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 Noy y Ileana Streinu zAbstra
tWe study 
onne
tivity, Hamilton path and Hamilton 
y
le de
omposi-tion, 4-edge and 3-vertex 
oloring for geometri
 graphs arising from pseu-doline (aÆne or proje
tive) and pseudo
ir
le (spheri
al) arrangements.While arrangements as geometri
 obje
ts are well studied in dis
rete and
omputational geometry, their graph theoreti
al properties seem to havere
eived little attention so far. In this paper we show that they provide wellstru
tured examples of families of planar and proje
tive-planar graphs withvery interesting properties. Most prominently, spheri
al arrangements ad-mit de
ompositions into two Hamilton 
y
les and 4-edge 
olorings, butother 
lasses have interesting properties as well: 4-
onne
tivity, 3-vertex
oloring or Hamilton paths and 
y
les. We show a number of negative re-sults as well: there are proje
tive arrangements whi
h 
annot be 3-vertex
olored. A number of 
onje
tures and open questions a

ompany our re-sults.Keywords: line and pseudoline arrangement, 
ir
le and pseudo
ir
le ar-rangement, Hamilton path, Hamilton 
y
le, Hamilton de
omposition, 
oloring,
onne
tivity, planar graph, proje
tive-planar graph.1 Introdu
tionWe study 
onne
tivity, vertex and edge 
oloring and Hamiltoni
ity propertiesfor 
lasses of geometri
 graphs arising from �nite 
olle
tions of pseudolines (resp.pseudo-
ir
les) in the Eu
lidean and Proje
tive planes or on the sphere S. Ourobje
ts of study, known as arrangement graphs in the 
omputational or dis
retegeometry literature, are 4-regular and planar (or proje
tive-planar). They arisein 
onne
tion with many 
ombinatorial or algorithmi
 questions involving �nitesets of planar lines or (via polar-duality) points (see [6℄).�Fa
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2We pro
eed to a systemati
 study of these properties and report a number ofpositive and negative results, as well as a few still open questions whi
h resistedour methods. Our most striking result, des
ribed in Se
tion 3, is the existen
eof two Hamilton path and 
y
le de
ompositions for spheri
al arrangements,obtained via a short and easy to des
ribe 
onstru
tion based on wiring diagrams.Finding Hamilton paths and 
y
les in graphs is an NP-hard problem, evenfor planar graphs, and even for arrangement graphs of Jordan 
urves (see [13℄).It is known that 4-
onne
ted planar graphs always have a Hamilton 
y
le (Tutte[23℄, see also [22℄ and [19℄). The same property holds for 4-
onne
ted proje
tive-planar graphs (Thomas and Yu [21℄). It is therefore interesting to see if theHamilton 
y
les 
ould be expli
itly 
onstru
ted for parti
ular 
lasses of graphs.We have su
h a simple 
onstru
tion for spheri
al arrangements and odd proje
-tive arrangements.Two Hamilton path (2HP) and 
y
le (2HC) de
ompositions for 4-regulargraphs have been studied in the graph theory 
ommunity. It is known, forexample, that under 
ertain 
onditions, the number of su
h de
ompositions iseven [4℄. Also, Hamiltonian de
ompositions are known to exist in 4-regularCayley graphs [1℄. Our pseudo-
ir
le and separating-
ir
le arrangement graphsprovide new examples.Coloring verti
es of planar graphs with few (3 or 4) 
olors is known ei-ther via the Four Color Theorem, or for parti
ular 
lasses of planar graphs(su
h as 3-
olorability of outerplanar graphs and triangle-free planar graphs).4-edge 
olorability of 4-regular planar graphs arising from arrangements of pla-nar 
urves is known only for spe
ial 
ases. There are some graph theoreti
al
onje
tures (see Jaeger and Shank[15℄) about 4-edge 
olorings of 
ertain 
ir
learrangements: a simple proof of them would imply a simple proof for the FourColor Theorem (see also Jensen and Toft [16℄, page 45). Although our 4-edge
oloring result for spheri
al arrangement graphs does not seem to lead in thedire
tion of Jaeger and Shank's 
onje
ture, some ideas might prove relevant.The paper is organized as follows. In se
tion 2 we present the de�nitions,preliminaries and basi
 results on 
onne
tivity, 
oloring and Hamiltoni
ity per-taining to our three geometri
 models: proje
tive, Eu
lidean and spheri
al. Inse
tion 3 we present the wiring diagram te
hnique for 
onstru
ting Hamiltonpath and 
y
le de
ompositions for spheri
al arrangements and partial results inthe proje
tive setting. Open problems and 
onje
tures follow the natural 
owof the paper.2 Arrangement Graphs: PreliminariesThe general obje
ts of our study are arrangement graphs arising from �nite setsof 
urves obeying spe
i�
 interse
tion rules and whi
h live in the Eu
lidean orproje
tive plane or on the 2-dimensional sphere. In this se
tion we introdu
ethree 
lasses of arrangements and their 
orresponding arrangement graphs. Weillustrate the de�nitions by examples and provide proofs of some elementarystru
tural properties 
on
erning 
onne
tivity and 
oloring.



