graphs of these arrangements. The verties of Gwhih are not in G0 or G00 form an 2n-yle C = (v1; v2; : : : ; v2n) (the edges ofG supported by 0) and every vertex of C has exatly one neighbour in G0 andone in G00. Fix olorings of G0 and G00 with olors f1; 2; 3g (see Proposition 4)and for every vertex vi 2 C hoose a olor i 2 f1; 2; 3g whih has not beenused for a neighbour of vi in G0 [G00.



11Sine n is even we omplete a 4-oloring of G by oloring the verties ofeven index i on the yle C with olor i and those of odd index with a newolor 4.There are several generalizations of irle arrangements. We mention twoof them.� Separating irle arrangements onsist of a family f1; : : : ; ng of simplelosed urves in the plane or on the sphere (alled irles) suh that: (1)Every two irles ross exatly twie, and (2) For any two di�erent indiesi; j 2 f2; : : : ; ng irle 1 separates the two intersetions of i and j .� Digon-free irle arrangements onsist of a family f1; : : : ; ng of simplelosed urves in the plane or on the sphere (alled irles) suh that: (1)Every two irles ross exatly twie, and (2) The arrangement ontainsno ell with only two edges and two verties (digon).All the results we have for irle arrangement graphs still hold for the lassof separating irle arrangement graphs. Digon-free irle arrangements havebeen studied by Gr�unbaum [12℄. They are muh more general and have lessfavourable properties. E.g., in Figure 10 a digon-free arrangement is shownwhose graph is only 3-onneted. The unrestrited lass of all 2-intersetingsystems of losed urves has the disadvantage that the resulting graphs mayhave double edges.

Figure 10: A digon-free arrangement with a utset of size three.3 Hamilton Paths and Cyles in Arrangement GraphsIn this setion we study Hamiltoniity properties of spherial and projetivearrangements. The Eulidean ase has been settled in [5℄ with a negative answer(there are non-Hamiltonian Eulidean line arrangement graphs).As shown in the previous setion, both the pseudo-irle and the proje-tive arrangements are 4-onneted. A well-known theorem of Tutte [23℄ on4-onneted planar graphs guarantees a Hamilton yle. An even stronger re-sult follows from Thomassen's [22℄ strengthening of Tutte's theorem: every



124-onneted planar graph is Hamilton onneted (there exists a Hamilton pathonneting any two presribed verties).Theorem 8 Every spherial arrangement graphs has a Hamilton yle and isHamilton onneted.Thomas and Yu's theorem on 4-onneted projetive-planar graphs [21℄ im-plies a similar result for projetive arrangements.Theorem 9 Every projetive arrangement graph is Hamiltonian.We now proeed to strengthen these results with expliit onstrutions. Forspherial arrangements, we �nd not just one, but two suh Hamilton paths andyles, whih, moreover, yield a deomposition of the edges of the graph.3.1 Pseudo-irle and Separating Cirle arrangementsTheorem 10 Every pseudo-irle arrangement and separating irle arrange-ment an be deomposed into two edge-disjoint Hamilton paths (plus two extraedges), and the deomposition an be found eÆiently.Proof. The onstrution is based on the representation of these arrangementsas wiring diagrams. As shown in the previous setion, we an assume thatthe wiring diagram representation has the one-down property, as in Figure 9.The onstrution of the two Hamilton paths, bold and thin, is desribed inFigure 11 for 6 wires, but it an be easily generalized to any number of wiresby repeating the pattern of olors going up along the swithes on line 1. The�gure needs some explanations, as it looks inomplete: we did not draw allthe swithes orresponding to the verties of the arrangement. We did this todraw the attention to the struture of the onstrution and avoid lutteringthe piture. A ontinuously olored line along a wire of the wiring diagramdenotes a path in the arrangement graph, whose edges are olored in that olorand whih goes along the edges inident with that wire and touhes all vertiesonneted to them. Remember that the one-down property, and the hoieof the wiring diagram drawing, insured that there are no swithes left of theone-down swithes.The pitured illustrates a key element of the onstrution: the one-downproperty. the bold, resp. thin Hamilton paths walk along the edges of a level(wire) (visiting all verties adjaent to it) then go down by two levels at theswithes (verties) orresponding to pseudo-irle 1 (the one going one-down).The ruial observation is that the bold (resp. thin) path never touhes thesame vertex twie, and visits them all, therefore guaranteeing Hamiltoniity.The orretness of the onstrution follows from the following easy to establishproperties.� Eah swith, exept the one involving pseudo-irle 1, is touhed by thebold path on an odd-numbered wire and by a thin path on an even-numbered wire.



