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Basic definitions

A cell C in a regular (square/ hexagonal/ triangular)
lattice is a square (hexagon/triangle) union its boundary.

A region R is a finite union of cells in a regular lattice

A tile τ is a fixed region.

Let T be a set of tiles, we say that T tiles a region R
when R can be can be written as a disjoint union of
translates of the tiles in T .
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How to show untileability?

How can we tell that a region is not tileable?

We could use an exhaustive method, which would take a
long time!

A good approach is to find invariants of tileable regions

ie: The area of a region:

Chessboard without a corner

However another invariant can be found in terms of colouring
maps and until recently these were the main tool used to prove
the untileablility of a region! Therefore we consider colouring
maps...
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Example of a colouring argument

An example of a colouring argument showing the untileability
of a 10 by 10 square in the square lattice by L-tetrominoes:

The 10 x 10 square and L-tetrominoes
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Example of a colouring argument

The idea is that one numbers the cells of the square as shown
below:

Numbering of the square

we argue that every tile covers either three 5’s and one 1, or
three 1’s and one 5. In either case we obtain a multiple of 8,
but the sum over all the squares in the rectangle is 300.
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Generalised colouring maps

Let A to be the free abelian group on the cells of a regular
lattice. Given a tile placement of a tile in T , we associate the
element of A which is defined by being 1 on the squares which
are covered and zero everywhere else.

Let G be an abelian group, a homomorphism f : A→ G is
called a generalised colouring map if

f (τ) = e ∀τ ∈ T

where e is the identity element of G .
If f (R) 6= e, then the region R is untileabile. This argument is
called a generalised colouring argument.
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Generalised colouring maps

Our previous argument can be seen as a generalised colouring
argument, since the numbering can be seen as a map
f : R → Q/Z defined by:

f (xi ,j) =

{
1
8 if i is odd
5
8 if i is even

Each tileable region maps to an integer and hence the identity
in Q/Z, but f (R) = 1

2 (mod Z).
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Signed tilings

Consider a set of tiles T with weights of either +1 or -1 on
each tile. Then we say that a region R has a signed tiling by T
if there is a covering of R by these weighted tiles, so that the
sum of the weights of the tiles that cover a cell inside R is 1
and outside R is zero.

Remarks:

Every tileable region is signed tileable.

A generalised colouring argument will prove signed
untileability (as f (τ−1) = e).

The existence of a signed tiling =⇒ there is no
generalised colouring argument.
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The tile homology group

The tile homology group of T is the quotient group H(T ) =
A/B(T ), where B(T ) ⊂ A is the subgroup generated by all the
elements corresponding to possible placement of tiles in T .

Remarks:

A region R has a signed tiling if and only if its element in
A is a member of B(T ).

A group homomorphism from H(T ) to any abelian group
gives a generalised colouring argument.
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Signed tilings ⇔ non-existence of GCAs

Proposition (Michael Reid):

Let R be a region that does not have a signed tiling by the set of
tiles T . Then there is a numbering of all the cells with rational
numbers such that

Any placement of a tile covers a total that is an integer,
and

The total covered by the region is not an integer

Remarks:

The map can be thought of as a map ψ : A→ Q/Z in
which case it is a generalised colouring argument.

If there is no signed tiling then there exists a generalised
colouring argument.
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Signed tilings ⇔ non-existence of GCAs

Proof:

Let r ∈ H(T ) be the image of the region R. R has no
signed tiling =⇒ r is non-trivial.

Let 〈r〉 ⊂ H(T ) be the cyclic group generated by r, then
we can find a group homomorphism φ : 〈r〉 → Q/Z such
that φ(r) 6= 0.

Then as Q/Z is a divisible abelian group, we can extend
this homomorphism to the whole of H(T ), mapping the
identity to the identity and hence signed tileable regions to
the identity.
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Signed tilings ⇔ non-existence of GCAs

Since A is a free abelian group, there exist a homomorphism ψ
such that the following diagram commutes:

The homomorphism diagram

and ψ is the homomorphism we wanted

�
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Relationship to number theory

Remarks:

Often, H(T ) is finitely generated, so φ(H(T )) ⊂ Q/Z is
also finitely generated.

Therefore φ(H(T )) ⊂ 1

N
Q/Z for some N ∈ N.