32.1 Proje
tive linesArrangements of straight lines are among the most basi
 obje
ts one may studyin the real proje
tive plane P. A

ordingly they have been and still are studiedunder a vast variety of aspe
ts. See the overviews by Gr�unbaum [12℄ and Erd}osand Purdy [7℄ for further pointers to the �eld. Many 
ombinatorial propertiesof arrangements of lines do not depend on the fa
t that the lines are straight,but rather on the nature of their in
iden
e properties. This leads to the naturalgeneralization, �rst done by Levi [18℄, to arrangements of pseudolines. See [10℄for a 
omprehensive survey.An arrangement of pseudolines in the proje
tive planeP is a family of simple
losed 
urves (
alled pseudolines) su
h that every two 
urves have exa
tly onepoint in 
ommon, where they 
ross. If no point belongs to more than two ofthe (pseudo)lines the arrangement is 
alled simple, otherwise it is non-simple.Pseudoline arrangements provide generi
 models for the (purely 
ombina-torial) oriented matroids of rank 3 (see [2℄). In this paper we will work onlywith this model. A few simplifying assumptions: We will work only with simplearrangements. We also simplify the terminology by dropping the pseudo pre�xfrom pseudoline: all the results of this paper hold in this more general 
ontext,and straightness of lines is no issue.With an arrangement we asso
iate the 
ell 
omplex of verti
es, edges and2-dimensional regions into whi
h the lines of the arrangement de
ompose theunderlying spa
e P. Arrangements are isomorphi
 provided their 
ell 
omplexesare isomorphi
. A proje
tive arrangement graph is the graph of verti
es andedges of an arrangement of pseudolines. See Figure 1 for an example.
1;4 2;32;41;54;53;53;4
2;51;2

4 2;3
1;4 1;3

1;22;52;4 3;4 3;51;5 4;5
2

53 1;3
1

Figure 1: A proje
tive arrangement of pseudolines and its graph.Let G be the graph of a simple proje
tive arrangement of n � 4 lines. Thefollowing list 
olle
ts some basi
 fa
ts about G:� G is 4-regular.� G has �n2� verti
es and n(n� 1) edges.� G is planar only for n = 4 but always proje
tive-planar.



4A less trivial result is given in the next proposition.Proposition 1 The graph of a simple proje
tive arrangement of n � 4 lines is4-
onne
ted.Proof. Let G be su
h a graph and u; v any two verti
es of G. To show 4-
onne
tedness we will exhibit four internally disjoint paths 
onne
ting u andv in G. In the arrangement A de�ning G let p1; p2 be the lines through uand let q1; q2 be the lines through v. If B = fp1; p2; q1; q2g 
ontains only threelines augment B by an arbitrary fourth line. Now 
onsider the graph H of thearrangement of the four lines in B. Note� The verti
es of H are also verti
es of G and u and v are verti
es of H.� To an edge e of H 
onne
ting verti
es w and w0 there is a path 
onne
tingw and w0 in G su
h that all edges of this path are supported by the linesupporting e. Call this the 
anoni
al path of e.� The 
anoni
al paths 
orresponding to the edges of H are pairwise inter-nally disjoint, i.e., they 
an only meet at endpoints.From these observations it follows that four disjoint paths between u and v inH 
an be lifted to disjoint paths in G by repla
ing edges by their 
anoni
alpaths. Fortunately there is only one proje
tive arrangement of four lines andhen
e only one proje
tive arrangement graph H with six verti
es. This graphis the skeleton graph of the o
tahedron. By the high regularity of this graphthere are only two 
ases to 
onsider, see Figure 2.
Figure 2: Four path between two verti
es of H: adja
ent verti
es, non-adja
entverti
es.Parti
ularly ni
e pi
tures of arrangements of pseudolines and of their graphsare given by the wiring diagrams introdu
ed in Goodman [9℄ (see also [11, 8℄and Figure 3). In this representation the n 
urves are restri
ted to n wireswith di�erent y-
oordinates, ex
ept for some lo
al swit
hes where adja
ent lines
ross. These swit
hes are the verti
es of the graph. The half-edges extendingto the left and right of the pi
ture have to be identi�ed in reverse order, asthe numbers indi
ate in Figure 3. Sometimes a further simpli�
ation is madein drawings of wiring diagrams and the swit
hes are only indi
ated by verti
alsegments, as in Figure 4.