13� Eah edge (with the two exeptions left unolored (dashed)) is oloredeither bold or thin.� All bold edges are onneted in a path, and so are the thin edges.� A path in one olor never visits the same vertex twie, and overs all theswithes (verties).
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Figure 11: Two Hamilton paths in a pseudo-irle arrangement.Sine the spherial and projetive graphs are 4-regular graphs, removinga Hamilton yle (guaranteed by Theorem 8) leaves a 2-regular graph. It isa remarkable feature of the pseudo-irle arrangements that we an in fatpartition the edges of the graph into two Hamilton yles.Theorem 11 Every pseudo-irle arrangement an be deomposed into twoedge-disjoint Hamilton yles, and the deomposition an be found eÆiently.Proof. For the proof of this theorem we onentrate on the rossings involvingirles 1 and 2 in the �rst half of the wiring diagram (.f. Figure 9). Weagain assume the one-down property. Now let x1; x2; : : : ; xn�1; x1; : : : be thesequene of swithes involving line 2, learly x1 = 1. Line 2 is going down ateah of the rossings with x2; : : : ; xn�1 and is going down again at the seondrossing with line 1 (this is the �rst swith of the seond half of the diagram).Sine our �gures display the �rst n swithes of line 1 and the �rst n swithesof line 2 the setions of wire between two swithes on line 1, resp. line 2 arenot inident to any other swith. This observation is ritial to the veri�ationof the onstrution sine whenever the bold or thin yle runs on two adjaentwires one of the two sides orresponds to line 1 or 2. Figures 12 and 13 show1234567Figure 12: Two Hamilton yles in a pseudo-irle arrangement of 7 lines.
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8
1234567Figure 13: Two Hamilton paths in a pseudo-irle arrangement of 8 lines.speial instanes of the onstrution with 7 and 8 lines. ase. The �gures aregeneri for the even and the odd ase, other instanes are obtained by insertionor deletion of pairs of strand going up four levels, see Figure 14.

Figure 14: Two strands moving up four levels.Corretness of the onstrutive pattern follows from the following properties.� Eah swith is touhed by the bold path on an even-numbered wire andby a thin path on an odd-numbered wire.� Eah edge is olored either bold or thin.� All bold edges are onneted in a yle, and so are the thin edges.� The path of bold (resp. thin) edges never visits the same vertex twie,and overs all the swithes.As an additional feature of the onstrution, notie that the two Hamilton ylesonly ross at the two intersetion points of irles 1 and 2.Sine these arguments do not depend on how the swithes are arrangedon the wires, our argument generalizes to a wider lass of 4-regular planargraphs. Eah 4-regular planar graph an be deomposed into losed urvesrossing properly (not neessarily simple). Some of these graphs an be drawnas wiring diagrams (leveled): this is a neessary ondition. To make the previousonstrution of 2HC deomposition work, they also have to have two one-downstrands of these urves, as in Figure 12 and 13.3.2 Projetive arrangementsTheorem 12 Every projetive arrangement with an odd number of pseudo-lines an be deomposed into two edge-disjoint Hamilton paths (plus two unusededges), and the deomposition an be found eÆiently.



15Proof. The proof is based on a onstrution for whih examples with n = 7and 9 are depited in Figures 15 and 16. The onstrution uses the swithesof line 1 to allow eah path to go up. The two dashed edges are unused, theothers partition the graph into two Hamilton paths. The orretness followsfrom similar properties as desribed for pseudo-irles.1234567 123456
7

Figure 15: Two Hamilton path in a projetive arrangement of 7 lines.1
789

9823456 7
123456Figure 16: Two Hamilton path in a projetive arrangement of 9 lines.Unfortunately we have not been able to extend this general type of argumentin the ase of an even number of lines.Sine projetive arrangement graphs are also 4-regular, one ould expetagain the existene of Hamilton yli deompositions: This is not the ase.Harborth and M�oller [14℄ have found a ounterexample. However, Hamiltondeompositions do exist for yli arrangements.Proposition 13 For every n � 4, the graph of the yli projetive arrange-ment admits a deomposition into two edge-disjoint Hamilton yles.Proof. The proof is based on a onstrution whih depends on the value of nmodulo 4 and is illustrated in Figures 17{20. Note that, after a suitable shiftof some of the intersetion points, the arrangements depited in the �gures areatually the same as those de�ned in Figure 4.

Figure 17: Two Hamilton yles in yli projetive arrangements with a num-ber n of lines suh that n � 0 (mod 4).
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Figure 18: Two HC for n � 1 (mod 4).
Figure 19: Two HC for n � 2 (mod 4).4 Conlusion2-Hamilton path and yle deompositions show a high degree of struture inthe geometri arrangement graphs. We have exhibited a general tehnique foronstruting suh deompositions based on wiring diagrams. It would be inter-esting to extend this study to 1-skeletons of arrangements in higher dimensions,where some of the tools we used (wiring diagrams, sweeps) are not available.Several other diretions for further researh are open, besides the variousonjetures already desribed in the paper. It would be interesting to ountthe number of 2HP and 2HC deompositions of spherial arrangements, or toharaterize those graphs for whih our tehnique of 2HP and 2HC onstrutionworks. It might be possible to generalize these tehniques to lasses of 2k-regular graphs, inluding 1-skeletons of rank k+1 pseudo-sphere arrangements.We leave these problems open for further investigations.Finally, we'd like to add a few omments on algorithmi issues. Arrangementgraphs of irles on the sphere an be reognized eÆiently. Sine the graphsare 4-onneted they have unique embeddings, from whih we de�ne irles bygoing straight through eah vertex. The veri�ation of the inidene propertiesis straightforward. It is interesting to note that for projetive arrangementgraphs this idea would fail: there are 5-onneted projetive-planar graphswith many embeddings, see [17℄. Conerning the vertex-oloring of projetivearrangements, an interesting problem is to �nd a polynomial time algorithm fordeiding whether � is equal to 3 or 4.Referenes[1℄ J.-C. Bermond, O. Favaron and M. Maho, Hamiltonian deompositionof Cayley graphs of degree 4, J. Combin. Theory Ser. B 46 (1989), 142{153.
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