Multiplying by N we obtain a numbering of the cells, such that

1 any tile placement covers a total divisible by N, and

2 the region covers a total which is not divisible by N.
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Colouring proof for the Aztec diamond

Recall the colouring argument of the Aztec diamond which
proves that it cannot be tiled by skew tetrominoes for n ≡ 1, 2
(mod 4):

Colouring of the Aztec diamond
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Colouring proof for the Aztec diamond

Each tile covers an odd number of white and red cells.

There are 2n(n + 1) squares in the Aztec diamond n(n+1)
2

tiles are used.

The region contains an even number of black squares
=⇒ n(n+1)

2 must be even.

The Aztec square of order n is untileable for
n ≡ 1 or 2 (mod 4).
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The existence of a signed tiling

This will not work for n ≡ 3 or 4 (mod 4) as we can find
signed tilings.

Signed tiling of the Aztec diamond

Hence we look for stronger invariants, boundary word
invariants!
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Observing the boundaries

As the above has shown, (generalised) colouring arguments
approaches are not always successful.

Idea:

Observe the boundaries traced by the tiles, as well as
those of the region needing to be tiled.

Develop boundary invariants, i.e. properties shared by all
regions admitting a tiling.

Try to conclude the untileability based on the above
observations.
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The square lattice as a free group

The oriented paths in the square lattice are described as words
in the free group

F =< A,U >

where A and U stand for ”Across” and ”Up”. The directed
paths corresponding to words of length 1, are the edges of the
lattice.

The generators of a square lattice

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The topological boundary

Such a directed path is called closed if it’s starting point
coincides with its ending point, and simple if it does not
cross itself.

We define the topological boundary of a region as follows:

For a cell, it is the set of its bounding lattice edges, taken
counterclockwise.
For a region, it is the union of the topological boundary of
the cells it contains, discarding the edges that appear twice
with opposite orientations.

This presentation will treat only simply connected regions,
i.e. regions whose complement in R2 is connected, and
whose edges can be ordered into a simple directed path.
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Determining the boundary

A boundary path of a simply connected region R can be
uniquely determined from its first edge and it will be denoted
by ∂R(e).

Two boundary words for the T-tromino
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The combinatorial boundary

It makes sense to consider a region in some sense
”equivalent” to its translates...

For every word W and every starting edge e one can
consider the word W ∂R(e)W−1 (a conjugate boundary
word), which corresponds to the boundary path of a
translate of R, as traced from a fixed origin.

In the example above, we can see:

∂R(e2) = (UA2)∂R(e1)(UA2)−1

We define the combinatorial boundary [∂R] of a region to
be

[∂R] =
{

W ∂R(e)W−1,W ∈ F
}

where e is an edge on the topological boundary of R. By
the above, it is well-defined.
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Combinatorics meets group theory

We will further use some standard terminology from group
theory:

The subgroup of a free group F , generated by the words
Wi , will be denoted by 〈W1,W2, . . .〉

For any subgroup G of F , N(G ) stands for the minimal
normal subgroup of F containing G , that is

N(G ) = 〈xGx−1, ∀x ∈ F 〉

Lastly, [G : G ] will denote the commutator subgroup of G ,
i.e. the group generated by the commutators
W1W2W−1

1 W−1
2 for all W1,W2 ∈ G .
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Defining the tile group

Back to the square lattice, the cycle group C is the subgroup
of F, consisting of all words associated to closed directed paths
in the lattice. As we will later see, C is [F : F ], a normal
subgroup, equal in fact to N(〈AUA−1U−1〉).

To a set of tiles T =
{
τi , i ∈ 1,m

}
we assign a subgroup of F ,

called the tile group, denoted by T (T ), which contains the
combinatorial boundaries of all tiles in T , that is

T (T ) = 〈W ∂τi (ei )W−1 : W ∈ F, 1 ≤ i ≤ m〉

where ∂τi (ei ) is an oriented boundary of τi .

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

Defining the tile group

Back to the square lattice, the cycle group C is the subgroup
of F, consisting of all words associated to closed directed paths
in the lattice. As we will later see, C is [F : F ], a normal
subgroup, equal in fact to N(〈AUA−1U−1〉).

To a set of tiles T =
{
τi , i ∈ 1,m

}
we assign a subgroup of F ,

called the tile group, denoted by T (T ), which contains the
combinatorial boundaries of all tiles in T , that is

T (T ) = 〈W ∂τi (ei )W−1 : W ∈ F, 1 ≤ i ≤ m〉

where ∂τi (ei ) is an oriented boundary of τi .