5
1234
512345Figure 3: Wiring diagram of an arrangement of 5 pseudolines.The 
y
li
 arrangement of n lines is the arrangement where line i has the
rossings with the other lines in the order 1; 2; : : : ; i � 1; i + 1; : : : ; n. Thevee-shape wiring diagram of the 
y
li
 arrangement is the diagram where the
rossings form a triangle of bri
ks (see Figure 4).12345678Figure 4: Wiring diagram of the 
y
li
 arrangement of 8 lines.We 
lose this introdu
tory se
tion on proje
tive arrangement graphs withsome remarks on 
olorings.By Vizing's theorem the edge 
hromati
 number of a proje
tive arrangementgraph is either 4 or 5. If it is 4 every 
olor 
lass has to 
onsist of n(n � 1)=4edges. This is only possible if n � 0; 1 (mod 4).Conje
ture 1 The ne
essary 
ondition n � 0; 1 (mod 4) is suÆ
ient for thefour edge 
olorability of proje
tive arrangement graphs.With respe
t to the 
hromati
 number we observe the following:� �(G) � 3 for every proje
tive arrangement graph G. This is be
auseG always 
ontains a triangle (a
tually it 
ontains at least n triangles,Levi[18℄).� The graph of the 
y
li
 arrangement of 5 lines has � = 4. We also havefound an arrangement of 6 lines with � = 4.� The graph of the 
y
li
 arrangement has � = 3 for every n > 5. To seethis for n � 0 (mod 3) 
olor all verti
es (swit
hes) in ea
h 
olumn of thevee-shape wiring diagram with the same 
olor, start with 1 and repeatusing 1,2,3 in 
y
li
 order.For n � 1 (mod 3) do as in the previous 
ase but re
olor the right leg ofthe vee-shape as 32 312 312 : : : 312 1. If n � 2 (mod 6) 
olor 
olumnsin order 123 123 : : : 123 12132 123 : : : 123 12. Finally, if n � 5 (mod 6)
olor 
olumns in order 123 : : : 123 1323 123 : : : 123 121321, and re
olor theright leg of the vee as 32 123 : : : 123 21. (In the last two 
ases the digit inboldfa
e 
orresponds to the 
olumn 
ontaining the apex of the vee.)



6An upper bound of 4 for the 
hromati
 number of every arrangement graphis straightforward be
ause of the degree: just use Brooks' theorem (see [3℄).Results about Eu
lidean arrangement graphs will allow us to �nd a 4-
oloringvery eÆ
iently.Theorem 2 The 
hromati
 number of proje
tive arrangement graphs is at mostfour. A 4-
oloring 
an be eÆ
iently found by a simple linear (in the number ofverti
es) time algorithm.2.2 Eu
lidean linesGiven an arrangement fp0; p1; : : : ; png of n + 1 lines in the proje
tive planewe may spe
ify a line p0 as the \line at in�nity". This indu
es the Eu
lideanarrangement of the n lines fp1; : : : ; png in E = P n p0.The graph of an Eu
lidean arrangement is the graph of the bounded edgesof the arrangement. A ni
e thing about Eu
lidean arrangement graphs is thatthey 
ome with a natural planar embedding. The parameters of the graph Gof a simple Eu
lidean arrangement of n � 4 lines are as follows:� G has minimum degree 2 and maximum degree 4.� G has �n2� verti
es.� G has n(n� 2) edges.� G is 2-
onne
ted.As in the 
ase of proje
tive arrangement graphs the wiring diagram is a usefulform of representing Eu
lidean arrangement graphs. To illustrate the power ofthis tool we give two examples 
on
erning 
olorings.Proposition 3 The edge-
hromati
 number of an Eu
lidean arrangement graphis four.Proof. Consider a wiring diagram W of the arrangement de�ning G. Notethat an edge e of G is assigned to a single wire, let w(e) be the number ofthis wire 
ounted from top to bottom. Color the edges on ea
h odd numberedwire alternating with 
olors 1 and 2 and the edges on even numbered wiresalternating with 
olors 3 and 4. The 
oloring thus obtained is a legal edge
oloring of G.Proposition 4 The 
hromati
 number of an Eu
lidean arrangement graph Gis three.Proof. Consider a wiring diagram W of the arrangement de�ning G and let theleft-to-right orientation of W indu
e an orientation on the edges of G. Note thefollowing fa
ts about this oriented graph �!G :� �!G is a
y
li
.� The indegree and the outdegree of verti
es of �!G are at most 2.



