Colorings of Diagrams of Interval Orders and α -Sequences of Sets

STEFAN FELSNER¹ and WILLIAM T. TROTTER²

- ¹ Fachbereich Mathematik, TU-Berlin, Straße des 17. Juni 135, 1000 Berlin 12, Germany, partially supported by the DFG,
 E-mail: felsner@math.tu-berlin.de
- ² Bell Communications Research, 445 South Street 2L-367, Morristown, NJ 07962, U.S.A., and Department of Mathematics, Arizona State University, Tempe AZ 85287, U.S.A. E-mail: wtt@bellcore.com

Abstract. We show that a proper coloring of the diagram of an interval order I may require $1 + \lceil \log_2 \operatorname{height}(I) \rceil$ colors and that $2 + \lceil \log_2 \operatorname{height}(I) \rceil$ colors always suffice. For the proof of the upper bound we use the following fact: A sequence C_1, \ldots, C_h of sets (of colors) with the property

(α) $C_j \not\subseteq C_{i-1} \cup C_i \text{ for all } 1 < i < j \leq h.$

can be used to color the diagram of an interval order with the colors of the C_i . We construct α -sequences of length $2^{n-2} + \lfloor \frac{n-1}{2} \rfloor$ using *n* colors. The length of α -sequences is bounded by $2^{n-1} + \lfloor \frac{n-1}{2} \rfloor$ and sequences of this length have some nice properties. Finally we use α -sequences for the construction of long cycles between two consecutive levels of the Boolean lattice. The best construction known until now could guarantee cycles of length $\Omega(N^c)$ where N is the number of vertices and $c \approx 0.85$. We exhibit cycles of length $\geq \frac{1}{4}N$.

Mathematics Subject Classifications (1991). 06A07, 05C35.

Key Words. Interval order, diagram, chromatic number, Hamiltonian path, Boolean lattice.

1. Introduction and Overview

For a nonnegative integer k, let I_k be the interval order defined by the open intervals with endpoints in $\{1, \ldots, 2^k\}$. It has height $2^k - 1$ and is isomorphic to the *canonical* interval order of this height (see Fürédi, Hajnal, Rödl and Trotter [1] for canonical interval orders).

Two vertices v and w in I_k are a *cover*, denoted by $v \prec w$, exactly if the right endpoint of the interval of v equals the left endpoint of the interval of w. The diagram D_{I_k} of I_k is thus recognized as the *shift graph* $\mathcal{G}(2^k, 2)$ (see [1] for shift graphs). In general we denote by D_I the diagram of an interval order I, and we denote the chromatic number of the diagram by $\chi(D_I)$.

We include the (well-known) proof of the next lemma since we will need similar methods in later arguments.

LEMMA 1.1.

$$\chi(D_{I_k}) = \lceil \log_2 \operatorname{height}(I_k) \rceil = k$$

Proof. Suppose we have a proper coloring of D_{I_k} with colors $\{1, \ldots, c\}$. With each point i associate the set C_i of colors used for the intervals having their right endpoint at i. Note that $C_1 = \emptyset$. For $1 \leq i < j \leq 2^k$, we have $C_j \not\subseteq C_i$; otherwise the interval (i, j) would have the same color as some interval (l, i). This proves that all of the 2^k subsets C_i of $\{1, \ldots, c\}$ are distinct; therefore $2^c \geq 2^k$ and $c \geq k$.

A coloring of D_{I_k} using k colors can be obtained by the following construction. Take a linear extension of the Boolean lattice \mathcal{B}_k and let C_i be the i^{th} set in this list. Assign to the interval (i, j) any color from $C_j \setminus C_i$. A coloring obtained in this way is easily seen to be proper.

We derive a remark for later use and a theorem from this construction.

REMARK 1.2. In a coloring of D_{I_k} which uses exactly k colors, every point $i \in \{1, ..., 2^k\}$ is incident with an interval of each color.

Proof. The crucial fact here is that every subset of $\{1, \ldots, k\}$ is the C_i for some *i*. Now choose any $i \in \{1, \ldots, 2^k\}$ and a color $c \in \{1, \ldots, k\}$, we have to show that an interval of color *c* is incident with *i*.