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile homotopy group

In fact, T (T ) is also a normal subgroup of C , and we define
the tile homotopy group to be the quotient

h(T ) = C/T (T )

The basic invariant we assign a region R which is to be tiled
with a set of tiles T , is the conjugacy class in (T )
corresponding to the combinatorial boundary [∂R].
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A tileable region lies in the tile group

This gives rise to the following :

Theorem (Conway, Lagarias):

For a region R to have a tiling by a set of tiles T it is necessary
that the combinatorial boundary [∂R] is an element of the tile
group T (T ).

Sketch of proof:

As T (T ) is a normal group, it suffices to show that some
oriented boundary [∂R(e)] is in T (T ). This follows by
induction by the number of tiles needed to tile R.

The base case (only one tile is needed) follows
immediately.
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Topological considerations

Sketch of proof, continued:

Simply connected regions can be described as topological
disks with Jordan curve boundaries. (The particular case
of a boundary touching itself at a vertex can be resolved if
we considered a copy of the region ”thickened” at that
corner).

Thickening of a corner
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The induction step

Sketch of proof, continued:

A region can be decomposed in smaller regions, respecting
the additive properties of the boundaries, mentioned in the
definition of a topological boundary.

Now the following claim has an accessible (albeit
technical) proof:

Claim: There exists a decomposition R = R∗ ∪ R∗∗ such that
R∗,R∗∗ are non-empty simply connected regions which can be
tiled by T , and there are directed edges e1 of R∗ and e2 of R∗∗

such that :
∂R(e1) = ∂R∗∗(e2)∂R∗(e1)
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Visualizing the decomposition

Sketch of proof, continued:

The claim easily completes the induction step.

Visualizing the induction step
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Introducing the Cayley graph

A construction allowing to easily observe the boundary
invariants is the Cayley graph, denoted by G(G := F/K ), where
F is a free group and K is a normal subgroup of relations.

This graph (also known as group diagram), is drawn as follows:

Each element of G corresponds to a vertex W .

Each generator Si of F corresponds to a directed edge
joining W with SiW .

Hence, each node has g ingoing and g outgoing edges,
where g is the number of generators of F .

For generators of order two there will be drawn undirected
edges.
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The tile group and Cayley graphs

The group diagram will be used in the context of tileability as
follows:

Let H ⊇ T (T ) be a normal subgroup and GH the Cayley
graph GH corresponding to G/H.

Note that, tracing the boundary of any tile in the Cayley
graph, one will obtain a closed path.

For the region R to be tiled, observe the directed path
tracing the image in GH of the topological boundary of the
chosen region.

If the above path does not close, a tiling is impossible.

A closed path is necessary, but not sufficient. We will
draw stronger conclusions based on winding numbers.

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile group and Cayley graphs

The group diagram will be used in the context of tileability as
follows:

Let H ⊇ T (T ) be a normal subgroup and GH the Cayley
graph GH corresponding to G/H.

Note that, tracing the boundary of any tile in the Cayley
graph, one will obtain a closed path.

For the region R to be tiled, observe the directed path
tracing the image in GH of the topological boundary of the
chosen region.

If the above path does not close, a tiling is impossible.

A closed path is necessary, but not sufficient. We will
draw stronger conclusions based on winding numbers.

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile group and Cayley graphs

The group diagram will be used in the context of tileability as
follows:

Let H ⊇ T (T ) be a normal subgroup and GH the Cayley
graph GH corresponding to G/H.

Note that, tracing the boundary of any tile in the Cayley
graph, one will obtain a closed path.

For the region R to be tiled, observe the directed path
tracing the image in GH of the topological boundary of the
chosen region.

If the above path does not close, a tiling is impossible.

A closed path is necessary, but not sufficient. We will
draw stronger conclusions based on winding numbers.

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile group and Cayley graphs

The group diagram will be used in the context of tileability as
follows:

Let H ⊇ T (T ) be a normal subgroup and GH the Cayley
graph GH corresponding to G/H.

Note that, tracing the boundary of any tile in the Cayley
graph, one will obtain a closed path.

For the region R to be tiled, observe the directed path
tracing the image in GH of the topological boundary of the
chosen region.

If the above path does not close, a tiling is impossible.

A closed path is necessary, but not sufficient. We will
draw stronger conclusions based on winding numbers.

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile group and Cayley graphs

The group diagram will be used in the context of tileability as
follows:

Let H ⊇ T (T ) be a normal subgroup and GH the Cayley
graph GH corresponding to G/H.

Note that, tracing the boundary of any tile in the Cayley
graph, one will obtain a closed path.

For the region R to be tiled, observe the directed path
tracing the image in GH of the topological boundary of the
chosen region.