7A 3-
oloring of G is obtained by 
oloring the verti
es in the order given by atopologi
al sorting of �!G . When it 
omes to 
olor v at most two neighbours (thein-neighbours) of v have been 
olored. Hen
e, one of the three available 
olors
an legally be assigned to v.The two 
oloring results are exempli�ed in Figure 5. The vertex 
oloringwas obtained by 
oloring from left to right and assigning 
olors in order ofpreferen
e 1-2-3. 1
1

1 121 33 42 1 22 3 21
3 41 23 4 3 4 1

Figure 5: An Eu
lidean arrangement graph with 3-vertex 
oloring and 4-edge
oloring.Proof [Theorem 2℄. Let fp0; p1; : : : ; png be a proje
tive arrangement and G itsgraph. De
lare p0 the line at in�nity and 
onsider the Eu
lidean arrangementfp1; : : : ; png with graph G0. Note that G0 is an indu
ed subgraph of G. Theverti
es of G whi
h are not in G0 form an n-
y
le C = (v1; v2; : : : ; vn) (the edgesof G supported by p0) and every vertex of C has exa
tly two neighbours in G0.Fix a 
oloring of G0 with 
olors f1; 2; 3g (see Proposition 4) and for every vertexvi 2 C 
hoose a 
olor 
i 2 f1; 2; 3g whi
h has not been used for a neighbour ofvi in G0.If n is even we 
omplete a 4-
oloring of G by 
oloring the verti
es of C ofeven index i with 
olor 
i and those of odd index with a new 
olor 4.If n is odd and it is possible to 
hoose the 
i su
h that there is an i with
i 6= 
i+1, w.l.o.g. i = 1, then we 
omplete the 4-
oloring of G by 
oloring v1with 
1 and the other verti
es of odd index with 
olor 4 and those of even indexi with 
i.In the remaining 
ase the two neighbours of all verti
es of C in G0 use thesame two 
olors, say 1 and 2, so that 
i = 3 for all i. In this situation we 
hoosea vertex x in G0 whi
h has two neighbours on C (this is possible sin
e thereexist triangles with a side on p0, see [18℄). W.l.o.g. we may assume that theseare the verti
es v1 and v2. Re
olor x with 
olor 4 and 
hange 
1 to the old 
olorof x. This brings us ba
k to the previous 
ase and 
ompletes the proof.2.3 Cir
les on the sphereArrangements of pseudo
ir
les on the sphere S 
onsist of a family f
1; : : : ; 
ngof simple 
losed 
urves (
alled 
ir
les) su
h that� every two 
ir
les have exa
tly two points in 
ommon at whi
h they 
ross



8� for three di�erent indi
es i; j; k 2 f1; : : : ; ng 
ir
le 
k separates the twointerse
tions of 
i and 
j .The motivating examples for arrangements of 
ir
les are arrangements of great
ir
les on the sphere. In this 
ase S is a sphere 
entered at the origin and the
ir
les are the intere
tions of planes 
ontaining the origin with S. In Figure 6su
h an arrangement of four 
ir
les on the sphere is shown1.