If $c \in C_i$, then this is immediate from the definition of C_i . Otherwise, i.e., if $c \notin C_i$, then there is a $j_c > i$ such that $C_{j_c} = C_i \cup \{c\}$ and the interval (i, j_c) is colored c. \Box

With the next lemma we improve the lower bound: There are interval orders I with $\chi(D_I) \ge 1 + \log_2(\operatorname{height}(I))$. Compared with Lemma 1.1, this is a minor improvement, but we feel it worth stating, since later we will prove an upper bound of $2 + \log_2(\operatorname{height}(I))$ on the chromatic number of the diagram of I.

LEMMA 1.3. For each k there is an interval order I_k^* such that

$$\chi(D_{I_k^*}) \ge 1 + \left\lceil \log_2 \operatorname{height}(I_k^*) \right\rceil = k$$

Proof. Take I_k^* as the order obtained from I_k (see Lemma 1.1) by removing the intervals of odd length, i.e., the interval order defined by the open intervals (i, j) with $i, j \in \{1, \ldots, 2^k\}$ and $j - i \equiv 0 \pmod{2}$. The height of I_k^* is $2^{k-1} - 1$ which is the height of I_{k-1} ; however, as we are now going to prove, a proper coloring of I_k^* requires at least k colors. Note that two intervals (i_1, j_1) and (i_2, j_2) with $j_1 \leq i_2$ induce an edge in the diagram of I_k^* if either $j_1 = i_2$ or $j_1 = i_2 - 1$.

In I_k^* we find an isomorphic copy of I_{k-1} consisting of the intervals (i, j) with both iand j odd. Call this the odd I_{k-1} . The even I_{k-1} is defined by the interval (i, j) with iand j even. Let C_i be the set of colors used for intervals with right end-point 2i - 1, and

COLORINGS OF DIAGRAMS

let D_i be the set of colors used for intervals with right end-point 2i. From Lemma 1.1, we know that if both the odd and the even copy only need k-1 colors, then the C_i and the D_i have to form linear extensions of the Boolean lattice \mathcal{B}_{k-1} . Now define $\overline{C_i}$ as the set of colors used for intervals with left-endpoint 2i-1. From Remark 1.2, we know that $\overline{C_i}$ is exactly the complement of C_i . With the corresponding definition, $\overline{D_i}$ and D_i are seen to be complementary sets as well. Note that a proper coloring requires $C_i \cap \overline{D_i} = \emptyset$. We therefore have $C_i \subseteq D_i$. A similar argument gives $D_i \subseteq C_{i+1}$. Altogether we find that the C_i have to be a linear extension of \mathcal{B}_{k-1} with $C_i \subseteq C_{i+1}$ for all i. This is impossible. The contradiction shows that at least k colors are required.

Now we turn to the upper bound which we view as the more interesting aspect of the problem.

THEOREM 1.4. If I is an interval order, then

$$\chi(D_I) \le 2 + \log_2 \operatorname{height}(I)$$

Proof. In this first part of the proof, we convert the problem into a purely combinatorial one. The next section will then deal with the derived problem.

Let I = (V, <) be an interval order of height h, given together with an interval representation. For $v \in V$, let $(l_v, r_v]$ (left open, right closed) be the corresponding interval. With respect to this representation, we distinguish the 'leftmost' h-chain in I. This chain consists of the elements x_1, \ldots, x_h where x_i has the leftmost right-endpoint r_v among all elements of height i. It is easily checked that x_1, \ldots, x_h is indeed a chain. Now let $r_i = r_{x_i}$ be the right endpoint of x_i 's interval and define a partition of the real axis into blocks. The i^{th} block is

$$B(i) = [r_i, r_{i+1}).$$

This definition is made for i = 0, ..., h with the convention that B(0) extends to minus infinity and B(h) to plus infinity.

In some sense these blocks capture a relevant part of the structure of I. This is exemplified by two properties.

- The elements v with $r_v \in B(i)$ are an antichain for each i. This gives a minimal antichain partition of I.
- If $r_v \in B(j)$, then $l_v \in B(i)$ for some *i* less than *j*.

Suppose we are given a sequence C_1, \ldots, C_h of sets (of colors) with the following property

(
$$\alpha$$
) $C_j \not\subseteq C_{i-1} \cup C_i$ for all $1 < i < j \le h$.

A sequence with this property will henceforth be called an α -sequence. The α -sequence C_1, \ldots, C_h may be used to color the diagram D_I with the colors occurring in the C_i .

