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Abstract10

We consider arrangements of n pseudo-lines in the Euclidean plane where each11

pseudo-line `i is represented by a bi-infinite connected x-monotone curve fi(x), x ∈ R,12

such that for any two pseudo-lines `i and `j with i < j, the function x 7→ fj(x)−fi(x) is13

monotonically decreasing and surjective (i.e., the pseudo-lines approach each other until14

they cross, and then move away from each other). We show that such arrangements of15

approaching pseudo-lines, under some aspects, behave similar to arrangements of lines,16

while for other aspects, they share the freedom of general pseudo-line arrangements.17

For the former, we prove:18

• There are arrangements of pseudo-lines that are not realizable with approaching19

pseudo-lines.20

• Every arrangement of approaching pseudo-lines has a dual generalized configura-21

tion of points with an underlying arrangement of approaching pseudo-lines.22

For the latter, we show:23

• There are 2Θ(n2) isomorphism classes of arrangements of approaching pseudo-lines24

(while there are only 2Θ(n log n) isomorphism classes of line arrangements).25

• It can be decided in polynomial time whether an allowable sequence is realizable26

by an arrangement of approaching pseudo-lines.27

Furthermore, arrangements of approaching pseudo-lines can be transformed into each28

other by flipping triangular cells, i.e., they have a connected flip graph, and every29

bichromatic arrangement of this type contains a bichromatic triangular cell.30

1 Introduction31

Arrangements of lines and, in general, arrangements of hyperplanes are paramount data32

structures in computational geometry whose combinatorial properties have been extensively33

∗Partially supported by DFG grant FE 340/11–1.
†Supported by a Schrödinger fellowship of the Austrian Science Fund (FWF): J-3847-N35.
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Figure 1: Vertical translation of the red lines shows that there is always a bichromatic
triangle in a bichromatic line arrangement (left). For pseudo-line arrangements, a vertical
translation may result in a structure that is no longer a valid pseudo-line arrangement
(right).

studied, partially motivated by the point-hyperplane duality. Pseudo-line arrangements34

are a combinatorial generalization of line arrangements. Defined by Levi in 1926 the full35

potential of working with these structures was first exploited by Goodman and Pollack.36

While pseudo-lines can be considered either as combinatorial or geometric objects, they37

also lack certain geometric properties that may be needed in proofs. The following example38

motivated the research presented in this paper.39

Consider a finite set of lines that are either red or blue, no two of them parallel and no40

three of them passing through the same point. Every such arrangement has a bichromatic41

triangle, i.e., an empty triangular cell bounded by red and blue lines. This can be shown42

using a distance argument similar to Kelly’s proof of the Sylvester-Gallai theorem (see,43

e.g., [2, p. 73]). We sketch another nice proof. Think of the arrangement as a union of44

two monochromatic arrangements in colors blue and red. Continuously translate the red45

arrangement in positive y-direction while keeping the blue arrangement in place. Eventually46

the combinatorics of the union arrangement will change with a triangle flip, i.e., with a47

crossing passing a line. The area of monochromatic triangles is not affected by the motion.48

Therefore, the first triangle that flips is a bichromatic triangle in the original arrangement.49

See Figure 1 (left).50

This argument does not generalize to pseudo-line arrangements. See Figure 1 (right).51

Actually the question whether all simple bichromatic pseudo-line arrangements have bichro-52

matic triangles is by now open for several years. The crucial property of lines used in the53

above argument is that shifting a subset of the lines vertically again yields an arrangement,54

i.e., the shift does not introduce multiple crossings. We were wondering whether any pseudo-55

line arrangement can be drawn such that this property holds. In this paper, we show that56

this is not true and that arrangements where this is possible constitute an interesting class57

of pseudo-line arrangements.58

Define an arrangement of pseudo-lines as a finite family of x-monotone bi-infinite con-59

nected curves (called pseudo-lines) in the Euclidean plane such that each pair of pseudo-60
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lines intersects in exactly one point, at which they cross. For simplicity, we consider the n61

pseudo-lines {`1, . . . , `n} to be indexed from 1 to n in top-bottom order at left infinity.1 A62

pseudo-line arrangement is simple if no three pseudo-lines meet in one point; if in addition63

no two pairs of pseudo-lines cross at the same x-coordinate we call it x-simple.64

An arrangement of approaching pseudo-lines is an arrangement of pseudo-lines where65

each pseudo-line `i is represented by function-graph fi(x), defined for all x ∈ R, such that66

for any two pseudo-lines `i and `j with i < j, the function x 7→ fi(x)−fj(x) is monotonically67

decreasing and surjective. This implies that the pseudo-lines approach each other until they68

cross, and then they move away from each other, and exactly captures our objective to69

vertically translate pseudo-lines in an arbitrary way while maintaining the invariant that70

the collection of curves is a valid pseudo-line arrangement (If fi − fj is not surjective the71

crossing of pseudo-lines i and j may disappear upon vertical translations.) For most of our72

results, we consider the pseudo-lines to be strictly approaching, i.e., the function is strictly73

decreasing. For simplicity, we may sloppily call arrangements of approaching pseudo-lines74

approaching arrangements.75

In this paper, we identify various notable properties of approaching arrangements. In76

Section 2, we show how to modify approaching arrangements and how to decide whether an77

arrangement is x-isomorphic to an approaching arrangement in polynomial time. Then, we78

show a specialization of Levi’s enlargement lemma for approaching pseudo-lines and use it to79

show that arrangements of approaching pseudo-lines are dual to generalized configurations80

of points with an underlying arrangement of approaching pseudo-lines. In Section 5, we de-81

scribe arrangements which have no realization as approaching arrangement. We also show82

that asymptotically there are as many approaching arrangements as pseudo-line arrange-83

ments. We conclude in Section 6 with a generalization of the notion of being approaching84

to three dimensions; it turns out that arrangements of approaching pseudo-planes are char-85

acterized by the combinatorial structure of the family of their normal vectors at all points.86

Related work. Restricted representations of Euclidean pseudo-line arrangements have87

been considered already in early work about pseudo-line arrangements. Goodman [8] shows88

that every arrangement has a representation as a wiring diagram. More recently there have89

been results on drawing arrangements as convex polygonal chains with few bends [6] and90

on small grids [5]. Goodman and Pollack [11] consider arrangements whose pseudo-lines91

are the function-graphs of polynomial functions with bounded degree. In particular, they92

give bounds on the degree necessary to represent all isomorphism classes of pseudo-line93

arrangements. Generalizing the setting to higher dimensions (by requiring that any pseudo-94

hyperplane can be translated vertically while maintaining that the family of hyperplanes95

is an arrangement) we found that such approaching arrangements are representations of96

Euclidean oriented matroids, which are studied in the context of pivot rules for oriented97

matroid programming (see [4, Chapter 10]).98

2 Manipulating approaching arrangements99

Lemma 1 shows that we can make the pseudo-lines of approaching arrangements piecewise100

linear. This is similar to the transformation of Euclidean pseudo-line arrangements to equiv-101