Figure 6: An arrangement of four 
ir
les on the sphere.If we identify points on the frontside of the sphere with their antipodal
ounterparts on the ba
kside we obtain a proje
tive arrangement of n lines. Ifwe remove the horizon-
ir
le we obtain two isomorphi
 Eu
lidean arrangements.Let G be the graph of a simple 
ir
le arrangement of n � 3 
ir
les. Wesummarize some elementary fa
ts about G:� G is 4-regular.� G has n(n� 1) verti
es and 2n(n� 1) edges.� G is planar.In Figure 7 we show planar embeddings of the unique simple 
ir
le arrangementgraphs of tree, four and �ve 
ir
les. In ea
h 
ase one of the 
ir
les is bold-dashed,the other 
ir
les 
an be obtained by rotations.The 
onne
tivity of 
ir
le arrangement graphs is as high as the degree allows:Proposition 5 The graph of a simple 
ir
le arrangement of n � 3 
ir
les is4-
onne
ted.Proof. Given the graph G of a simple 
ir
le arrangement and two verti
esu; v of G we exhibit four internally disjoint paths 
onne
ting u and v. LetB = f
1; 
2; 
3; 
4g be the 
ir
les de�ning the two verti
es. We distingusishthree 
ases depending on the size of B. If jBj = 2, i.e., if the two verti
es are1Thanks to Cinderella [20℄ for this pi
ture.



9
Figure 7: Cir
le arrangement graphs of tree, four and �ve 
ir
les.antipodal the four paths are given by the four ar
s 
onne
ting u and v alongthe two 
y
les. If jBj = 3 the three 
y
les indu
e the �rst graph of Figure 7and the two verti
es are adja
ent in this graph. Sin
e the graph is isomorphi
to the graph of Figure 2 we 
an refer to that �gure whi
h shows the four paths.In the last 
ase jBj = 4 the two verti
es are the nonadja
ent verti
es of aqudrilateral fa
e of the indu
ed graph of the four 
ir
les (this is the se
ondgraph of Figure 7). Its symmetry allows us to assume that the quadrilateral isthe 
entral one of the drawing, in whi
h 
ase the four paths 
an be 
hoosen asshown in Figure 8.

Figure 8: Four 
onne
ting paths for the white verti
es.Wiring diagrams are again a useful representation for this 
lass of arrange-ments. This is how the wiring diagram of an arrangement of n great 
ir
les
an be obtained: Imagine the sphere to be a globe with the great 
ir
les drawnonto it. Now observe the shadow of the frame while the sphere moves on a fullrotation around its axis. Label the 
ir
les su
h that in the initial position theyo

ur in the order 1; 2; : : : ; n and start drawing them on n wires. When theframe passes a 
rossing the two 
ir
les involved in it 
hange their order and inthe wiring diagram a swit
h has to be drawn. After a half rotation every two
ir
les have inter
hanged their order. Hen
e all 
ir
les are in reversed ordern; : : : ; 2; 1. The se
ond half of the rotation is an upside down 
opy of the �rsthalf. After the full rotation the frame rea
hes its initial position. Figure 9 showsthe wiring diagram of a 
ir
le arrangement with the two halfs emphasized. Toread the graph of a 
ir
le arrangement from the wiring diagram the half-edgesextending to the left and right have to be identi�ed in the same order as thenumbers indi
ate in Figure 9.The pro
ess des
ribed above for the 
onstru
tion of the wiring diagram isknown as sweeping an arrangement. With some 
are in te
hni
al details it
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4321 43212341Figure 9: Two 
opies of the wiring diagram of a proje
tive arrangement gluedtogether, the se
ond 
opy taken upside down, give a wiring diagram of a 
ir
learrangement.
an be shown that arrangements of pseudo
ir
les on the sphere are sweepableand also admit wiring diagrams whi
h de
ompose into two halfs, one being themirror image of the other (see [8℄ for related results). The diagram shown inFigure 9 has the additional property that from left to right the �rst 
rossing ofevery 
ir
le 
i, i 6= 1, is the 
rossing with 
ir
le 
1. Every 
ir
le arrangementhas a wiring diagram with this property, whi
h we 
all the one-down property.To transform an arbitrary diagram into one with the one-down property, moveall the swit
hes whi
h blo
k the visibility of 
ir
le 
1 from the left to the rightside.Using a diagram with the one-down property we will show in Se
tion 3that the edge set of a 
ir
le arrangement graph 
an be de
omposed into twoHamiltonian 
y
les. Sin
e ea
h Hamiltonian 
y
le has n(n� 1) edges, an evennumber, we may alternatingly use 
olors 1 and 2 for the edges of one of theHamiltonian 
y
les and 
olors 3 and 4 for the eges of the other Hamiltonian
y
le. This proves the following proposition as a 
orollary.Proposition 6 Cir
le arrangement graphs are four edge 
olorable.Con
erning vertex 
olorings, we have a 
onje
ture and an eÆ
ient pro
edurefor 4-
oloring. The existen
e of su
h a 
oloring is implied by Brooks' theorem,but our pro
edure is mu
h simpler.Conje
ture 2 Cir
le arrangement graphs are 3-vertex 
olorable.We have veri�ed this 
onje
ture for all 
y
li
 arrangements of 
ir
les. Theseare the arrangements obtained from Figure 4 by gluing a mirror image of the
orresponding wiring diagram.Proposition 7 Cir
le arrangement graphs are four vertex 
olorable.Proof. Let f
0; 
1; : : : ; 
ng be a 
ir
le arrangement andG its graph. De
lare 
0 tobe the equator and 
onsider the Eu
lidean arrangements on the two hemispheresof Sn
0. Let G0 and G00 be the graphs of these arrangements. The verti
es of Gwhi
h are not in G0 or G00 form an 2n-
y
le C = (v1; v2; : : : ; v2n) (the edges ofG supported by 
0) and every vertex of C has exa
tly one neighbour in G0 andone in G00. Fix 
olorings of G0 and G00 with 
olors f1; 2; 3g (see Proposition 4)and for every vertex vi 2 C 
hoose a 
olor 
i 2 f1; 2; 3g whi
h has not beenused for a neighbour of vi in G0 [G00.