The rule is: to an element $v \in V$ with $l_v \in B(i)$ and $r_v \in B(j)$ assign any color from $C_j \setminus (C_{i-1} \cup C_i)$. This set of colors is nonempty by the α property of the sequence C_i , since i < j. We claim that a coloring obtained this way is proper. Assume to the contrary that there is a covering pair $w \prec v$ such that w and v obtain the same color. Let $r_w \in B(k)$ and $l_v \in B(i)$. Since $w \prec v$, we know that $k \leq i$. Due to our coloring rule, we know that the color of w is an element of C_k and the color of v is not contained in $C_{i-1} \cup C_i$; hence k < i-1. This, however, contradicts our assumption that $w \prec v$, since $l_{x_i} \in B(i-1)$ and $l_v \geq r_{x_i} = r_i$ gives $w < x_i < v$.

We have thus reduced the original problem to the determination of the minimal number of colors which admits a α -sequence of length h. We will demonstrate in the next section, Lemma 2.1 and Lemma 2.3, how to construct a α -sequence of length $2^{n-2} + \lfloor \frac{n+1}{2} \rfloor$ using n colors. This will complete the proof of the theorem. \Box

In the third section we give an upper bound of $2^{n-1} + \lfloor \frac{n+1}{2} \rfloor$ for the maximal length of a α -sequence. From the proof, we derive some further properties α -sequences of this length necessarily satisfy. Finally we apply the construction of long α -sequences to the problem of finding long cycles between two consecutive levels of the Boolean lattice. A famous instance of this problem is the question whether there is a Hamiltonian cycle between the middle two levels of the Boolean lattice (see e.g. Kierstaed and Trotter [2] or Savage [3]. The best constructions known until now could guarantee cycles of length $\Omega(N^c)$ where N is the number of vertices and $c \approx 0.85$. We exhibit cycles of length $\geq \frac{1}{4}N$.

2. A Construction of Long α -Sequences

Let t(n,k) denote the maximal length of a sequence C_i of sets satisfying:

- $(1) \quad C_i \subseteq \{1, \ldots, n\},$
- (2) $|C_i| = k$ and
- (α) if i < j then $C_j \not\subseteq C_{i-1} \cup C_i$.

LEMMA 2.1.

$$t(n,k) \geq \binom{n-1}{k} + 1$$

Proof. The sequences actually constructed will have the additional property

(4) $|C_{i-1} \cup C_i| = k+1$ for all $i \ge 2$.

The proof is by induction. For all n and k = 1 or k = n the claim is obviously true.

Now suppose that two α -sequences as specified have been constructed on $\{1, \ldots, n-1\}$: first a sequence of k-sets $\mathcal{A} = A_1, \ldots, A_s$ of length $s = \binom{n-2}{k} + 1$, and second a sequence of (k-1)-sets $\mathcal{B} = B_1, \ldots, B_t$ of length $t = \binom{n-2}{k-1} + 1$. Property (4) guarantees that there is a permutation π of the colors such that $A_s = B_1^{\pi} \cup B_2^{\pi}$. Now let

$$C_{i} = \begin{cases} A_{i}, & \text{if } 1 \le i \le s \\ B_{i-s+1}^{\pi} \cup \{n\}, & \text{if } s+1 \le i \le s+t-1 \end{cases}$$

The length of the new sequence is $s + t - 1 = \binom{n-1}{k} + 1$. Properties (1) and (2) are obviously true for the sequence C_i and property (4) is true for both the \mathcal{A} and the \mathcal{B} sequence. These observations and the choice of π give property (4) for the \mathcal{C} sequence. It remains to verify property α . If i < j < s + 1, this property is inherited from the \mathcal{A} sequence. If s + 1 < i < j, it is inherited from the \mathcal{B} sequence. In case $i < s + 1 \leq j$, we have $n \in C_j$ and $n \notin C_{i-1} \cup C_i$. The remaining case is s + 1 = i < j. Here the choice of π and the sacrifice of B_1 show that $C_s \cup C_{s+1} = A_s \cup B_2^{\pi} \cup \{n\} = B_1^{\pi} \cup B_2^{\pi} \cup \{n\}$. Again the property α can be concluded from this property for the \mathcal{B} sequence.