1Pseudo-line arrangements are often studied in the real projective plane, with pseudo-lines being simple
closed curves that do not separate the projective plane. All arrangements can be represented by x-monotone
arrangements [10]. As x-monotonicity is crucial for our setting and the line at infinity plays a special role,
we use the above definition.
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alent wiring diagrams. Before stating the lemma it is appropriate to briefly discuss notions102

of isomorphism for arrangements of pseudo-lines.103

Since we have defined pseudo-lines as x-monotone curves there are two faces of the104

arrangement containing the points at ±infinity of vertical lines. These two faces are the105

north-face and the south-face. A marked arrangement is an arrangement together with a106

distinguished unbounded face, the north-face. Pseudo-lines of marked arrangements are107

oriented such that the north-face is to the left of the pseudo-line. We think of pseudo-line108

arrangements and in particular of approaching arrangements as being marked arrangements.109

Two pseudo-line arrangements are isomorphic if there is an isomorphism of the induced110

cell complexes which maps north-face to north-face and respects the induced orientation of111

the pseudo-lines.112

Two pseudo-line arrangements are x-isomorphic if a sweep with a vertical line meets the113

crossings in the same order.114

Both notions can be described in terms of allowable sequences. An allowable sequence is115

a sequence of permutations starting with the identity permutation id = (1, . . . , n) in which116

(i) a permutation is obtained from the previous one by the reversal of one or more non-117

overlapping substrings, and (ii) each pair is reversed exactly once. An allowable sequence is118

simple if two adjacent permutations differ by the reversal of exactly two adjacent elements.119

Note that the permutations in which a vertical sweep line intersects the pseudo-lines of120

an arrangement gives an allowable sequence. We refer to this as the allowable sequence of121

the arrangement and say that the arrangement realizes the allowable sequence. Clearly two122

arrangements are x-isomorphic if they realize the same allowable sequence.123

Replacing the vertical line for the sweep by a moving curve (vertical pseudo-line) which124

joins north-face and south-face and intersects each pseudo-line of the arrangement exactly125

once we get a notion of pseudo-sweep. A pseudo-sweep typically has various options for126

making progress, i.e., for passing a crossing of the arrangement. Each pseudo-sweep also127

produces an allowable sequence. Two arrangements are isomorphic if their pseudo-sweeps128

yield the same collection of allowable sequences or equivalently if there are pseudo-sweeps129

on the two arrangements which produce the same allowable sequence.130

Lemma 1. For any arrangement of approaching pseudo-lines, there is an x-isomorphic131

arrangement of approaching polygonal curves (starting and ending with a ray). If the allow-132

able sequence of the arrangement is simple, then there exists such an arrangement without133

crossings at the bends of the polygonal curves.134

Proof. Consider the approaching pseudo-lines and add a vertical ‘helper-line’ at every cross-135

ing. Connect the intersection points of each pseudo-line with adjacent helper-lines by seg-136

ments. This results in an arrangement of polygonal curves between the leftmost and the137

rightmost helper-line. See Figure 2. Since the original pseudo-lines were approaching, these138

curves are approaching as well; the signed distance between the intersection points with the139

vertical lines is decreasing, and this property is maintained by the linear interpolations be-140

tween the points. To complete the construction, we add rays in negative x-direction starting141

at the intersection points at the first-helper line; the slopes of the rays are to be chosen142

such that their order reflects the order of the original pseudo-lines at left infinity. After ap-143

plying the analogous construction at the rightmost helper-line, we obtain the x-isomorphic144

arrangement. If the allowable sequence of the arrangement is simple, we may choose the145

helper-lines between the crossings and use a corresponding construction. This avoids an146

incidence of a bend with a crossing.147

The construction used in the proof yields pseudo-lines being represented by polygonal148

curves with a quadratic number of bends. It might be interesting to consider the problem of149
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Figure 2: Transforming an arrangement of approaching pseudo-lines into an isomorphic one
of approaching polygonal pseudo-lines.

minimizing bends in such polygonal representations of arrangements. Two simple operations150

which can help to reduce the number of bends are horizontal stretching, i.e., a change of the151

x-coordinates of the helper-lines which preserves their left-to-right order, and vertical shifts152

which can be applied a helper-line and all the points on it. Both operations preserve the153

x-isomorphism class.154

The two operations are crucial for our next result, where we show that the intersection155

points with the helper-lines can be obtained by a linear program. Asinowski [3] defines a156

suballowable sequence as a sequence obtained from an allowable sequence by removing an157

arbitrary number of permutations from it. An arrangement thus realizes a suballowable158

sequence if we can obtain this suballowable sequence from its allowable sequence.159

Theorem 1. Given a suballowable sequence, we can decide in polynomial time whether there160

is an arrangement of approaching pseudo-lines with such a sequence.161

Proof. We attempt to construct a polygonal pseudo-line arrangement for the given subal-162

lowable sequence. As discussed in the proof of Lemma 1, we only need to obtain the points163

in which the pseudo-lines intersect vertical helper-lines through crossings. The allowable se-164

quence of the arrangement is exactly the description of the relative positions of these points.165

We can consider the y-coordinates of pseudo-line `i at a vertical helper-line vc as a variable166

yi,c and by this encode the suballowable sequence as a set of linear inequalities on those vari-167

ables, e.g., to express that `i is above `j at vc we use the inequality yi,c ≥ yj,c + 1. Further,168

the curves are approaching if and only if yi,c − yj,c ≥ yi,c+1 − yj,c+1 for all 1 ≤ i < j ≤ n169

and c. These constraints yield a polyhedron (linear program) that is non-empty (feasible) if170

and only if there exists such an arrangement. Since the allowable sequence of an arrangement171

of n pseudo-lines consists of
(
n
2

)
+ 1 permutations the linear program has O(n4) inequalities172

in O(n3) variables. Note that it is actually sufficient to have constraints only for neighboring173

points along the helper lines, this shows that O(n3) inequalities are sufficient.174

Let us emphasize that deciding whether an allowable sequence is realizable by a line175

arrangement is an ∃R-hard problem [15], and thus not even known to be in NP. While176

we do not have a polynomial-time algorithm for deciding whether there is an isomorphic177

approaching arrangement for a given pseudo-line arrangement, Theorem 1 tells us that the178

problem is in NP, as we can give the order of the crossings encountered by a sweep as a179

certificate for a realization. The corresponding problem for lines is also ∃R-hard [17].180

The following observation is the main property that makes approaching pseudo-lines181

interesting.182
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Observation 1. Given an arrangement A of strictly approaching pseudo-lines and a pseudo-183

line ` ∈ A, any vertical translation of ` in A results again in an arrangement of strictly184

approaching pseudo-lines.185

Doing an arbitrary translation, we may run into trouble when the pseudo-lines are not186

strictly approaching. In this case it can happen that two pseudo-lines share an infinite num-187

ber of points. The following lemma allows us replace non-strictly approaching arrangements188

by x-isomorphic strictly approaching arrangements.189

Lemma 2. Any simple arrangement of approaching pseudo-lines is homeomorphic to a190

polygonal x-isomorphic arrangement of strictly approaching pseudo-lines.191

Proof. Given an arrangement A, construct a polygonal arrangement A′ as described for192