11Sin
e n is even we 
omplete a 4-
oloring of G by 
oloring the verti
es ofeven index i on the 
y
le C with 
olor 
i and those of odd index with a new
olor 4.There are several generalizations of 
ir
le arrangements. We mention twoof them.� Separating 
ir
le arrangements 
onsist of a family f
1; : : : ; 
ng of simple
losed 
urves in the plane or on the sphere (
alled 
ir
les) su
h that: (1)Every two 
ir
les 
ross exa
tly twi
e, and (2) For any two di�erent indi
esi; j 2 f2; : : : ; ng 
ir
le 
1 separates the two interse
tions of 
i and 
j .� Digon-free 
ir
le arrangements 
onsist of a family f
1; : : : ; 
ng of simple
losed 
urves in the plane or on the sphere (
alled 
ir
les) su
h that: (1)Every two 
ir
les 
ross exa
tly twi
e, and (2) The arrangement 
ontainsno 
ell with only two edges and two verti
es (digon).All the results we have for 
ir
le arrangement graphs still hold for the 
lassof separating 
ir
le arrangement graphs. Digon-free 
ir
le arrangements havebeen studied by Gr�unbaum [12℄. They are mu
h more general and have lessfavourable properties. E.g., in Figure 10 a digon-free arrangement is shownwhose graph is only 3-
onne
ted. The unrestri
ted 
lass of all 2-interse
tingsystems of 
losed 
urves has the disadvantage that the resulting graphs mayhave double edges.

Figure 10: A digon-free arrangement with a 
utset of size three.3 Hamilton Paths and Cy
les in Arrangement GraphsIn this se
tion we study Hamiltoni
ity properties of spheri
al and proje
tivearrangements. The Eu
lidean 
ase has been settled in [5℄ with a negative answer(there are non-Hamiltonian Eu
lidean line arrangement graphs).As shown in the previous se
tion, both the pseudo-
ir
le and the proje
-tive arrangements are 4-
onne
ted. A well-known theorem of Tutte [23℄ on4-
onne
ted planar graphs guarantees a Hamilton 
y
le. An even stronger re-sult follows from Thomassen's [22℄ strengthening of Tutte's theorem: every



