
Colorings of Diagrams of IntervalOrdersand �-Sequences of SetsSTEFAN FELSNER1 and WILLIAM T. TROTTER21 Fachbereich Mathematik, TU-Berlin, Stra�e des 17. Juni 135, 1000 Berlin 12, Germany,partially supported by the DFG,E-mail : felsner@math.tu-berlin.de2 Bell Communications Research, 445 South Street 2L-367, Morristown, NJ 07962, U.S.A., andDepartment of Mathematics, Arizona State University, Tempe AZ 85287, U.S.A.E-mail : wtt@bellcore.comAbstract. We show that a proper coloring of the diagram of an interval order I may require 1 +dlog2 height(I) e colors and that 2 + dlog2 height(I) e colors always su�ce. For the proof of the upperbound we use the following fact: A sequence C1; : : : ; Ch of sets (of colors) with the property(�) Cj 6� Ci�1 [Ci for all 1 < i < j � h.can be used to color the diagram of an interval order with the colors of the Ci. We construct �-sequencesof length 2n�2 + �n�12 � using n colors. The length of �-sequences is bounded by 2n�1 + �n�12 � andsequences of this length have some nice properties. Finally we use �-sequences for the construction oflong cycles between two consecutive levels of the Boolean lattice. The best construction known untilnow could guarantee cycles of length 
(Nc) where N is the number of vertices and c � 0:85. We exhibitcycles of length � 14N .Mathematics Subject Classi�cations (1991). 06A07, 05C35.Key Words. Interval order, diagram, chromatic number, Hamiltonian path, Boolean lattice.1. Introduction and OverviewFor a nonnegative integer k, let Ik be the interval order de�ned by the open intervalswith endpoints in f1; : : : ; 2kg. It has height 2k � 1 and is isomorphic to the canonicalinterval order of this height (see F�ur�edi, Hajnal, R�odl and Trotter [1] for canonicalinterval orders).Two vertices v and w in Ik are a cover, denoted by v � w, exactly if the right endpointof the interval of v equals the left endpoint of the interval of w. The diagram DIk ofIk is thus recognized as the shift graph G(2k; 2) (see [1] for shift graphs). In general wedenote by DI the diagram of an interval order I , and we denote the chromatic numberof the diagram by �(DI).We include the (well-known) proof of the next lemma since we will need similarmethods in later arguments.



2 S. FELSNER AND W. T. TROTTERLEMMA 1.1. �(DIk) = dlog2 height(Ik) e = kProof. Suppose we have a proper coloring of DIk with colors f1; : : : ; cg. With each pointi associate the set Ci of colors used for the intervals having their right endpoint at i.Note that C1 = ;. For 1 � i < j � 2k, we have Cj 6� Ci; otherwise the interval (i; j)would have the same color as some interval (l; i). This proves that all of the 2k subsetsCi of f1; : : : ; cg are distinct; therefore 2c � 2k and c � k.A coloring of DIk using k colors can be obtained by the following construction. Takea linear extension of the Boolean lattice Bk and let Ci be the ith set in this list. Assignto the interval (i; j) any color from Cj nCi. A coloring obtained in this way is easily seento be proper. �We derive a remark for later use and a theorem from this construction.REMARK 1.2. In a coloring of DIk which uses exactly k colors, every point i 2 f1; :::; 2kgis incident with an interval of each color.Proof. The crucial fact here is that every subset of f1; : : : ; kg is the Ci for some i. Nowchoose any i 2 f1; : : : ; 2kg and a color c 2 f1; : : : ; kg, we have to show that an intervalof color c is incident with i.If c 2 Ci, then this is immediate from the de�nition of Ci. Otherwise, i.e., if c 62 Ci,then there is a jc > i such that Cjc = Ci [ fcg