If the above path does not close, a tiling is impossible.

A closed path is necessary, but not sufficient. We will
draw stronger conclusions based on winding numbers.

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The winding number

Let s be a cell in our graph, xs ∈ Int(s), and P a closed
directed path. The winding number W (P; s) measures how
many times does P enclose s in a counterclockwise direction,
and is given by the formula

w(P; s) =
1

2πı

∮
P

1

z − xs
dz .

Properties of the winding number:

The formula above does not depend on the choice of xs .

It is additive: For two closed paths P1,P2 starting at the
same point, one has:

w(P1P2; s) = w(P1; s) + w(P2; s).
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Applications to tileability

We will denote the set of cells (faces) of the Cayley graph GH

by C. Upon fortunate choice of H,

∃A ⊂ Cs.t.
∑
s∈A

w(∂τ(e); s) = 0, ∀τ ∈ T (∗)

If the boundary of region R does not respect the above
equality, untileability can be concluded.

Remarks:

More conditions like (∗) could be needed for a particular
problem, or slightly modified versions.

Finding such a group H, ”In general, it trades one hard
problem for another” (J. Conway).
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Recalling the Aztec diamond

Consider the four tiles depicted below, and the order 5 Aztec
diamond, with the marked leading edges:

The Aztec diamond and skew tetrominoes
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The corresponding boundary words

They give rise to the following boundary words:

∂τ1(e1) = U−1AU−1A−2UA−1UA2

∂τ2(e2) = U−2A−1U−1A−1U2AUA

∂τ3(e3) = U−1AU−2A−1UA−1U2A

∂τ4(e4) = U−1A−1U−1A−2UAUA2

whereas the Aztec diamond of order n can be assigned the
following boundary word:

(AU−1)n(U−1A−1)n(A−1U)n(UA)n.
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Statement of untileability

Proposition:

The Aztec diamond can never be tiled by skew tetrominoes.

We have seen in the previous section the proof of the above for
diamonds of size n ≡ 1, 2 (mod 4).

We have also seen that there exist signed tilings for
n ≡ 0, 3 (mod 4), so in this case colouring arguments won’t
suffice. We will develop an approach using the notions
introduced above.
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Constructing the Cayley graph

Now take the subset H to be N(〈AUAU,AU−1AU−1〉), and
construct the Cayley graph GH , pictured below.

The image of the region and the tiles in the Cayley graph

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

Finalisation of the proof

Note the following:

Both the tiles and the Aztec diamond have their
boundaries mapped to closed paths in GH .

Tracing the contour of each τi , one easily notes that the
sum of the winding numbers around all cells is 0.

As the winding number is additive, every element in T (T )
maps to a directed closed path with 0 winding-number.

However, the Aztec diamond has a winding number of
either 4n or −4n ( depending on the starting point), hence
untileability by skew tetrominoes can be concluded.

�
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As the winding number is additive, every element in T (T )
maps to a directed closed path with 0 winding-number.

However, the Aztec diamond has a winding number of
either 4n or −4n ( depending on the starting point), hence
untileability by skew tetrominoes can be concluded.
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Stating the tribone tiling problem

We will now try to apply some of these ideas on the following
problem: Can we tile triangular regions Tn in the hexagonal
lattice with the set of tiles T (called tribones) below?

Tiling by tribones?
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The result we aim at

After playing around with the tiles you will find that a tiling is
hard to find, so maybe it is untileable!

Theorem (Conway and Lagarias):

It is impossible to tile the triangular region Tn in the hexagonal
lattice by tribones and their 120◦ and 240◦ rotations.

Clearly as the number of hexagons in Tn is n(n + 1)/2, so
either n or n + 1 must be divisible by 3 (tile covers 3
hexagons). This rules out n ≡ 1 (mod 3).
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Colouring arguments are not useful here

Notice that for n = 8 we can find a signed tiling of the triangle,
so we are indicated once again that we need to argue otherwise
than colouring arguments!

Signed tiling by tribones
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Observations about the hexagonal lattice

We label the lines of the hexagonal lattice a, b, and c if they
are at 0◦, 120◦, and 60◦ respectively, as undirected edges.

Hexagonal lattice as Cayley graph

We see that this is the Cayley graph of the group

H = 〈a, b, c |a2 = b2 = c2 = (abc)2 = 1〉
Note that none of the edges are directed in this graph, as all
the generators have order 2.
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The tribone boundary words

We also note that the boundary words of the tiles are:

t1 = (ab)3c(ab)3c

t2 = (bc)3a(bc)3a

t3 = (ca)3b(ca)3b

The labeled tribones
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The boundary of Tn

and that the boundary word of our region is (bc)n(ab)n(ca)n.