Lemma 1. If the resulting pseudo-lines are strictly approaching, we are done. Otherwise,193

consider the rays that emanate to the left. We may change their slopes such that all the194

slopes are different and their relative order remains the same. Consider the first vertical195

slab defined by two neighboring vertical lines v and w that contains two segments that are196

parallel (if there are none, the arrangement is strictly approaching). Choose a vertical line197

v′ slightly to the left of the slab and use v′ and w as helper-lines to redraw the pseudo-lines198

in the slab. Since the arrangement is simple the resulting arrangement is x-isomorphic and199

it has fewer parallel segments. Iterating this process yields the desired result.200

Lemma 3. If A is an approaching arrangement with a non-simple allowable sequence, then201

there exists an approaching arrangement A′ whose allowable sequence is a refinement of the202

allowable sequence of A, i.e., the sequence of A′ may have additional permutations between203

consecutive pairs π, π′ in the sequence of A.204

Proof. Since its allowable sequence is non-simple, arrangement A has a crossing point where205

more than two pseudo-lines cross or A has several crossings with the same x-coordinate.206

Let ` be a pseudo-line participating in such a degeneracy. Translating ` slightly in vertical207

direction a degeneracy is removed and the allowable sequence is refined.208

Ringel’s homotopy theorem [4, Thm. 6.4.1] tells us that given a pair A, B of pseudo-line209

arrangements, A can be transformed to B by homeomorphisms of the plane and so-called210

triangle flips, where a pseudo-line is moved over a crossing. Within the subset of arrange-211

ments of approaching pseudo-lines, the result still holds. We first show a specialization of212

Ringel’s isotopy result [4, Prop. 6.4.2]:213

Lemma 4. Two x-isomorphic arrangements of approaching pseudo-lines can be transformed214

into each other by a homeomorphism of the plane such that all intermediate arrangements215

are x-isomorphic and approaching.216

Proof. Given an arrangement A of approaching pseudo-lines, we construct a corresponding217

polygonal arrangement A′. Linearly transforming a point fi(x) on a pseudo-line `i in A218

to the point f ′i(x) on the corresponding line `′i in A′ gives a homeomorphism from A to219

A′ which can be extended to the plane. Given two x-isomorphic arrangements A′ and B220

of polygonal approaching pseudo-lines, we may shift helper-lines horizontally, so that the221 (
n
2

)
+ 1 helper-lines of the two arrangements become adjusted, i.e., are at the same x-222

coordinates; again there is a corresponding homeomorphism of the plane. Now recall that223

these arrangements can be obtained from solutions of linear programs. Since A′ and B have224

the same combinatorial structure, their defining inequalities are the same. Thus, a convex225

combination of the variables defining the two arrangements is also in the solution space,226

which continuously takes us from A′ to B and thus completes the proof.227
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Theorem 2. Given two simple arrangements of approaching pseudo-lines, one can be trans-228

formed to the other by homeomorphisms of the plane and triangle flips such that all inter-229

mediate arrangement are approaching.230

Proof. Let A0 be a fixed simple arrangement of n lines. We show that any approaching231

arrangement A can be transformed into A0 with the given operations. Since the operations232

are invertible this is enough to prove that if (A,B) is a pair of approaching arrangements,233

then A can be transformed into B with the given operations.234

Consider a vertical line ` in A such that all the crossings of A are to the right of ` and235

replace the part of the pseudo-lines of A left of ` by rays with the slopes of the lines of A0.236

This yields an arrangement A′ isomorphic to A, see Fig. 3. This replacement is covered by237

Lemma 4. Let `0 be a vertical line in A0 which has all the crossings of A0 to the left. Now238

we vertically shift the pseudo-lines of A′ to make their intersections with ` an identical copy239

of their intersections with `0. This yields an arrangement A′′ isomorphic to A0, see Fig. 3.240

During the shifting we have a continuous family of approaching arrangements which can be241

described by homeomorphisms of the plane and triangle flips. To get from A′′ to A0 we only242

have to replace the part of the pseudo-lines of A to the right of `, where no crossings remain,243

by rays which have the same slopes of the lines of A0. This makes all the pseudo-lines actual244

lines and the arrangement is identical to A0.245

` `

A′ A′′

`0

A0

Figure 3: A line arrangement A0 (left) and the arrangements A′ and A′′ used for the
transformation from A to A0.

Note that the proof requires the arrangement to be simple. Vertical translations of246

pseudo-lines now allows us to prove a restriction of our motivating question.247

Theorem 3. An arrangement of approaching red and blue pseudo-lines contains a triangular248

cell that is bounded by both a red and a blue pseudo-line unless it is a pencil, i.e., all the249

pseudo-lines cross in a single point.250

Proof. By symmetry in color and direction we may assume that there is a crossing of two251

blue pseudo-lines above a red pseudo-line. Translate all the red pseudo-lines upwards with252

the same speed. Consider the first moment t > 0 when the isomorphism class changes.253

This happens when a red pseudo-line moves over a blue crossing, or a red crossing is moved254

over a blue pseudo-line. In both cases the three pseudo-lines have determined a bichromatic255

triangular cell of the original arrangement.256

Now consider the case that at time t parallel segments of different color are concurrent.257

In this case we argue as follows. Consider the situation at time ε > 0 right after the start of258

the motion. Now every multiple crossing is monochromatic and we can use an argument as259
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in the proof of Lemma 2 to get rid of parallel segments of different colors. Continuing the260

translation after the modification reveals a bichromatic triangle as before.261

3 Levi’s lemma for approaching arrangements262

Proofs for showing that well-known properties of line arrangements generalize to pseudo-line263

arrangements often use Levi’s enlargement lemma. (For example, Goodman and Pollack [9]264

give generalizations of Radon’s theorem, Helly’s theorem, etc.) Levi’s lemma states that a265

pseudo-line arrangement can be augmented by a pseudo-line through any pair of points. In266

this section, we show that we can add a pseudo-line while maintaining the property that all267

pseudo-lines of the arrangement are approaching.268

Lemma 5. Given an arrangement of approaching pseudo-lines containing two pseudo-lines269

li and li+1 (each a function R 7→ R), consider l′ = l′(x) = λli(x) + (1 − λ)li+1(x), for270

some 0 ≤ λ ≤ 1. The arrangement augmented by l′ is still an arrangement of approaching271

pseudo-lines.272

Proof. Consider any pseudo-line lj of the arrangement, j ≤ i. We know that for x1 < x2,273

lj(x1)− li(x1) ≥ lj(x2)− li(x2), whence λlj(x1)− λli(x1) ≥ λlj(x2)− λli(x2). Similarly, we274

have (1 − λ)lj(x1) − (1 − λ)li+1(x1) ≥ (1 − λ)lj(x2) − (1 − λ)li+1(x2). Adding these two275

inequalities, we get276

lj(x1)− l′(x1) ≥ lj(x2)− l′(x2) .

The analogous holds for any j ≥ i+ 1.277

The lemma gives us a means of producing a convex combination of two approaching278

pseudo-lines with adjacent slopes. Note that the adjacency of the slopes was necessary in279

the above proof.280

Lemma 6. Given an arrangement of n approaching pseudo-lines, we can add a pseudo-line281

ln+1 = ln+1(x) = ln(x) + δ(ln(x) − ln−1(x)) for any δ > 0 and still have an approaching282

arrangement.283

Proof. Assuming x2 > x1 implies284

ln(x1)− ln+1(x1) = ln(x1)− ln(x)− δ(ln(x1)− ln−1(x1)) = δ(ln−1(x1)− ln(x1))

≥ δ(ln−1(x2)− ln(x2)) = ln(x2)− ln+1(x2) .