For k = 2 and k = n - 1, we can prove that the inequality of Lemma 2.1 is tight, but in general the value of t(n, k) is open.

PROBLEM 2.2. Determine the true value of t(n,k).

Let T(n) denote the maximal length of a sequence C_i of sets satisfying:

- (1) $C_i \subseteq \{1, \ldots, n\}$ and
- (α) if i < j then $C_j \not\subseteq C_{i-1} \cup C_i$.

LEMMA 2.3.

$$T(n) \geq \sum_{\substack{k \leq n \\ k \text{ odd}}} \left(\binom{n-1}{k} + 1 \right) = 2^{n-2} + \left\lfloor \frac{n+1}{2} \right\rfloor$$

Proof. Let $\mathcal{L}(n,k)$ be the (n,k)-sequence constructed in the preceding lemma. We claim that $\mathcal{L} = \mathcal{L}^{\pi_1}(n,1) \oplus \mathcal{L}^{\pi_3}(n,3) \oplus \mathcal{L}^{\pi_5}(n,5) \oplus \ldots$ with appropriate permutations π_j is a α -sequence of subsets of $\{1,\ldots,n\}$. The π_k 's can be found recursively. $\pi_1 = id$ and if π_{k-2} has been determined, then π_k is chosen as a permutation such that the last set of the sequence $\mathcal{L}^{\pi_{k-2}}(n,k-2)$ is a subset of the first set of $\mathcal{L}^{\pi_k}(n,k)$. Let C_i be the i^{th} set in the sequence \mathcal{L} . We now check property α . If the three sets C_{i-1} , C_i and C_j are in the same subsequence $\mathcal{L}^{\pi_k}(n,k)$, then the property is inherited from this subsequence. If $C_i \in \mathcal{L}^{\pi_k}(n,k)$ and $C_j \in \mathcal{L}^{\pi_{k'}}(n,k')$ with $k \leq k'-2$, then $|C_{i-1} \cup C_i| < |C_j|$ is a consequence of property (4) for the subsequence $\mathcal{L}^{\pi_k}(n,k)$, and gives the claim in this case. There remains the situation where C_{i-1} is the last set of its subsequence. The choice of the π_k gives $C_{i-1} \subset C_i$ and the property reduces to $C_j \not\subseteq C_i$, which is obvious.

The length of \mathcal{L} is the sum over the length of the $\mathcal{L}^{\pi_k}(n,k)$ used in \mathcal{L} . This is the sum over $\binom{n-1}{k} + 1$ with k odd, which is $2^{n-2} + \lfloor \frac{n+1}{2} \rfloor$.

3. The Structure of Very Long α -Sequences

THEOREM 3.1. Let $C = C_1, \ldots, C_t$ be a α -sequence of subsets of $\{1, \ldots, n\}$. Then $t \leq 2^{n-1} + \left| \frac{n+1}{2} \right|$.

Proof. We start with some definitions. For $1 \le i \le t - 1$, let

$$S_{i} = \{ S : C_{i+1} \subset S \subseteq C_{i} \cup C_{i+1} \}$$
(1)

and $s_i = |S_i|$. Observe that with $r_i = |C_i \setminus C_{i+1}|$ we have the equation

$$s_i = 2^{r_i} - 1. (2)$$

We now prove two important properties of the sets S_i

- $S_i \cap S_j = \emptyset$ if $i \neq j$. Assume to the contrary that $S \in S_i \cap S_j$ and let i < j. From the definition of the S_i , we obtain $C_{j+1} \subset S \subseteq C_i \cup C_{i+1}$ which contradicts the α property of the sequence \mathcal{C} .
- C ∩ S_i = Ø for all i. Assume C_j ∈ S_i. If j ≤ i, then C_{i+1} ⊂ C_j gives a contradiction. If j = i + 1, note that C_{i+1} ∉ S_i from the definition. If j > i + 1, the contradiction comes from C_j ⊆ C_i ∪ C_{i+1}.