The triangle in the hexagonal lattice
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Constructing another Cayley graph

If Tn is tileable then [∂Tn] ∈ T (T ).

To show the contrary we will consider the special group
S := N(〈(bc)3, (ca)3, (ab)3〉).

Claim:

Both the combinatorial boundary [∂Tn] and the Tile group T (T )
are contained in S
Proof of Claim:

It is enough to show that the generators of T (T ) and [∂Tn] are
in S. This can be done by looking at the Cayley graph (denoted
GS of H/S).
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The relabeled hexagonal lattice

The Cayley graph of GS := H/N(〈(bc)3, (ca)3, (ab)3〉) is

GS of H/S
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Observations regarding GS

Surprisingly, it is again the hexagonal lattice, albeit
differently labeled. This time, it is composed of infinitely
many ab, bc and ca hexagons instead of abc hexagons.

What we first need to do is to show that shadow paths of
the generators of T (T ) and [∂Tn] in GS are closed.
The case of generator t1 = (ab)3c(ab)3c is shown below
and the results are similar for t2 and t3.

Shadow path of a generator in the Cayley graph
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Reducing the analysis to n = 3k.

The combinatorial boundary of Tn is clearly in S when
n = 3k(k ∈ N), as the word is just (bc)3k(ab)3k(ca)3k .

When n ≡ 2 (mod 3), we notice that if we add a line of
tribones to one side of Tn we obtain T3k for some k . In GS this
can be seen as adding in several closed loops to the loop of Tn

to obtain a new loop, that of Tn+1.

Extending a triangle

�
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Winding numbers in the GS

For a path P in the GS and a set of cells S define

w(P; S) =
∑
s∈S

w(P; s)

where w(P;s) is defined as before.

Let S1,S2, and S3 be the set of all the ab, bc, and ca
hexagons respectively.
Taking any word u in S, then define the group
homomorphism W : S→ Z3 by

W (u) = (w(u; S1),w(u; S2),w(u; S3))

where u is considered to be the path of the word in GS .
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Concluding untileability

With this definition we see that:

W (t1) = W (t2) = W (t3) = (0, 0, 0) , hence all conjugates
are mapped to (0,0,0) and so W (T (T )) = {(0, 0, 0)}.

W ((bc)3k(ab)3k(ca)3k) 6= (0, 0, 0).

W ((bc)3k+2(ab)3k+2(ca)3k+2) =
W ((bc)3(k+1)(ab)3(k+1)(ca)3(k+1)) 6= 0, since we can add
tribones as before to go from the case n = 3k + 2 to
n = 3(k + 1) and we also have
w(ti ; S) = 0 for i ∈ {1, 2, 3}.

Therefore [∂Tn] 6⊂ T (T ), hence Tn is untileable by tribones,
proving Conway’s theorem.
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Tiling Tn by T2

Another nice Tn tiling problem is the following: can you tile Tn

by T2 (and it’s 180◦ rotation)?

Triangles of size 2 as tiles
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Restricted tileability

Theorem (Conway, Lagarias):

The triangular region Tn in the hexagonal lattice can be tiled by
T2’s if and only if n ≡ 0, 2, 9, or 11 (mod 12).

Proceeding with the proof:

Tn is untileable for n ≡ 1 (mod 3) (due to the area
invariant).

We are left to show that Tn is untileable for
n ≡ 3, 5, 6, 8 (mod 12).
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Changing to square lattice

The problem can be translated to an equivalent problem in the
square lattice by ’contracting an edge and reshaping’.

Converting from the hexagonal to the square lattice
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The new problem

This converts the problem to:

Restatement of the problem
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The tile boundaries

Orient the edges in the square lattice and consider it as the
Cayley graph of F.
At each vertex we have:

A node in the Cayley graph

The boundary words of the tiles are:

Boundary words
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A new, not regular Cayley graph

Let S := N(〈A3,U3, (U−1A)3〉) ⊂ F.
Once again S contains [∂Tn] and T (T ), as their paths are
loops the Cayley graph FS := F/S:

Shadow paths of the region and of the tiles

Note: due to the relations A3,U3 and (A−1U)3, we just need
to consider n ≡ 2 or 3 (mod 3) to show that ∂Tn is in S.
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Observing the winding numbers