124-
onne
ted planar graph is Hamilton 
onne
ted (there exists a Hamilton path
onne
ting any two pres
ribed verti
es).Theorem 8 Every spheri
al arrangement graphs has a Hamilton 
y
le and isHamilton 
onne
ted.Thomas and Yu's theorem on 4-
onne
ted proje
tive-planar graphs [21℄ im-plies a similar result for proje
tive arrangements.Theorem 9 Every proje
tive arrangement graph is Hamiltonian.We now pro
eed to strengthen these results with expli
it 
onstru
tions. Forspheri
al arrangements, we �nd not just one, but two su
h Hamilton paths and
y
les, whi
h, moreover, yield a de
omposition of the edges of the graph.3.1 Pseudo-
ir
le and Separating Cir
le arrangementsTheorem 10 Every pseudo-
ir
le arrangement and separating 
ir
le arrange-ment 
an be de
omposed into two edge-disjoint Hamilton paths (plus two extraedges), and the de
omposition 
an be found eÆ
iently.Proof. The 
onstru
tion is based on the representation of these arrangementsas wiring diagrams. As shown in the previous se
tion, we 
an assume thatthe wiring diagram representation has the one-down property, as in Figure 9.The 
onstru
tion of the two Hamilton paths, bold and thin, is des
ribed inFigure 11 for 6 wires, but it 
an be easily generalized to any number of wiresby repeating the pattern of 
olors going up along the swit
hes on line 1. The�gure needs some explanations, as it looks in
omplete: we did not draw allthe swit
hes 
orresponding to the verti
es of the arrangement. We did this todraw the attention to the stru
ture of the 
onstru
tion and avoid 
lutteringthe pi
ture. A 
ontinuously 
olored line along a wire of the wiring diagramdenotes a path in the arrangement graph, whose edges are 
olored in that 
olorand whi
h goes along the edges in
ident with that wire and tou
hes all verti
es
onne
ted to them. Remember that the one-down property, and the 
hoi
eof the wiring diagram drawing, insured that there are no swit
hes left of theone-down swit
hes.The pi
tured illustrates a key element of the 
onstru
tion: the one-downproperty. the bold, resp. thin Hamilton paths walk along the edges of a level(wire) (visiting all verti
es adja
ent to it) then go down by two levels at theswit
hes (verti
es) 
orresponding to pseudo-
ir
le 1 (the one going one-down).The 
ru
ial observation is that the bold (resp. thin) path never tou
hes thesame vertex twi
e, and visits them all, therefore guaranteeing Hamiltoni
ity.The 
orre
tness of the 
onstru
tion follows from the following easy to establishproperties.� Ea
h swit
h, ex
ept the one involving pseudo-
ir
le 1, is tou
hed by thebold path on an odd-numbered wire and by a thin path on an even-numbered wire.



13� Ea
h edge (with the two ex
eptions left un
olored (dashed)) is 
oloredeither bold or thin.� All bold edges are 
onne
ted in a path, and so are the thin edges.� A path in one 
olor never visits the same vertex twi
e, and 
overs all theswit
hes (verti
es).
23456
1

16 12
1612

Figure 11: Two Hamilton paths in a pseudo-
ir
le arrangement.Sin
e the spheri
al and proje
tive graphs are 4-regular graphs, removinga Hamilton 
y
le (guaranteed by Theorem 8) leaves a 2-regular graph. It isa remarkable feature of the pseudo-
ir
le arrangements that we 
an in fa
tpartition the edges of the graph into two Hamilton 
y
les.Theorem 11 Every pseudo-
ir
le arrangement 
an be de
omposed into twoedge-disjoint Hamilton 
y
les, and the de
omposition 
an be found eÆ
iently.Proof. For the proof of this theorem we 
on
entrate on the 
rossings involving
ir
les 1 and 2 in the �rst half of the wiring diagram (
.f. Figure 9). Weagain assume the one-down property. Now let x1; x2; : : : ; xn�1; x1; : : : be thesequen
e of swit
hes involving line 2, 
learly x1 = 1. Line 2 is going down atea
h of the 
rossings with x2; : : : ; xn�1 and is going down again at the se
ond
rossing with line 1 (this is the �rst swit
h of the se
ond half of the diagram).Sin
e our �gures display the �rst n swit
hes of line 1 and the �rst n swit
hesof line 2 the se
tions of wire between two swit
hes on line 1, resp. line 2 arenot in
ident to any other swit
h. This observation is 
riti
al to the veri�
ationof the 
onstru
tion sin
e whenever the bold or thin 
y
le runs on two adja
entwires one of the two sides 
orresponds to line 1 or 2. Figures 12 and 13 show1234567Figure 12: Two Hamilton 
y
les in a pseudo-
ir
le arrangement of 7 lines.
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8
1234567Figure 13: Two Hamilton paths in a pseudo-
ir
le arrangement of 8 lines.spe
ial instan
es of the 
onstru
tion with 7 and 8 lines. 
ase. The �gures aregeneri
 for the even and the odd 
ase, other instan
es are obtained by insertionor deletion of pairs of strand going up four levels, see Figure 14.