and the interval (i; jc) is colored c. �With the next lemma we improve the lower bound: There are interval orders I with�(DI) � 1 + log2(height(I)). Compared with Lemma 1.1, this is a minor improvement,but we feel it worth stating, since later we will prove an upper bound of 2+log2(height(I))on the chromatic number of the diagram of I .LEMMA 1.3. For each k there is an interval order I�k such that�(DI�k) � 1 + �log2 height(I�k) � = kProof. Take I�k as the order obtained from Ik (see Lemma 1.1) by removing the intervalsof odd length, i.e., the interval order de�ned by the open intervals (i; j) with i; j 2n1; : : : ; 2ko and j � i � 0 (mod 2). The height of I�k is 2k�1 � 1 which is the heightof Ik�1; however, as we are now going to prove, a proper coloring of I�k requires at leastk colors. Note that two intervals (i1; j1) and (i2; j2) with j1 � i2 induce an edge in thediagram of I�k if either j1 = i2 or j1 = i2 � 1.In I�k we �nd an isomorphic copy of Ik�1 consisting of the intervals (i; j) with both iand j odd. Call this the odd Ik�1. The even Ik�1 is de�ned by the interval (i; j) with iand j even. Let Ci be the set of colors used for intervals with right end-point 2i� 1, and



COLORINGS OF DIAGRAMS 3let Di be the set of colors used for intervals with right end-point 2i. From Lemma 1.1, weknow that if both the odd and the even copy only need k� 1 colors, then the Ci and theDi have to form linear extensions of the Boolean lattice Bk�1. Now de�ne Ci as the setof colors used for intervals with left-endpoint 2i� 1. From Remark 1.2, we know that Ciis exactly the complement of Ci. With the corresponding de�nition, Di and Di are seento be complementary sets as well. Note that a proper coloring requires Ci \Di = ;. Wetherefore have Ci � Di. A similar argument gives Di � Ci+1. Altogether we �nd thatthe Ci have to be a linear extension of Bk�1 with Ci � Ci+1 for all i. This is impossible.The contradiction shows that at least k colors are required. �Now we turn to the upper bound which we view as the more interesting aspect of theproblem.THEOREM 1.4. If I is an interval order, then�(DI) � 2 + log2 height(I)Proof. In this �rst part of the proof, we convert the problem into a purely combinatorialone. The next section will then deal with the derived problem.Let I = (V;<) be an interval order of height h, given together with an intervalrepresentation. For v 2 V , let (lv; rv] (left open, right closed) be the correspondinginterval. With respect to this representation, we distinguish the `leftmost' h-chain in I .This chain consists of the elements x1; : : : ; xh where xi has the leftmost right-endpointrv among all elements of height i. It is easily checked that x1; : : : ; xh is indeed a chain.Now let ri = rxi be the right endpoint of xi's interval and de�ne a partition of the realaxis into blocks. The ith block is B(i) = [ri; ri+1):This de�nition is made for i = 0; : : : ; h with the convention that B(0) extends to minusin�nity and B(h) to plus in�nity.In some sense these blocks capture a relevant part of the structure of I . This isexempli�ed by two properties.� The elements v with rv 2 B(i) are an antichain for each i. This gives a minimalantichain partition of I .� If rv 2 B(j), then lv 2 B(i) for some i less than j.Suppose we are given a sequence C1; : : : ; Ch of sets (of colors) with the following property(�) Cj 6� Ci�1 [ Ci for all 1 < i < j � h.A sequence with this property will henceforth be called an �-sequence. The �-sequenceC1; : : : ; Ch may be used to color the diagram DI with the colors occurring in the Ci.