Once again we use the winding number, consider the word as a
path in FS starting from a fixed vertex.
Let S := the set of hexagonal regions, then

w(∂R1; S) = 1

w(∂R2; S) = −1

and

w(∂Tn; S) =

[
N + 1

3

]
(1.0)
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Observing the winding numbers

Suppose ∂Tn ∈ T (T ) then for some words Wi , some
εi = 1 or − 1 and ki = 1 or 2 we have

∂Tn =
m∏

i=1

Wi (∂Rki
)εi W−1

i (1.1)

and therefore

w(∂Tn; S) =
m∑

i=1

w(Wi (∂Rki
)εi W−1

i ; S)

=
m∑

i=1

εiw(∂Rki
; S) ≡ (mod 2) (1.2)
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Observing the winding numbers

Consider a word in S as the path traced in the original lattice
starting at (0,0).

Let ψ : S→ Z be the winding number around the square cells.

ψ(WRiW
−1) = ψ(Ri ) = 3

ψ(Tn) =
(n+1

k

)
using (1.1) we get that

ψ(Tn) =
m∑

i=1

ψ(Wi (Rki
)εi W−1

i )

=
m∑

i=1

εiψ(Rki
) ≡ m (mod 2) (1.3)
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Finishing the proof of untileability

By putting (1.0),(1.1),(1.2),(1.3) together we obtain the
following equation:

(n+1
k

)
= w(∂Tn; S) =

[
N + 1

3

]
This equation does not hold for n ≡ 3, 5, 6, 8 (mod 12), which
proves:

The triangular region Tn in the hexagonal lattice can be tiled
by T2’s only if n ≡ 0, 2, 9, or 11 (mod 12).
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In the other cases, a tiling is possible

A 2× 3 rectangle is tileable.
A 5× 6 rectangle is tileable.
Hence l × 12k rectangles are tileable for l = 2, 9, 11 and,
12.

We can extend a tiling by observing a partition of T12k+l :

Extending the tiling

�
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Introducing the lozenges

We now consider the third type of regular plane lattice, the
triangular one. A lozenge (rhombus) is defined to be a region
consisting of two adjacent cells. Below is depicted the set L of
the possible (non-equivalent by translation) placements of
lozenges in the lattice.

The lozenges in the triangular lattice
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The lattice as a Cayley graph

Question: For a region R in the lattice, bounded by a simple,
closed, polygonal line π, what are the necessary and sufficient
conditions that R admits a tiling by lozenges?

We establish a consistent labelling of the plane: one set of
edges will be parallel to the horizontal axis, which set of
edges will be named a. Analogously, the set of edges
pointing at 120◦ will be labelled b, whereas the edges
pointing at 240◦ will be labelled c. Let the free group
generated by a,b, and c , be called F∆, and the
corresponding cycle group be C∆.

The cycle group of the triangular lattice is N(〈abc, cba〉),
the two words corresponding to anti-clockwise, and
clockwise oriented boundaries of elementary triangles.
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The tile group has a commutative quotient

For the three possible orientations of a lozenge, we obtain the
following combinatorial boundaries:

∂L1 = b−1a−1ba

∂L2 = c−1b−1cb

∂L3 = a−1c−1ac

By analyzing the tile homotopy group h(L), one can note that
the above boundary words translate in commutativity relations:
ab = ba, bc = cb, ca = ac, which shows that that h(L) is
identified with a subgroup of Z3 and in fact F∆/L is
isomorphic to Z3

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile group has a commutative quotient

For the three possible orientations of a lozenge, we obtain the
following combinatorial boundaries:

∂L1 = b−1a−1ba

∂L2 = c−1b−1cb

∂L3 = a−1c−1ac

By analyzing the tile homotopy group h(L), one can note that
the above boundary words translate in commutativity relations:
ab = ba, bc = cb, ca = ac, which shows that that h(L) is
identified with a subgroup of Z3 and in fact F∆/L is
isomorphic to Z3

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

The tile group has a commutative quotient

For the three possible orientations of a lozenge, we obtain the
following combinatorial boundaries:

∂L1 = b−1a−1ba

∂L2 = c−1b−1cb

∂L3 = a−1c−1ac

By analyzing the tile homotopy group h(L), one can note that
the above boundary words translate in commutativity relations:
ab = ba, bc = cb, ca = ac, which shows that that h(L) is
identified with a subgroup of Z3 and in fact F∆/L is
isomorphic to Z3

Untileability Thomas Hixon, Irina Mustata TU Berlin Tilings Seminar, WS 09/10



Colourings

Combinatorial
group theory

The square
lattice

The tile group

Applications
of CGT

The Aztec
diamond

The hexagonal
lattice

Lozenges

Group
theoretical
remarks

The tile
boundary group

Tiling theorems

Lifting lozenges in the 3D space

Consider the Cayley graph F∆/L ≡ Z3. It can be naturally
embedded into the Euclidean 3D space, as a cubical tesselation
of the space, with the cubes are on their corners.