With lj(x1)− ln(x1) ≥ lj(x2)− ln(x2) we also get lj(x1)− ln+1(x1) ≥ lj(x2)− ln+1(x2) for285

all 1 ≤ j < n.286

Theorem 4. Given an arrangement of strictly approaching pseudo-lines and two points p287

and q with different x-coordinates, the arrangement can be augmented by a pseudo-line l′288

containing p and q to an arrangement of approaching pseudo-lines. Further, if p and q do289

not have the same vertical distance to a pseudo-line of the initial arrangement, then the290

resulting arrangement is strictly approaching.291

Proof. Let p have smaller x-coordinate than q. Vertically translate all pseudo-lines such292

that they pass through p (the pseudo-lines remain strictly approaching, forming a pencil293

through p). If there is a pseudo-line that also passes through q, we add a copy l′ of it. If q294

is between li and li+1, then we find some 0 < λ < 1 such that l′(x) = λli(x) + (1−λ)li+1(x)295

contains p and q. By Lemma 5 we can add l′ to the arrangement. If q is above or below all296

pseudo-lines in the arrangement, we can use Lemma 6 to add a pseudo-line; we choose δ large297
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enough such that the new pseudo-line contains q. Finally translate all pseudo-lines back to298

their initial position. This yields an approaching extension of the original arrangement with299

a pseudo-line containing p and q. Observe that the arrangement is strictly approaching300

unless the new pseudo-line was chosen as a copy of l′.301

Following Goodman et al. [14], a spread of pseudo-lines in the Euclidean plane is an302

infinite family of simple curves such that303

1. each curve is asymptotic to some line at both ends,304

2. every two curves intersect at one point, at which they cross, and305

3. there is a bijection L from the unit circle C to the family of curves such that L(p) is306

a continuous function (under the Hausdorff metric) of p ∈ C.307

It is known that every projective arrangement of pseudo-lines can be extended to a308

spread [14] (see also [13]). For Euclidean arrangements this is not true because condition309

1 may fail (for an example take the parabolas (x − i)2 as pseudo-lines). However, given310

an Euclidean arrangement A we can choose two vertical lines v− and v+ such that all the311

crossings are between v− and v+ and replace the extensions beyond the vertical lines by312

appropriate rays. The result of this procedure is called the truncation of A. Note that the313

truncation of A and A are x-isomorphic and if A is approaching then so is the truncation.314

We use Lemma 5 to show the following.315

Theorem 5. The truncation of every approaching arrangement of pseudo-lines can be ex-316

tended to a spread of pseudo-lines and a single vertical line such that the non-vertical pseudo-317

lines of that spread are approaching.318

Proof. Let l1, . . . , ln be the pseudo-lines of the truncation of an approaching arrangement.319

Add two almost vertical straight lines l0 and ln+1 such that the slope of the line connecting320

two points on a pseudo-line li is between the slopes of l0 and ln+1. The arrangement with321

pseudo-lines l0, l1, . . . , ln, ln+1 is still approaching. Initialize S with these n+2 pseudo-lines.322

For each 0 ≤ i ≤ n and each λ ∈ (0, 1) add the pseudo-line λli(x) + (1−λ)li+1(x) to S. The323

proof of Lemma 5 implies that any two pseudo-lines in S are approaching. Finally, let p be324

the intersection point of l0 and ln+1 and add all the lines containing p and some point above325

these two lines to S. This completes the construction of the spread S.326

4 Approaching generalized configurations327

Levi’s lemma is the workhorse in the proofs of many properties of pseudo-line arrangements.328

Among these, there is the so-called double dualization by Goodman and Pollack [10] that cre-329

ates, for any arrangement of pseudo-lines, a corresponding primal generalized configuration330

of points.331

A generalized configuration of points is an arrangement of pseudo-lines with a specified332

set of n vertices, called points, such that any pseudo-line passes through two points, and,333

at each point, n − 1 pseudo-lines cross. We assume for simplicity that there are no other334

vertices in which more than two pseudo-lines of the arrangement cross.335

Let C = (A, P ) be a generalized configuration of points consisting of an approaching336

arrangement A, and a set of points P = {p1, . . . , pn}, which are labeled by increasing x-337

coordinate. We denote the pseudo-line of A connecting points pi, pj ∈ P by pij .338

Consider a point moving from top to bottom at left infinity. This point traverses all339

the pseudo-lines of A in some order. We claim that if we start at the top with the identity340
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permutation π = (1, . . . , n), then, when passing pij we can apply the (adjacent) transposition341

(i, j) to π. Moreover, by recording all the permutations generated during the move of the342

point we obtain an allowable sequence ΠC .343

Consider the complete graph KP on the set P . Let c be an unbounded cell of the344

arrangement A, when choosing c as the north-face of A we get a left to right orientation345

on each pij . Let this induce the orientation of the edge {i, j} of KP . These orientations346

constitute a tournament on P . It is easy to verify that this tournament is acyclic, i.e., it347

induces a permutation πc on P .348

• The order π corresponding to the top cell equals the left-to-right order on P . Since349

we have labeled the points by increasing x-coordinate this is the identity.350

• When traversing pij to get from a cell c to an adjacent cell c′ the two orientations of351

the complete graph only differ in the orientation of the edge {i, j}. Hence, πc and πc352

are related by the adjacent transposition (i, j).353

The allowable sequence ΠC and the allowable sequence of A are different objects, they354

differ even in the length of the permutations.355

We say that an arrangement of pseudo-lines is dual to a (primal) generalized configura-356

tion of points if they have the same allowable sequence. Goodman and Pollack [10] showed357

that for every pseudo-line arrangement there is a primal generalized configuration of points,358

and vice versa. We prove the same for the sub-class of approaching arrangements.359

Lemma 7. For every generalized configuration C = (A, P ) of points on an approaching360

arrangement A, there is an approaching arrangement A∗ with allowable sequence ΠC.361

Proof. Let ΠC = π0, π1, . . . , πh. We call (i, j) the adjacent transposition at g when πg =362

(i, j)◦πg−1. To produce a polygonal approaching arrangement A∗ we define the y-coordinates363

of the pseudo-lines `1, . . . , `n at x-coordinates i ∈ [h]. Let (i, j) be the transposition at g.364

