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Domino Tilings of the Aztec Diamond How many Calissons of each taste are there in a hexagonal box?
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The Aztec Diamond of order n, called AD(n) of the Aztec Diamond of order n 4

, , , , , Calissons are some famous french sweet shaped like a regu-
AD,, consists of 2n(n + 1) unit squares.  with dominos. At right we see the ADs. lar thombus. They come in a hexagonal box. If oriented by
We are interested in the number of tilings ‘ 2 geee o taste/colour the question is, how many of each we get within
' :, ;,,},,,; e an arbitrary filled box (rhombic tiling)?
- Aztec Diamond Theorem: AD(n) — ot o og) i Answer: We get a X ﬁ. green ones, a X vy yell.ov.v ones apd B Xy ¥
l ¢ blue ones. This can easily be checked by imagining certain angles 4
4 -‘".'- : - of view, i.e. bottom-left for the green ones. I’
First sketch of a prOOf using Schroder Paths In case of a regular n x n x n box, there are exactly n® Calissons ‘
I of each taste, no matter the tiling.
. ‘ . We can identity every domino tiling with a set ot ) i.
non-intersecting Schroder Paths and the other way e By wa LAl W D w e w Bw W b
{1 around. Schroder Paths have the property that they . How many Rhombic T|||ngS of a Hexagon are there?
\ ! - \ only make horizontal, up and down steps, and that b
.4 — . they never go below the x-axis. With the Lemma of
— ‘ s N Gessel-Viennot we are able to count the number of 1 -
‘A — — b these sets of paths and thus get AD(n). ‘ §iE ]I Plane Partition: A well known bijection gives us exactly one

—
LA W e Y 4 4 "W B Y 4 2 "W Y a2 i

Second sketch of a proof using perfect matchings

Every domino tiling corresponds to a perfect matching of the dual
graph of AD,,. If we give every edge e a weight w(e) and define the e

plane partition bounded by an (a X b X c) - box for each
rhombic tiling of an (a, b, c, a, b, c) - hexagon.
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weight of a matching M with w(M) := []_.,, w(e), then the sum over I | I R - Paths upon PlanePartitions: Starting on one of the base sides
all these weights of matchings equals the number of domino tilings, in I FER AR DY I - of the plane partition, we can traverse the rhombus tiling
b | case that every edge has weight 1: TeTedsTel - crossing only edges parallel to the one we started with. We
. . v c
I- e I P arrive at characteristic paths upon the plane partition. By ro-
S(n) = Z w(M) = AD(n) s - tation and translation we can arrange those paths still non-
Mperf. matching intersecting in the grid 7.°

M To count these weights of matchings, we can do  of the matchings. Straight lines have weight 1 and
some nontrivial transformations on the dual graph  dotted lines weight =.

as shown below and focus on the sum of weights . Non-intersecting Lattice Paths: Using the Lemma of Gessel-
IR Viennot to count the number of non-intersecting lattice

1. 2. il 1 1 3 ) SN I W S paths N(n,a,b), we arrive at
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AN NN AP AR A (Evaluation of the determinant by C.Krattenthaler using the
—~ oo oy d | la of D
S N . condensation formula of Desnanot)
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4 dual of AD,,
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MacMahon Formula (1915)

The total number N(a,b,c) of Rhombic Tilings of a (a x b x ¢)-hexagon is then given by MacMahon’s formula

as
a b C ST A
N<a,b,c>:HHH§_2_k_§

i=1j=1k=1

In step 1 and 3 there are bijections between the per- S(n) =2"S5(n — 1).

fect matchings of the graphs. In step 2 we use a  Hence also the recursion AD(n) = 2"AD(n — 1)
lemma to replace small cells by big cells and just holds. With the start value AD(1) = 2 and the [}
like in step 4 the sum over the weights of the match-  induction principle it is easy to show the theorem
ings differs by a factor here. In the end we have now.
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