Lozenge tiling as the projection of a cubical tesselation
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Lifting lozenges in the 3D space

Take a region in the plane that can be tiled by lozenges. It can
be lifted, tile by tile, into the cubical skeleton. Each edge of a
cube brings a change in height equal to ±1. The edge of the
plane covered by a lozenge, lifts to a diagonal of a cubical face,
which brings a height change of 2.

Choose a starting point for the plane region to be tiled
and trace the boundary.

The invariant naturally associated to the boundary is the
net rise in height obtained when lifting the edges one by
one to the 3D space.

The construction of the cubical tesselation indicates the
necessity that this net rise in height is 0, in order to claim
tileability.
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Insufficiency of existence conditions

This is however not sufficient:

Let cells with anti-clockwise oriented boundary abc be
coloured blue, whereas cba cells will be coloured white.

Each lozenge covers a cell of each colour, so a clear
condition for tileability, is that there is an equal number of
white and blue triangles in a region.
This is equivalent to saying that the boundary of R lifts to
a closed path in F∆/L.

Region with no lozenge tiling, but closed lifted boundary
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Defining a minmal distance

Let v , w be two vertices in R, possibly on the boundary. We
define d(v ,w) to be the shortest length of a positively directed
path in R (again, possibly on the boundary) which joins v and
w .

Properties:

The distance function is not symmetric, and in a
connected region, well-defined.

Any closed positively directed edge path has its length a
multiple of 3.

The above shows that d(v ,w) is consistent modulo 3
independent on the chosen path.

The three vertices of a triangle take three diferent values
modulo 3.
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path in R (again, possibly on the boundary) which joins v and
w .

Properties:

The distance function is not symmetric, and in a
connected region, well-defined.

Any closed positively directed edge path has its length a
multiple of 3.

The above shows that d(v ,w) is consistent modulo 3
independent on the chosen path.

The three vertices of a triangle take three diferent values
modulo 3.
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Finding a necessary and sufficient condition

Recalling the height function previously considered for the
vertices in ∂[R], for any v , w on the boundary, with
h(w) ≥ h(v) we have h(w)− h(v) ≥ d(v ,w), as a necessary
condition for a tiling to be possible.

The condition is in fact sufficient:

Extend the height function for the interior vertices of R as
follows:

h(x) =min
v∈π
{d(v , x)}+ h(v)

All the vertices of a triangle take distinct values modulo 3,
hence there exists an edge where the height changes by
two.Construct a tiling by placing a lozenge over each such edge
of a triangle.
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Motivation

We have seen in the beginning that the generalised colouring
arguments could be interpreted as maps from the cells of the
lattice to an abelian group, (for finitely generated H(T ) there
is a suitable choice of N, such that ZN can be the chosen
abelian group).

We will try to join these two approaches, by showing that
extended colouring arguments can be all encoded in a quotient
of the cycle group, thus shifting the focus from cell groups, to
boundary word groups.

The following theorem will explain several group theoretical
notions regarding the cycle group C .
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Explicite definition of C and important
subgroups

Theorem (Conway, Lagarias)

1 The cycle group C consisting of all words W such that
P(W ) is a closed, directed path in Z2, is C = [F : F].

2 The group [C : C ] consists of all words W such that
P(W ) is a closed directed path in Z2 with winding
number 0 around every cell in Z2. It follows that [C : C ] is
a normal subgroup of F.

3 The group A0 = C/[C : C ] is a direct sum of a countable
number of copies of Z, which are in one-to-one
correspondence with the cells cij of the lattice Z2. The
projection map πi ,j : C → Z onto the cij th summand of
A0 is given by the winding number w(P(W ); cij).
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Sketch of proof:

(1):

”[F : F ] ⊂ C ”: Note that a word defines a closed directed
path iff U = U−1 and A = A−1. As this happens for all
commutators UVU−1V−1 (where U and V are words in
F), conclusion follows.

