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How many Calissons of each taste are there in a hexagonal box?
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Calissons are some famous french sweet shaped like a regu-
lar rhombus. They come in a hexagonal box. If oriented by
taste/colour the question is, how many of each we get within
an arbitrary filled box (rhombic tiling)?
Answer: We get α × β green ones, α × γ yellow ones and β × γ
blue ones. This can easily be checked by imagining certain angles
of view, i.e. bottom-left for the green ones.
In case of a regular n × n × n box, there are exactly n2 Calissons
of each taste, no matter the tiling.

How many Rhombic Tilings of a Hexagon are there?

Plane Partition: A well known bijection gives us exactly one
plane partition bounded by an (a × b × c) - box for each
rhombic tiling of an (a, b, c, a, b, c) - hexagon.
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Paths upon PlanePartitions: Starting on one of the base sides
of the plane partition, we can traverse the rhombus tiling
crossing only edges parallel to the one we started with. We
arrive at characteristic paths upon the plane partition. By ro-
tation and translation we can arrange those paths still non-
intersecting in the grid Z2
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Non-intersecting Lattice Paths: Using the Lemma of Gessel-
Viennot to count the number of non-intersecting lattice
paths N(n,a,b), we arrive at

N(n, a, b) = det1≤i,j≤n(

(
a+ b

a− i+ j

)
)

(Evaluation of the determinant by C.Krattenthaler using the
condensation formula of Desnanot)

MacMahon Formula (1915)
The total number N(a,b,c) of Rhombic Tilings of a (a×b×c)-hexagon is then given by MacMahon’s formula
as

N(a, b, c) =

a∏
i=1

b∏
j=1

c∏
k=1

i+ j + k − 1

i+ j + k − 2

Domino Tilings of the Aztec Diamond
The Aztec Diamond of order n, called
ADn, consists of 2n(n + 1) unit squares.
We are interested in the number of tilings

AD(n) of the Aztec Diamond of order n
with dominos. At right we see the AD3.

Aztec Diamond Theorem: AD(n) = 2
n(n+1)
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First sketch of a proof using Schröder Paths
We can identify every domino tiling with a set of
non-intersecting Schröder Paths and the other way
around. Schröder Paths have the property that they
only make horizontal, up and down steps, and that
they never go below the x-axis. With the Lemma of
Gessel-Viennot we are able to count the number of
these sets of paths and thus get AD(n).

Second sketch of a proof using perfect matchings
Every domino tiling corresponds to a perfect matching of the dual
graph of ADn. If we give every edge e a weight w(e) and define the
weight of a matching M with w(M) :=

∏
e∈M w(e), then the sum over

all these weights of matchings equals the number of domino tilings, in
case that every edge has weight 1:

S(n) :=
∑

Mperf. matching

w(M) = AD(n)

To count these weights of matchings, we can do
some nontrivial transformations on the dual graph
as shown below and focus on the sum of weights

of the matchings. Straight lines have weight 1 and
dotted lines weight 1
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In step 1 and 3 there are bijections between the per-
fect matchings of the graphs. In step 2 we use a
lemma to replace small cells by big cells and just
like in step 4 the sum over the weights of the match-
ings differs by a factor here. In the end we have

S(n) = 2nS(n− 1).
Hence also the recursion AD(n) = 2nAD(n − 1)
holds. With the start value AD(1) = 2 and the
induction principle it is easy to show the theorem
now.
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