4 S. FELSNER AND W. T. TROTTERThe rule is: to an element v 2 V with lv 2 B(i) and rv 2 B(j) assign any color fromCj n (Ci�1 [ Ci). This set of colors is nonempty by the � property of the sequenceCi, since i < j. We claim that a coloring obtained this way is proper. Assume to thecontrary that there is a covering pair w � v such that w and v obtain the same color.Let rw 2 B(k) and lv 2 B(i). Since w � v, we know that k � i. Due to our coloringrule, we know that the color of w is an element of Ck and the color of v is not containedin Ci�1 [ Ci; hence k < i � 1. This, however, contradicts our assumption that w � v,since lxi 2 B(i � 1) and lv � rxi = ri gives w < xi < v.We have thus reduced the original problem to the determination of the minimalnumber of colors which admits a �-sequence of length h. We will demonstrate in thenext section, Lemma 2.1 and Lemma 2.3, how to construct a �-sequence of length 2n�2+jn+12 k using n colors. This will complete the proof of the theorem. �In the third section we give an upper bound of 2n�1+ jn+12 k for the maximal lengthof a �-sequence. From the proof, we derive some further properties �-sequences of thislength necessarily satisfy. Finally we apply the construction of long �-sequences to theproblem of �nding long cycles between two consecutive levels of the Boolean lattice. Afamous instance of this problem is the question whether there is a Hamiltonian cyclebetween the middle two levels of the Boolean lattice (see e.g. Kierstaed and Trotter [2]or Savage [3]. The best constructions known until now could guarantee cycles of length
(Nc) where N is the number of vertices and c � 0:85. We exhibit cycles of length� 14N .2. A Construction of Long �-SequencesLet t(n; k) denote the maximal length of a sequence Ci of sets satisfying:(1) Ci � f1; : : : ; ng,(2) jCij = k and(�) if i < j then Cj 6� Ci�1 [ Ci.LEMMA 2.1. t(n; k) � �n � 1k �+ 1Proof. The sequences actually constructed will have the additional property(4) jCi�1 [ Cij = k + 1 for all i � 2.The proof is by induction. For all n and k = 1 or k = n the claim is obviously true.Now suppose that two �-sequences as speci�ed have been constructed on f1; : : : ; n�1g:�rst a sequence of k-sets A = A1; : : : ; As of length s = �n�2k �+ 1, and second a sequenceof (k � 1)-sets B = B1; : : : ; Bt of length t = �n�2k�1�+ 1.



COLORINGS OF DIAGRAMS 5Property (4) guarantees that there is a permutation � of the colors such that As =B�1 [B�2 . Now let Ci = �Ai; if 1 � i � sB�i�s+1 [ fng; if s+ 1 � i � s + t � 1.The length of the new sequence is s + t � 1 = �n�1k � + 1. Properties (1) and (2) areobviously true for the sequence Ci and property (4) is true for both the A and the Bsequence. These observations and the choice of � give property (4) for the C sequence.It remains to verify property �. If i < j < s + 1, this property is inherited from the Asequence. If s+ 1 < i < j, it is inherited from the B sequence. In case i < s+ 1 � j, wehave n 2 Cj and n 62 Ci�1 [ Ci. The remaining case is s+ 1 = i < j. Here the choice of� and the sacri�ce of B1 show that Cs [Cs+1 = As [B�2 [ fng = B�1 [B�2 [ fng. Againthe property � can be concluded from this property for the B sequence. �For k = 2 and k = n� 1, we can prove that the inequality of Lemma 2.1 is tight, butin general the value of t(n; k) is open.PROBLEM 2.2. Determine the true value of t(n; k).Let T (n) denote the maximal length of a sequence Ci of sets satisfying:(1) Ci � f1; : : : ; ng and(�) if i < j then Cj 6� Ci�1 [ Ci.LEMMA 2.3. T (n) � Xk�nk odd ( �n � 1k � + 1 ) = 2n�2 + �n + 12 �Proof. Let L(n; k) be the (n; k){sequence constructed in the preceding lemma. We claimthat L = L�1(n; 1)� L�3(n; 3)� L�5(n; 5)� : : : with appropriate permutations �j is a�-sequence of subsets of f1; : : : ; ng. The �k's can be found recursively. �1 = id and if�k�2 has been determined, then �k is chosen as a permutation such that the last set ofthe sequence L�k�2(n; k{2) is a subset of the �rst set of L�k(n; k). Let Ci be the ith setin the sequence L. We now check property �. If the three sets Ci�1, Ci and Cj are inthe same subsequence L�k(n; k), then the property is inherited from this subsequence.If Ci 2 L�k(n; k) and Cj 2 L�k0(n; k0) with k � k0 � 2, then jCi�1 [ Cij < ��Cj�� is aconsequence of property (4) for the subsequence L�k(n; k), and gives the claim in thiscase. There remains the situation where Ci�1 is the last set of its subsequence. Thechoice of the �k gives Ci�1 � Ci and the property reduces to Cj 6� Ci, which is obvious.The length of L is the sum over the length of the L�k(n; k) used in L. This is thesum over �n�1k �+ 1 with k odd, which is 2n�2 + jn+12 k. �



6 S. FELSNER AND W. T. TROTTER3. The Structure of Very Long �-SequencesTHEOREM 3.1. Let C = C1; : : : ; Ct be a �-sequence of subsets of f1; : : : ; ng. Thent � 2n�1 + jn+12 k.Proof. We start with some de�nitions. For 1 � i � t� 1, letSi = f S : Ci+1 � S � Ci [ Ci+1 g (1)and si = jSij. Observe that with ri = jCi n Ci+1j we have the equationsi = 2ri � 1: (2)We now prove two important properties of the sets Si� Si \ Sj = ; if i 6= j.Assume to the contrary that S 2 Si \ Sj and let i < j. From the de�nition ofthe Si, we obtain Cj+1 � S � Ci[Ci+1 which contradicts the � property of thesequence C.� C \ Si = ; for all i.Assume Cj 2 Si. If j � i, then Ci+1 � Cj gives a contradiction. If j = i + 1,note that Ci+1 62 Si from the de�nition. If j > i + 1, the contradiction comesfrom Cj � Ci [ Ci+1.Therefore, C and the Si are pairwise disjoint subsets of Bn. This gives the inequality2n � t + t�1Xi=1 si (3)We now partition the indices f1; : : : ; t� 1g into three classes� I1 = fi : jCij = jCi+1jg; note that i 2 I1 implies si � 1.� I2 = fi : jCij < jCi+1jg; trivially si � 0 for i 2 I2.� I3 = fi : jCij > jCi+1jg; note that if i 2 I3, then the corresponding si is relativelylarge, i.e., si � 2jCij�jCi+1j+1 � 1. This estimate is a consequence of Equation 2and the fact that Ci+1 has to contain an element not contained in Ci.First we investigate the case I3 = ;. This condition guarantees that the sizes of the setsin C is a nondecreasing sequence. Since Bn has n+ 1 levels, the size of the sets in C canincrease at most n times, i.e., jI2j � n and jI1j � t� 1� n. It follows that:2n � t + Xi2I1 si + Xi2I2 si � t + jI1j � t+ (t� 1� n)This gives 2t � 2n + (n+ 1); hence t � 2n�1 + jn+12 k in this case.The case I3 6= ; is somewhat more complicated. Let the number of descending stepsbe d and I3 = fi1; : : : ; idg. Letmij denote the number of levels the sequence is decreasing



COLORINGS OF DIAGRAMS 7when going from Cij to Cij+1, i.e., mij = jCij j � jCij+1j and sij � 2mij+1 � 1. Againwe can estimate the size of I2, namely jI2j � n+Pdj=1mij . It follows that:2n � t + Xi2I1 si + Xi2I2 si + Xi2I3 si� t + jI1j+ dXj=1(2mij+1 � 1)� t + ((t� 1)� jI2j � jI3j) + dXj=1 2mij+1 � d� t + (t� 1� n � dXj=1mij � d) + dXj=1 2mij+1 � dComparing this with the calculations made for the case I3 = ;, we �nd that t �2n�1 + jn+12 k would require �Pdj=1mij � 2d+Pdj=1 2mij+1 � 0. For each j, we have2mij > mij � 2; hence the above inequality can never hold. �REMARK. Let T �(n) = 2n�1+jn+12 k be the upper bound from the theorem. We haveseen that a �-sequence C of length T �(n) can only exist if I3 = ;. Moreover, the followingconditions follow from the argument given for Theorem 3.1.(1) There are exactly n increasing steps, i.e., jI2j = n.(2) If i 2 I1, then si = 1, i.e., any two consecutive sets of equal size have to be ashift: Ci+1 = (Ci n fxg)[ fyg with x 2 Ci and y 62 Ci.If i 2 I2 then si = 0, i.e., if jCij < jCi+1j, t en there is a containment Ci � Ci+1.(3) Every element of Bn is either an element of C or appears as the unique elementof some Si, i.e., as Ci [ Ci+1.From this observations, we obtain an alternate interpretation for a sequence C oflength T �(n) in Bn. In the diagram of Bn, i.e., the n-hypercube, consider the edges(Ci; Ci+1) for i 2 I2 and for i 2 I1 the edges (Ci; Ti) and (Ti; Ci+1) where Ti is theunique member of Si, i.e., Ti = Ci[Ci+1. This set of edges is a Hamiltonian path in thehypercube and respects a strong condition of being level accurate. After having reachedthe kth level for the �rst time the path will never come back to level k � 2 (see Figure 1for an example, the bullets are the elements of a very long �-sequence).