”C ⊂ [F : F ]” : If c ∈ C has 2 or 4 edges, it is true. The
proof is completed by induction, ordering the words in C
lexicographically by (n, k , l), where n is the length of the
word, k is the maximum value i2 + j2 of any vertex, and l
is the number of vertices with value k . The basic idea is to
”cut out” a cell from the furthermost corner of the cycle,
decomposing it in terms of lexicographically lower cycles.
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Outline of basic observations

Sketch of proof, continued:

(2) Let C1 consist of all words W such that P(W ) is a closed
path with winding number 0 around all cells. C1 is clearly a
normal subgroup of F.

”[C : C ] ⊆ C1”: Follows from the additivity of the winding
numbers:

w(W1W2W−1
1 W−1

2 ; cij) = w(W1; cij) + w(W2; cij)+

+w(W−1
1 ; cij) + w(W−1

2 ; cij) = 0;

”C1 ⊆ [C : C ]”: Follows by induction after the same
lexicographical order as in (1).
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Outline of basic observations

Sketch of proof, continued:

(3)

Define the homomorphism π = ⊗i ,jπi ,j from C to ⊗(i ,j)Z, by
πi ,j = w(P(W ); cij).
By part (1), this map is well defined, by (2), its kernel is [C : C ].
Hence its image is isomorphic to C/[C : C ].
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Generalised colouring maps

A generalised colouring map is a homomorphism φ : C → A,
where A is an abelian group.

Every such φ, can be decomposed as the projection
π : C → A0 := C/[C : C ], composed with a
homomorphism π̃ : A0 → A, hence the strongest
generalised colouring map is in fact π itself.

In the particular case when A = Zk , the above can model
standard colouring arguments. In that case φ = ⊗iφi ,
where φi (W ), counts the sum of the winding numbers of
P(W ) around cells coloured with the colour i .
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Projecting the GCM to h(T )

A generalised colouring map checks whether

φ([∂R]) ∈ φ(T (T ))

, i.e. whether

φ̃ : h(T )(= C/T (T ))→ Ã := A/φ(T (T ))

maps [∂R] to the identity element in Ã.

No information is lost by performing this projection, therefore
generalised colouring arguments can be considered as being
specified by homomorphisms φ̃ from the tile homotopy group
h(T ) to abelian groups Ã.
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(Re)introducing B(T ) and H(T )

The maximal information available about tilings in this context
is given by the projection πs : h(T )→ H(T ), where H(T ) is
the tile homology group introduced in the beginning, and in
fact, the largest abelian quotient subgroup of h(T ).

Looking at the natural projection p̃i : C → C/T (T ), and
taking the kernel of the map πs ◦ p̃i to be B(T ), we obtain
H(T ) = C/B(T ).

B(T ) is called the tile boundary group and it is the smallest
normal subgroup of C containing T (T ) and [C : C ]. In fact
the following holds:

B(T ) = T (T )[C : C ]
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Restating the signed tiling theorem

The importance of this group B(T ) is given by the following:

Theorem (Conway, Lagarias):

A region R has a signed tiling by T iff [∂R] ∈ B(T ).

Both directions are easy to show by direct expansion of the
boundary word of the region in terms of the boundary of the
tiles.
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Weakening chain of conclusions

We can now derive the following:

Theorem (Conway, Lagarias):

Let R be a simply connected region and T a set of tiles.
Consider the conditions:

(H1): R can be tiled using tiles in T .

(H2): [∂R] is in the tile group T (T ).

(H3): [∂R] is in the group B(T ).

Then (H1) ⇒ (H2) ⇒ (H3). In general, the implications are
not reversible.
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Proof of the above theorem

Proof:

The statement (H1) ⇒ (H2) is exactly one of the theo-
rems we have seen before. (H2) ⇒ (H3) is immediate, as
T (T ) ⊂ B(T ).

To see that (H2) does not imply (H1), consider the following
example, where the set of tiles consists of a 3× 3 square and a
2× 2 square.

Region in the tile group, but untileable
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Proof, continued:

Finally, all the examples of regions which had signed tilings
(Aztec square, the triangle tiled by tribones) did belong to B(T )
(by the previous theorem), but the analysis of Cayley graphs
showed that they don’t belong to T (T ), therefore (H3) does
not imply (H2).
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A crowning result

As a summing conclusion, a necessary and sufficient condition
is expressed in the next

Theorem (Conway, Lagarias):

Let R be a simply connected region and T a set of tiles. Then
R admits a tiling by T iff [∂R] is contained in the tile semigroup
(monoid) T +(T ).

The End
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Thank you for your attention!
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