Figure 14: Two strands moving up four levels.Corre
tness of the 
onstru
tive pattern follows from the following properties.� Ea
h swit
h is tou
hed by the bold path on an even-numbered wire andby a thin path on an odd-numbered wire.� Ea
h edge is 
olored either bold or thin.� All bold edges are 
onne
ted in a 
y
le, and so are the thin edges.� The path of bold (resp. thin) edges never visits the same vertex twi
e,and 
overs all the swit
hes.As an additional feature of the 
onstru
tion, noti
e that the two Hamilton 
y
lesonly 
ross at the two interse
tion points of 
ir
les 1 and 2.Sin
e these arguments do not depend on how the swit
hes are arrangedon the wires, our argument generalizes to a wider 
lass of 4-regular planargraphs. Ea
h 4-regular planar graph 
an be de
omposed into 
losed 
urves
rossing properly (not ne
essarily simple). Some of these graphs 
an be drawnas wiring diagrams (leveled): this is a ne
essary 
ondition. To make the previous
onstru
tion of 2HC de
omposition work, they also have to have two one-downstrands of these 
urves, as in Figure 12 and 13.3.2 Proje
tive arrangementsTheorem 12 Every proje
tive arrangement with an odd number of pseudo-lines 
an be de
omposed into two edge-disjoint Hamilton paths (plus two unusededges), and the de
omposition 
an be found eÆ
iently.



15Proof. The proof is based on a 
onstru
tion for whi
h examples with n = 7and 9 are depi
ted in Figures 15 and 16. The 
onstru
tion uses the swit
hesof line 1 to allow ea
h path to go up. The two dashed edges are unused, theothers partition the graph into two Hamilton paths. The 
orre
tness followsfrom similar properties as des
ribed for pseudo-
ir
les.1234567 123456
7

Figure 15: Two Hamilton path in a proje
tive arrangement of 7 lines.1
789

9823456 7
123456Figure 16: Two Hamilton path in a proje
tive arrangement of 9 lines.Unfortunately we have not been able to extend this general type of argumentin the 
ase of an even number of lines.Sin
e proje
tive arrangement graphs are also 4-regular, one 
ould expe
tagain the existen
e of Hamilton 
y
li
 de
ompositions: This is not the 
ase.Harborth and M�oller [14℄ have found a 
ounterexample. However, Hamiltonde
ompositions do exist for 
y
li
 arrangements.Proposition 13 For every n � 4, the graph of the 
y
li
 proje
tive arrange-ment admits a de
omposition into two edge-disjoint Hamilton 
y
les.Proof. The proof is based on a 
onstru
tion whi
h depends on the value of nmodulo 4 and is illustrated in Figures 17{20. Note that, after a suitable shiftof some of the interse
tion points, the arrangements depi
ted in the �gures area
tually the same as those de�ned in Figure 4.

Figure 17: Two Hamilton 
y
les in 
y
li
 proje
tive arrangements with a num-ber n of lines su
h that n � 0 (mod 4).
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Figure 18: Two HC for n � 1 (mod 4).
Figure 19: Two HC for n � 2 (mod 4).4 Con
lusion2-Hamilton path and 
y
le de
ompositions show a high degree of stru
ture inthe geometri
 arrangement graphs. We have exhibited a general te
hnique for
onstru
ting su
h de
ompositions based on wiring diagrams. It would be inter-esting to extend this study to 1-skeletons of arrangements in higher dimensions,where some of the tools we used (wiring diagrams, sweeps) are not available.Several other dire
tions for further resear
h are open, besides the various
onje
tures already des
ribed in the paper. It would be interesting to 
ountthe number of 2HP and 2HC de
ompositions of spheri
al arrangements, or to
hara
terize those graphs for whi
h our te
hnique of 2HP and 2HC 
onstru
tionworks. It might be possible to generalize these te
hniques to 
lasses of 2k-regular graphs, in
luding 1-skeletons of rank k+1 pseudo-sphere arrangements.We leave these problems open for further investigations.Finally, we'd like to add a few 
omments on algorithmi
 issues. Arrangementgraphs of 
ir
les on the sphere 
an be re
ognized eÆ
iently. Sin
e the graphsare 4-
onne
ted they have unique embeddings, from whi
h we de�ne 
ir
les bygoing straight through ea
h vertex. The veri�
ation of the in
iden
e propertiesis straightforward. It is interesting to note that for proje
tive arrangementgraphs this idea would fail: there are 5-
onne
ted proje
tive-planar graphswith many embeddings, see [17℄. Con
erning the vertex-
oloring of proje
tivearrangements, an interesting problem is to �nd a polynomial time algorithm forde
iding whether � is equal to 3 or 4.Referen
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