8 S. FELSNER AND W. T. TROTTER
Figure 1 A level accurate path in B4.PROBLEM 3.2. Do sequences of length T �(n) exist for all n ?We are hopeful that such sequences exist. Our optimism stems in part from com-putational results. The number of sequences starting with ;; f1g; f2g; : : :fng is 1 forn � 4, 10 for n = 5, 123 for n = 6 and there are thousands of solutions for n = 7. Thenext case n = 8 could not be handled by our program, but Markus Fulmek (personalcommunication) wrote a program which also resolved this case a�rmatively.4. Long Cycles between Consecutive Levels in BnLet B(n; k) denote the bipartite graph consisting of all elements from levels k and k+ 1of the Boolean lattice Bn. A well known problem on this class of graphs is the following:Is B(2k + 1; k) Hamiltonian for all k ? Until now it was known that this is the casefor k � 9. Since the problem seems to be very hard, some authors have attempted toconstruct long cycles. The best results (see Savage [3]) lead to cycles of length 
(Nc)where N = 2�2k+1k � is the number of vertices of B(2k + 1; k) and c � 0:85.THEOREM 4.1. In B(n; k), there is a cycle of length4 max��n� 3k � 1� + 1;� n� 3n� k � 2� + 1�Proof. Note that the graphs B(n; k) and B(n; n�k�1) are isomorphic, it thus su�ces toexhibit a cycle of length 4�n�3k�1�+4 in B(n; k). To this end, take a �-sequence C1; : : : ; Ctof (k � 1)-sets on f1; : : : ; n� 2g. From Lemma 2.1, we know that t � �n�3k�1�+ 1 can beachieved. Now consider the following set of edges in B(n; k)



COLORINGS OF DIAGRAMS 9� � Ci [ fng ; Ci [ Ci+1 [ fng � for 1 � i < t,� � Ci [ Ci+1 [ fng ; Ci+1 [ fng � for 1 � i < t,� � Ct [ fng ; Ct [ fn � 1; ng � and � Ct [ fn� 1; ng ; Ct [ fn� 1g �,� � Ci [ fn� 1g ; Ci [ Ci+1 [ fn� 1g � for 1 � i < t,� � Ci [ Ci+1 [ fn� 1g ; Ci+1 [ fn� 1g � for 1 � i < t,� � C1 [ fn� 1g ; C1 [ fn � 1; ng � and � C1 [ fn� 1; ng ; C1 [ fng �.The proof that this set of edges in fact determines a cycle of length 4t in B(n; k) isstraightforward. �With a simple calculation on binomial coe�cients, we obtain a �nal theoremTHEOREM 4.2. There are cycles in B(2k + 1; k) of length at least 14N . �References[1] Z. F�uredi, P. Hajnal, V. R�odl and W. T. Trotter, Interval Orders and Shift Graphs, Proceeding ofthe Hajnal/S�os Conference on Combinatorics, Budapest, 1991, to appear.[2] H. A. Kierstead and W. T. Trotter, Explicit Matchings in the Middle Two Levels of the BooleanLattice, Order 5(1988), 163-171.[3] C. Savage, Long Cycles in the Middle Two Levels of the Boolean Lattice, preprint, 1990.