Consider the pseudo-line pij of C. Since pij is x-monotone we can evaluate pij(x). The365

y-coordinate of the pseudo-line `k dual to the point pk = (xk, yk) at x = g is obtained as366

yg(k) = pij(xk).367

We argue that the resulting pseudo-line arrangement is approaching. Let (i, j) and (s, t)368

be transpositions at g and g′, respectively, and assume g < g′. We have to show that369

yg(a) − yg(b) ≥ yg′(a) − yg′(b), for all 1 ≤ a < b ≤ n. From a < b it follows that pa370

is left of pb, i.e., xa < xb. The pseudo-lines pij and pst are approaching, hence pij(xa) −371

pst(xa) ≥ pij(xb) − pst(xb), i.e., pij(xa) − pij(xb) ≥ pst(xa) − pst(xb), which translates to372

yg(a)− yg(b) ≥ yg′(a)− yg′(b). This completes the proof.373

Goodman and Pollack use the so-called double dualization to show how to obtain a374

primal generalized configuration of points for a given arrangement A of pseudo-lines. In this375

process, they add a pseudo-line through each pair of crossings in A, using Levi’s enlargement376

lemma. This results in a generalized configuration C′ of points, where the points are the377

crossings of A. From this, they produce the dual pseudo-line arrangement A′. Then, they378

repeat the previous process for A′ (that is, adding a line through all pairs of crossings379

of A′). The result is a generalized configuration C of points, which they show being the380

primal generalized configuration of A. With Theorem 4 and Lemma 7, we know that both381

the augmentation through pairs of crossings and the dualization process can be done such382

that we again have approaching arrangements, yielding the following result.383

Lemma 8. For every arrangement of approaching pseudo-lines, there is a primal generalized384

configuration of points whose arrangement is also approaching.385
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Combining Lemmas 7 and 8, we obtain the main result of this section.386

Theorem 6. An allowable sequence is the allowable sequence of an approaching general-387

ized configuration of points if and only if it is the allowable sequence of an approaching388

arrangement.389

5 Realizability and counting390

Considering the freedom one has in constructing approaching arrangements, one may won-391

der whether actually all pseudo-line arrangements are x-isomorphic to approaching arrange-392

ments. As we will see in this section, this is not the case. We use the following lemma, that393

can easily be shown using the construction from the proof of Lemma 1.394

Lemma 9. Given a simple suballowable sequence of permutations (id, π1, π2), where id is395

the identity permutation, the suballowable sequence is realizable with an arrangement of396

approaching pseudo-lines if and only if it is realizable as a line arrangement.397

Proof. Consider any realization A of the simple suballowable sequence with an arrangement398

of approaching pseudo-lines. Since the arrangement is simple, we can consider the pseudo-399

lines as being strictly approaching, due to Lemma 2. There exist two vertical lines v1 and400

v2 such that the order of intersections of the pseudo-lines with them corresponds to π1 and401

π2, respectively. We claim that replacing pseudo-line pi ∈ A by the line `i connecting the402

points (v1, pi(v1)) and (v2, pi(v2)) we obtain a line arrangement representing the suballowable403

sequence (id, π1, π2).404

To prove the claim we verify that for i < j the slope of `i is less than the slope of `j .405

Since A is approaching we have pi(v1) − pj(v1) ≥ pi(v2) − pj(v2), i.e., pi(v1) − pi(v2) ≥406

pj(v1)−pj(v2). The slopes of `i and `j are obtained by dividing both sides of this inequality407

by v1 − v2, which is negative.408

Asinowski [3] identified a suballowable sequence (id, π1, π2), with permutations of six409

elements which is not realizable with an arrangement of lines.410

Corollary 1. There exist simple suballowable sequences that are not realizable by arrange-411

ments of approaching pseudo-lines.412

With the modification of Asinowski’s example shown in Figure 4, we obtain an ar-413

rangement not having an isomorphic approaching arrangement. The modification adds two414

almost-vertical lines crossing in the north-cell such that they form a wedge crossed by the415

lines of Asinowski’s example in the order of π1. We do the same for π2. The resulting object416

is a simple pseudo-line arrangement, and each isomorphic arrangement contains Asinowski’s417

sequence.418

Corollary 2. There are pseudo-line arrangements for which there exists no isomorphic419

arrangement of approaching pseudo-lines.420

Aichholzer et al. [1] construct a suballowable sequence (id, π1, π2) on n lines such that421

all line arrangements realizing them require slope values that are exponential in the number422

of lines. Thus, also vertex coordinates in a polygonal representation as an approaching423

arrangement are exponential in n.424

Ringel’s Non-Pappus arrangement [19] shows that there are allowable sequences that are425

not realizable by straight lines. It is not hard to show that the Non-Pappus arrangement426

has a realization with approaching pseudo-lines. We will show that in fact the number of427

approaching arrangements, is asymptotically larger than the number of arrangements of428

lines.429
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6

Figure 4: A part of a six-element pseudo-line arrangement (bold) whose suballowable se-
quence (indicated by the vertical lines) is non-realizable (adapted from [3, Fig. 4]). Adding
the two thin pseudo-lines crossing in the vicinity of the vertical line crossed by the pseudo-
lines in the order of π1 and doing the same for π2 enforces that the allowable sequence of
any isomorphic arrangement contains the subsequence (id, π1, π2).

Theorem 7. There exist 2Θ(n2) isomorphism classes of simple arrangements of n approach-430

ing pseudo-lines.431

Proof. The upper bound follows from the number of non-isomorphic arrangements of pseudo-432

lines. Our lower-bound construction is an adaptation of the construction presented by433

Matoušek [16, p. 134] for general pseudo-line arrangements. See the left part of Figure 5434

for a sketch of the construction. We start with a construction containing parallel lines that435

we will later perturb. Consider a set V of vertical lines vi : x = i, for i ∈ [n]. Add horizontal436

pseudo-lines hi : y = i2, for i ∈ [n]. Finally, add parabolic curves pi : y = (x + i)2 − ε,437

defined for x ≥ 0, some 0 < ε � 1, and i ∈ [n] (we will add the missing part towards left438

infinity later). Now, pi passes slightly below the crossing of hi+j and vj at (j, (i+ j)2). See439

the left part Figure 5 for a sketch of the construction. We may modify pi to pass above the440

crossing at (j, (i + j)2) by replacing a piece of the curve near this point by a line segment441

with slope 2(i + j); see the right part of Figure 5. Since the derivatives of the parabolas442

are increasing and the derivatives of pi+1 at j − 1 and of pi−1 at j + 1 are both 2(j + i)443

the vertical distances from the modified pi to pi+1 and pi−1 remain increasing, i.e., the444

arrangement remains approaching.445

For each crossing (j, (i+ j)2), we may now independently decide whether we want pi to446

pass above or below the crossing. The resulting arrangement contains parallel and vertical447

lines, but no three points pass through a crossing. This means that we can slightly perturb448

the horizontal and vertical lines such that the crossings of a horizontal and a vertical remain449

in the vicinity of the original crossings, but no two lines are parallel, and no line is vertical.450

To finish the construction, we add rays from the points on pi with x = 0, each having the451

slope of pi at x = 0. Each arrangement of the resulting class of arrangements is approaching.452

We have Θ(n2) crossings for which we make independent binary decisions. Hence the class453

consists of 2Θ(n2) approaching arrangements of 3n pseudo-lines.454

As there are only 2Θ(n logn) isomorphism classes of simple line arrangements [12], we see455

that we have way more arrangements of approaching pseudo-lines.456

The number of allowable sequences is 2Θ(n2 logn) [20]. We show next that despite of the457

existence of nonrealizable suballowable sequences (Corollary 1), the number of allowable458
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Figure 5: A construction for an 2Ω(n2) lower bound on the isomorphism classes of approach-
ing arrangements.