Therefore, \mathcal{C} and the S_i are pairwise disjoint subsets of \mathcal{B}_n . This gives the inequality

$$2^n \geq t + \sum_{i=1}^{t-1} s_i \tag{3}$$

We now partition the indices $\{1, \ldots, t-1\}$ into three classes

- $I_1 = \{i : |C_i| = |C_{i+1}|\};$ note that $i \in I_1$ implies $s_i \ge 1$.
- $I_2 = \{i : |C_i| < |C_{i+1}|\}; \text{ trivially } s_i \ge 0 \text{ for } i \in I_2.$
- $I_3 = \{i : |C_i| > |C_{i+1}|\}$; note that if $i \in I_3$, then the corresponding s_i is relatively large, i.e., $s_i \ge 2^{|C_i| |C_{i+1}| + 1} 1$. This estimate is a consequence of Equation 2 and the fact that C_{i+1} has to contain an element not contained in C_i .

First we investigate the case $I_3 = \emptyset$. This condition guarantees that the sizes of the sets in \mathcal{C} is a nondecreasing sequence. Since \mathcal{B}_n has n + 1 levels, the size of the sets in \mathcal{C} can increase at most n times, i.e., $|I_2| \leq n$ and $|I_1| \geq t - 1 - n$. It follows that:

$$2^{n} \geq t + \sum_{i \in I_{1}} s_{i} + \sum_{i \in I_{2}} s_{i} \geq t + |I_{1}| \geq t + (t - 1 - n)$$

This gives $2t \le 2^n + (n+1)$; hence $t \le 2^{n-1} + \lfloor \frac{n+1}{2} \rfloor$ in this case.

The case $I_3 \neq \emptyset$ is somewhat more complicated. Let the number of descending steps be d and $I_3 = \{i_1, \ldots, i_d\}$. Let m_{i_j} denote the number of levels the sequence is decreasing

COLORINGS OF DIAGRAMS

when going from C_{i_j} to C_{i_j+1} , i.e., $m_{i_j} = |C_{i_j}| - |C_{i_j+1}|$ and $s_{i_j} \ge 2^{m_{i_j}+1} - 1$. Again we can estimate the size of I_2 , namely $|I_2| \le n + \sum_{j=1}^d m_{i_j}$. It follows that:

$$2^{n} \geq t + \sum_{i \in I_{1}} s_{i} + \sum_{i \in I_{2}} s_{i} + \sum_{i \in I_{3}} s_{i}$$

$$\geq t + |I_{1}| + \sum_{j=1}^{d} (2^{m_{i_{j}}+1} - 1)$$

$$\geq t + ((t-1) - |I_{2}| - |I_{3}|) + \sum_{j=1}^{d} 2^{m_{i_{j}}+1} - d$$

$$\geq t + (t-1 - n - \sum_{j=1}^{d} m_{i_{j}} - d) + \sum_{j=1}^{d} 2^{m_{i_{j}}+1} - d$$

Comparing this with the calculations made for the case $I_3 = \emptyset$, we find that $t \geq 2^{n-1} + \lfloor \frac{n+1}{2} \rfloor$ would require $-\sum_{j=1}^d m_{i_j} - 2d + \sum_{j=1}^d 2^{m_{i_j}+1} \leq 0$. For each j, we have $2^{m_{i_j}} > m_{i_j} - 2$; hence the above inequality can never hold. \Box

REMARK. Let $T^*(n) = 2^{n-1} + \lfloor \frac{n+1}{2} \rfloor$ be the upper bound from the theorem. We have seen that a α -sequence C of length $T^*(n)$ can only exist if $I_3 = \emptyset$. Moreover, the following conditions follow from the argument given for Theorem 3.1.

- (1) There are exactly *n* increasing steps, i.e., $|I_2| = n$.
- (2) If $i \in I_1$, then $s_i = 1$, i.e., any two consecutive sets of equal size have to be a shift: $C_{i+1} = (C_i \setminus \{x\}) \cup \{y\}$ with $x \in C_i$ and $y \notin C_i$.

If
$$i \in I_2$$
 then $s_i = 0$, i.e., if $|C_i| < |C_{i+1}|$, t en there is a containment $C_i \subset C_{i+1}$.

(3) Every element of \mathcal{B}_n is either an element of \mathcal{C} or appears as the unique element of some S_i , i.e., as $C_i \cup C_{i+1}$.