sequences for approaching arrangements, i.e., the number of x-isomorphism classes of these459

arrangements, is asymptotically the same as the number of all allowable sequences.460

Theorem 8. There are 2Θ(n2 logn) allowable sequences realizable as arrangements of ap-461

proaching pseudo-lines.462

Proof. The upper bound follows from the number of allowable sequences. For the lower463

bound, we use the construction in the proof of Theorem 7, but omit the vertical lines. Hence,464

we have the horizontal pseudo-lines hi : y = i2 and the paraboloid curves pi : y = (x+i)2−ε,465

defined for x ≥ 0 and 0 < ε� 1. For a parabolic curve pi and a horizontal line hi+j , consider466

the neighborhood of the point (j, (i+ j)2). Given a small value α we can replace a piece of467

pi by the appropriate line segment of slope 2(i + j) such that the crossing of hi+j and the468

modified pi has x-coordinate j − α.469

For fixed j and any permutation π of [n − j] we can define values αi for i ∈ [n − j]470

such that απ(1) < απ(2) < . . . απ(n−j). Choosing the offset values αi according to different471

permutations π yields different vertical permutations in the neighborhood of x = j, i.e., the472

allowable sequences of the arrangements differ. Hence, the number allowable sequences of473

approaching arrangements is at least the superfactorial
∏n
j=1 j!, which is in 2Ω(n2 logn).474

We have seen that some properties of arrangements of lines are inherited by approaching475

arrangements. It is known that every simple arrangement of pseudo-lines has n−2 triangles,476

the same is true for non-simple non-trivial arrangements of lines, however, there are non-477

simple non-trivial arrangements of pseudo-lines with fewer triangles, see [7]. We conjecture478

that in this context approaching arrangements behave like line arrangements.479

Conjecture 1. Every non-trivial arrangement of n approaching pseudo-lines has at least480

n− 2 triangles.481
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6 Approaching Arrangements in 3D482

We have seen that approaching arrangements of pseudolines form an interesting class of483

arrangements of pseudolines. In this section we study the 3-dimensional version, this requires484

quite some technicalities. Therfore, before entering the detailed treatment of the subject we485

give an informal description of the results.486

We consider pseudo-planes as functions f : R2 7→ R. An arrangement of pseudo-planes487

is approaching if we can shift the pseudoplanes up and down independently and maintain488

the property that they form an arrangement.489

Consider an arrangement of approaching pseudo-lines f1, f2, . . . , fn. Considering the490

slopes of the pseudo-lines over any point x we have s1 ≤ s2 ≤ . . . ≤ sn, i.e., the point491

(s1, . . . , sn) is in the closure of the set of points with s1 < s2 < . . . < sn. We can sloppily492

state this as: The order of slopes is in the closure of the identity permutation. Now think493

of permutations as labeled Euclidean order types in one dimension.494

In the case of arrangements of pseudo-planes we can talk about the tangent planes over495

a point (x, y) or, equivalently about the normals of the tangent planes. A set n1, n2, . . . , nk496

of normals can equivalently be viewed as a labeled set of points in the plane. This set of497

points is an order type. It turns out that an approaching arrangement of pseudo-planes can498

be characterized by a non-degenerate order type χ in the sense that for every point (x, y) in499

the plane the order type of the normals over this point is in the closure of χ.500

This ends the informal part.501

An arrangement of pseudo-planes in R3 is a finite set A of function fi : R2 7→ R such that502

the intersection of any two of them projects to a pseudoline in R2 and the intersection of any503

three of them is a point. We define arrangements of approaching pseudo-planes via one of504

the key properties observed for arrangements of approaching pseudo-lines (Observation 1).505

An arrangement of approaching pseudo-planes in R3 is an arrangement of pseudo-planes506

h1, . . . , hn where each pseudo-plane hi is the graph of a continuously differentiable function507

fi : R2 7→ R such that for any c1, . . . , cn ∈ R, the graphs of f1 + c1, . . . , fn + cn form a508

valid arrangement of pseudo-planes. This means that we can move the pseudo-planes up509

and down along the z-axis while maintaining the properties of a pseudo-plane arrangement.510

Clearly, arrangements of planes (no two of them parallel) are approaching.511

Let G be a collection of graphs of continuously differentiable functions fi : R2 7→ R.512

For any point (x, y) in R2, let ni(x, y) be the upwards normal vector of the tangent plane513

of fi above (x, y). We consider the vectors ni(x, y) as points pi(x, y) in the plane with514

homogeneous coordinates. (That is, for each vector we consider the intersection of its ray515

with the plane z = 1.) We call pi(x, y) a characteristic point and let PG(x, y) be the set516

of characteristic points. The Euclidean order type of the point multiset PG(x, y) is the517

characteristic order type of G at (x, y), it is denoted χG(x, y).518

We denote by χG the set of characteristic order types of G on the whole plane, that is,519

χG = {χG(x, y)|(x, y) ∈ R2}. We say that χG is admissible if the following conditions hold:520

(1) for any two points (x1, y1) and (x2, y2) in the plane, we have that if an ordered triple of521

characteristic points in PG(x1, y1) is positively oriented, then the corresponding triple522

in PG(x2, y2) is either positively oriented or collinear;523

(2) for any triple p1, p2, p3 of characteristic points, the set of points in the plane for which524

p1, p2, p3 are collinear is either the whole plane or a discrete set of points (i.e, for each525

(x, y) in this set there is some ε > 0 such that the ε-disc around (x, y) contains no526

further point of the set);527
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(3) for any pair p1, p2 of characteristic points, the set of points in the plane for which528

p1 = p2 has dimension 0 or 1 (this implies that for each (x, y) in this set and each529

ε > 0 the ε-disc around (x, y) contains points which are not in the set).530

From the above conditions, we deduce another technical but useful property of admissible531

characteristic order types.532

Lemma 10. Let χG be an admissible order type and |G| ≥ 3. For any pair p1, p2 ∈ χG and533

for every point (x0, y0) in the plane for which p1 = p2 there is a neighborhood N such that534

for V = {p2(x, y)− p1(x, y) : (x, y) ∈ N}, the positive hull of V contains no line.535

Proof. Choose p3 such that p3(x0, y0) 6= p1(x0, y0) = p2(x0, y0). In a small neighborhood N536

of (x0, y0) point p3 will stay away from the line spanned by p1 and p2 (continuity). If in N537

the positive hull of V contains a line, then the orientation of p1, p2, p3 changes from positive538

to negative in N , this contradicts condition (1) of admissible characteristic order types.539

Theorem 9. Let G be a collection of graphs of continuously differentiable functions fi :540

R2 7→ R. Then G is an arrangement of approaching pseudo-planes if and only if χG is541

admissible and all the differences between two functions are surjective.542

Proof. Note that being surjective is a necessary condition for the difference of two functions,543

as otherwise we can translate them until they do not intersect. Thus, in the following, we544

will assume that all the differences between two functions are surjective. We first show that545

if χG is admissible then G is an arrangement of approaching pseudo-planes. Suppose G is not546

an arrangement of approaching pseudo-planes. Suppose first that there are two functions547

f1 and f2 in G whose graphs do not intersect in a single pseudo-line. Assume without548

loss of generality that f1 = 0, i.e., f1 is the constant zero function. Let f1 ∩ f2 denote the549

intersection of the graphs of f1 and f2. If the intersection has a two-dimensional component,550

the normal vectors of the two functions are the same for any point in the relative interior of551

this component, which contradicts condition (3), so from now on, we assume that f1 ∩ f2 is552

at most one-dimensional. Also, note that due to the surjectivity of f2 − f1, the intersection553

f1 ∩ f2 is not empty. Note that if f1 ∩ f2 is a single pseudo-line then for every r ∈ f1 ∩ f2554

there exists a neighborhood N in f1 such that f1 ∩ f2 ∩ N is a pseudo-segment. Further,555

on one side of the pseudo-segment, f1 is below f2, and above on the other, as otherwise we556

would get a contradiction to Lemma 10. In the next two paragraphs we argue that indeed557

f1 ∩ f2 is a single pseudo-line. In paragraph (a) we show that for every r ∈ f1 ∩ f2 the558

intersection locally is a pseudo-segment; in (b) we show that f1 ∩ f2 contains no cycle and559

that f1 ∩ f2 has a single connected component.560

(a) Suppose for the sake of contradiction that f1 ∩ f2 contains a point r such that for561

every neighborhood N of r in f1 we have that f1 ∩ f2 ∩ N is not a pseudo-segment. For562

ε > 0 let Nε be the ε-disc around r. Consider ε small enough such that f1 ∩ f2 ∩Nε consists563

of a single connected component. Further, let ε be small enough such that whenever we564

walk away from r in a component where f2 is above (below) f1, the difference f2 − f1 is565

monotonically increasing (decreasing). The existence of such an ε follows from the fact that566

f1 and f2 are graphs of continuously differentiable functions. Then f1∩f2 partitions Nε into567

several connected components C1, . . . , Cm, ordered in clockwise order around r. In each of568

these components, f2 is either above or below f1, and this sidedness is different for any two569

neighboring components. In particular, the number of components is even, that is, m = 2k,570

for some natural number k. We will distinguish the cases where k is even and odd, and in571

both cases we will first show that at r we have p1 = p2 and then apply Lemma 10.572

We start with the case where k is even. Consider a differentiable path γ starting in Ci,573

passing through r and ending in Ck+i. As k is even, f2 is above f1 in Ci if and only if f2 is574
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p2(a)− p1(a)

Ci

Figure 6: A component Ci induces many directions of p2 − p1.

also above f1 in Ck+i. In particular, the directional derivative of f2−f1 for γ at r is 0. This575

holds for every choice of i and γ, thus at r all directional derivatives of f2− f1 vanish. This576

implies that at r the normal vectors of f1 and f2, coincide, hence p1 = p2. Now, consider577

the boundary of Ci. Walking along this boundary, f2−f1 is the constant zero function, and578

thus the directional derivatives vanish. Hence, at any point on this boundary, p2 − p1 must579

be orthogonal to the boundary, pointing away from Ci if f2 is above f1 in Ci, and into Ci580

otherwise. Let now a and b be the intersections of the boundary of Ci with the boundary of581

Nε. The above argument gives us two directions of vectors, p2(a)− p1(a) and p2(b)− p1(b),582

and a set of possible directions of vectors p2(c)−p1(c), c ∈ Ci, between them. By continuity,583

all of these directions must be taken somewhere in Ci (see Figure 6 for an illustration). Let584

now C+ be the set of all components where f2 is above f1, and let D+ be the set of all585

directions of vectors p2(c) − p1(c), c ∈ C+. Further, let V+ be the set of rays emanating586

from r which are completely contained in C+. By continuity, for every small enough ε, there587

are two rays in V+ which together span a line. It now follows from the above arguments,588

that for these ε, the directions in D+ also positively span a line. This is a contradiction to589

Lemma 10.590

Let us now consider the case where k is odd. Consider the boundary between C2k and591

C1 and denote it by γ1. Similarly, let γ2 be the boundary between Ck and Ck+1. Let now γ592

be the path defined by the union of γ1 and γ2 and consider the vectors p2−p1 when walking593

along γ. Assume without loss of generality that C1 ∈ C+, and thus C2k, Ck+1 ∈ C− and594

Ck ∈ C+. Analogous to the arguments in the above case, along γ the vectors p2 − p1 are595

orthogonal to γ, pointing from C+ into C−. In particular, they always point to the same596

side of γ. However, at r the path γ is also incident to C2 ∈ C− and to Ck+2 ∈ C+. The597

same argument now shows that at r, the vector p2(r) − p1(r) must point from Ck+2 into598

C2, that is, into the other side of γ. This is only possible if p2(r)− p1(r) = 0, and thus, as599

claimed, we again have p1 = p2 at r. We can now again consider the set of directions D+,600

and this time, for every small enough ε, the set D+ is the set of all possible directions (see601

Figure 7 for an illustration), which is again a contradiction to Lemma 10. This concludes602

the proof of claim (a).603

(b) Suppose that the intersection f1∩f2 contains a cycle. In the interior of the cycle, one604

function is above the other, so we can vertically translate it until the cycle contracts to a605

point, which again leads to a contradiction to Lemma 10. Now suppose that the intersection606

contains two disjoint pseudo-lines. Between the pseudo-lines, one function is above the other,607

so we can vertically translate it until the pseudo-lines cross or coincide. If they cross, we are608

again in the case discussed in (a) and get a contradiction to Lemma 10. If they coincide,609

f2 − f1 has the same sign on both sides of the resulting pseudo-line which again leads to a610

contradiction to Lemma 10.611
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Figure 7: D+ spans a line for k even (left) and contains all directions for k odd (right).

Thus, we have shown that if χG is admissible then any two pseudo-planes in G intersect612

in a single pseudo-line.613

Now consider three functions f1, f2, f3 such that any two intersect in a pseudo-line but614

the three do not form a pseudo-hyperplane arrangement. Then in one of the three functions,615

say f1, the two pseudo-lines defined by the intersections with the other two functions do616

not form an arrangement of two pseudo-lines; after translation, we can assume that they617

touch at a point or intersect in an interval. First assume that they touch at a point. At618

this touching point, one normal vector of tangent planes is the linear combination of the619

other two: assume again without loss of generality that f1 = 0. Further assume without620

loss of generality that the curves f2 ∩ f1 and f3 ∩ f1 touch at the point (0, 0) and that the621

x-axis is tangent to f2 ∩ f1 at this point. Then, as the two curves touch, the x-axis is also622

tangent to f3 ∩ f1. In particular, the normal vectors to both f2 and f3 lie in the y-z-plane.623