From this observations, we obtain an alternate interpretation for a sequence C of length $T^*(n)$ in \mathcal{B}_n . In the diagram of \mathcal{B}_n , i.e., the *n*-hypercube, consider the edges (C_i, C_{i+1}) for $i \in I_2$ and for $i \in I_1$ the edges (C_i, T_i) and (T_i, C_{i+1}) where T_i is the unique member of S_i , i.e., $T_i = C_i \cup C_{i+1}$. This set of edges is a Hamiltonian path in the hypercube and respects a strong condition of being level accurate. After having reached the k^{th} level for the first time the path will never come back to level k - 2 (see Figure 1 for an example, the bullets are the elements of a very long α -sequence).

Figure 1 A level accurate path in \mathcal{B}_4 .

PROBLEM 3.2. Do sequences of length $T^*(n)$ exist for all n?

We are hopeful that such sequences exist. Our optimism stems in part from computational results. The number of sequences starting with $\emptyset, \{1\}, \{2\}, \ldots, \{n\}$ is 1 for $n \leq 4, 10$ for n = 5, 123 for n = 6 and there are thousands of solutions for n = 7. The next case n = 8 could not be handled by our program, but Markus Fulmek (personal communication) wrote a program which also resolved this case affirmatively.

4. Long Cycles between Consecutive Levels in \mathcal{B}_n

Let B(n,k) denote the bipartite graph consisting of all elements from levels k and k+1 of the Boolean lattice \mathcal{B}_n . A well known problem on this class of graphs is the following: Is B(2k + 1, k) Hamiltonian for all k? Until now it was known that this is the case for $k \leq 9$. Since the problem seems to be very hard, some authors have attempted to construct long cycles. The best results (see Savage [3]) lead to cycles of length $\Omega(N^c)$ where $N = 2\binom{2k+1}{k}$ is the number of vertices of B(2k + 1, k) and $c \approx 0.85$.

THEOREM 4.1. In B(n, k), there is a cycle of length

$$4 \max\left\{ \binom{n-3}{k-1} + 1, \binom{n-3}{n-k-2} + 1 \right\}$$

Proof. Note that the graphs B(n, k) and B(n, n-k-1) are isomorphic, it thus suffices to exhibit a cycle of length $4\binom{n-3}{k-1} + 4$ in B(n, k). To this end, take a α -sequence C_1, \ldots, C_t of (k-1)-sets on $\{1, \ldots, n-2\}$. From Lemma 2.1, we know that $t \ge \binom{n-3}{k-1} + 1$ can be achieved. Now consider the following set of edges in B(n, k)

- $\left(\begin{array}{c} C_i \cup \{n\} \\ , \\ C_i \cup C_{i+1} \cup \{n\} \\ \end{array} \right)$ for $1 \le i < t$, $\left(\begin{array}{c} C_i \cup C_{i+1} \cup \{n\} \\ , \\ C_{i+1} \cup \{n\} \\ \end{array} \right)$ for $1 \le i < t$, $\left(\begin{array}{c} C_t \cup \{n\} \\ , \\ C_t \cup \{n-1,n\} \\ \end{array} \right)$ and $\left(\begin{array}{c} C_t \cup \{n-1,n\} \\ \end{array} \right)$, $C_t \cup \{n-1\} \\ \end{array} \right)$,
- $\left(C_i \cup \{n-1\}, C_i \cup C_{i+1} \cup \{n-1\} \right)$ for $1 \le i < t$,
- $(C_i \cup C_{i+1} \cup \{n-1\}, C_{i+1} \cup \{n-1\})$ for $1 \le i < t$,
- $(C_1 \cup \{n-1\}, C_1 \cup \{n-1,n\})$ and $(C_1 \cup \{n-1,n\}, C_1 \cup \{n\})$.

The proof that this set of edges in fact determines a cycle of length 4t in B(n,k) is straightforward.

With a simple calculation on binomial coefficients, we obtain a final theorem

THEOREM 4.2. There are cycles in B(2k + 1, k) of length at least $\frac{1}{4}N$.

References

- [1] Z. Füredi, P. Hajnal, V. Rödl and W. T. Trotter, Interval Orders and Shift Graphs, Proceeding of the Hajnal/Sös Conference on Combinatorics, Budapest, 1991, to appear.
- [2] H. A. Kierstead and W. T. Trotter, Explicit Matchings in the Middle Two Levels of the Boolean Lattice, Order 5(1988), 163-171.
- [3] C. Savage, Long Cycles in the Middle Two Levels of the Boolean Lattice, preprint, 1990.