As the normal vector to f1 lies on the z-axis, the three normal vectors are indeed linearly624

dependent. For the order type, this now means that one vector is the affine combination625

of the other two, i.e., the three vectors are collinear. Further, on one side of the point the626

three vectors are positively oriented, on the other side they are negatively oriented, which627

is a contradiction to condition (1). On the other hand, if they intersect in an interval, then628

the set of points where the vectors are collinear has dimension greater than 0 but is not the629

whole plane, which is a contradiction to condition (2).630

This concludes the proof that if χG is admissible then G is an arrangement of approaching631

pseudo-planes.632

For the other direction consider an approaching arrangement of pseudo-planes and as-633

sume that χG is not admissible. First, assume that condition (1) is violated, that is, there634

are three pseudo-planes f1, f2, f3 whose characteristic points p1, p2, p3 change their orien-635

tation from positive to negative. In particular, they are collinear at some point. Assume636

without loss of generality that f2 and f3 are planes containing the origin whose characteristic637

points are thus constant, and assume without loss of generality that they are p2 = (0, 1) and638

p3 = (0,−1). In particular, the intersection of f2 and f3 is the x-axis in R3. Consider now639

a ε-disc B around the origin in R2 and let B<, B0 and B> be the subsets of B with x < 0,640

x = 0 and x > 0, respectively. Assume without loss of generality that in B the characteristic641

point p1 is to the left of the y-axis in B<, to the right in B>, and on the y-axis in B0. Also,642
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assume that f1 contains the origin in R3. But then, f1 is below the (x, y)-plane everywhere643

in B. In particular, f1 touches f2 ∩ f3 in a single point, namely the origin. Hence, f1 ∩ f3644

and f2 ∩ f3 is not an arrangement of two pseudo-lines in f3.645

Similar arguments show that646

1. if condition (2) is violated, then after some translation the intersection of some two647

pseudo-planes in a third one is an interval,648

2. if condition (3) is violated, then after some translation the intersection of some two649

pseudo-planes has a two-dimensional component,650

651

On the other hand, from the above it does not follow to what extent an arrangement652

of approaching pseudo-planes is determined by its admissible family of characteristic order653

types. In particular, we would like to understand which admissible families of order types654

correspond to families of characteristic order types. To that end, note that for every graph655

in an arrangement of approaching pseudo-planes, the characteristic points define a vector656

field Fi : R2 7→ R2, namely its gradient vector field (a normal vector can be written as657

(df(x),df(y),−1).) In particular, the set of all graphs defines a map φ(i, x, y) with the658

property that φ(i, ·, ·) = Fi and the order type of φ(·, x, y) is χG(x, y). We call the family of659

vector fields obtained by this map the characteristic field of G. A classic result from vector660

analysis states that a vector field is a gradient vector field of a scalar function if and only if661

it has no curl. We thus get the following result:662

Corollary 3. Let (F1, . . . , Fn) be a family of vector fields. Then (F1, . . . , Fn) is the char-663

acteristic field of an arrangement of approaching pseudo-planes if and only if each Fi is664

curl-free and for each (x, y) ∈ R2, the set of order types defined by F1(x, y), . . . , Fn(x, y) is665

admissible.666

Let now G = (g1, . . . , gn) be an arrangement of approaching pseudo-planes. A natural667

question is, whether G can be extended, that is, whether we can find a pseudo-plane gn+1668

such that (g1, . . . , gn, gn+1) is again an arrangement of approaching pseudo-planes. Consider669

the realization of χG(x, y) for some (x, y) ∈ R2. Any two points in this realization define670

a line. Let A(x, y) be the line arrangement defined by all of these lines. Note that even if671

χG(x, y) is the same order type for every (x, y) ∈ R2, the realization might be different and672

thus there might be a point (x′, y′) ∈ R2 such that A(x′, y′) is not isomorphic to A(x, y).673

For an illustration of this issue, see Figure 8. (This issue also comes up in the problem of674

extension of order types, e.g. in [18], where the authors count the number of order types675

with exactly one point in the interior of the convex hull.)676

We call a cell of A(x, y) admissible, if its closure is not empty in A(x′, y′) for every677

(x′, y′) ∈ R2. Clearly, if we can extend G with a pseudo-plane gn+1, then the characteristic678

point p of the normal vector nn+1(x, y) must lie in an admissible cell c. On the other679

hand, as c is admissible, it is possible to move p continuously in c, and if all the vector680

fields (F1, . . . , Fn) are curl-free, then so is the vector field Fn+1 obtained this way. Thus,681

Fn+1 is the vector field of a differentiable function fn+1 and by Corollary 3, its graph gn+1682

extends G. In particular, G can be extended if and only if A(x, y) contains an admissible683

cell. As the cells incident to a characteristic point are always admissible, we get that every684

arrangement of approaching pseudo-planes can be extended. Furthermore, by the properties685

of approaching pseudo-planes, gn+1 can be chosen to go through any given point p in R3.686

In conclusion, we get the following:687
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Figure 8: Two different arrangements induced by the same order type.

Theorem 10. Let G = (g1, . . . , gn) be an arrangement of approaching pseudo-planes and688

let p be a point in R3. Then there exists a pseudo-plane gn+1 such that (g1, . . . , gn, gn+1) is689

an arrangement of approaching pseudo-planes and p lies on gn+1.690

On the other hand, it could possible that no cell but the ones incident to a characteristic691

point are admissible, heavily restricting the choices for gn+1. In this case, every pseudo-692

plane that extends G is essentially a copy of one of the pseudo-planes of G. For some order693

types, there are cells that are not incident to a characteristic point but still appear in every694

possible realization, e.g. the unique 5-gon defined by 5 points in convex position. It is an695

interesting open problem to characterize the cells which appear in every realization of an696

order type.697

7 Conclusion698

In this paper, we introduced a type of pseudo-line arrangements that generalize line ar-699

rangements, but still retain certain geometric properties. One of the main algorithmic open700

problems is deciding the realizability of a pseudo-line arrangement as an isomorphic ap-701

proaching arrangement. Further, we do not know how projective transformations influence702

this realizability. The concept can be generalized to higher dimensions. Apart from the703

properties we already mentioned in the introduction, we are not aware of further non-trivial704

observations. Eventually, we hope for this concept to shed more light on the differences705

between pseudo-line arrangements and line arrangements. For higher dimensions, we gave706

some insight into the structure of approaching hyperplane arrangements via the order type707

defined by their normal vectors. It would be interesting to obtain further properties of this708

setting.709

References710

[1] O. Aichholzer, T. Hackl, S. Lutteropp, T. Mchedlidze, A. Pilz, and B. Vogtenhuber.711

Monotone simultaneous embeddings of upward planar digraphs. J. Graph Algorithms712

Appl., 19(1):87–110, 2015.713

[2] M. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer, 5th edition, 2014.714

[3] A. Asinowski. Suballowable sequences and geometric permutations. Discrete Math.,715

308(20):4745–4762, 2008.716

19



[4] A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler. Oriented Matroids,717

volume 46 of Encycl. Math. Appl. Cambridge Univ. Press, 1993.718

[5] D. Eppstein. Drawing arrangement graphs in small grids, or how to play planarity. J.719

Graph Algorithms Appl., 18(2):211–231, 2014.720

[6] D. Eppstein, M. van Garderen, B. Speckmann, and T. Ueckerdt. Convex-arc drawings721

of pseudolines. arXiv, 1601.06865, 2016.722

[7] S. Felsner and K. Kriegel. Triangles in Euclidean arrangements. Discrete Comput.723

Geom., 22(3):429–438, 1999.724

[8] J. E. Goodman. Proof of a conjecture of Burr, Grünbaum, and Sloane. Discrete Math.,725
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