
 

Efficient generation of elimination trees 

The algorithm 

generates all elimination trees for a chordal graph G = ([n], E) 

 

1. Visit one initial elimination tree T0. 
2. Generate an unvisited elimination tree from G by performing an rotation xᐃ or 

xᐁ for the largest possible vertex x in the most recently visited elimination 
tree. If no such rotation exists, or the rotation is ambiguous, then terminate. 
Otherwise, visit this elimination forest and repeat 2.   

 

  

 Definition: Elimination tree (recursively) 

• G = (V, E) connected graph 

• elimination tree T for G is a rooted tree with vertex set V 

• obtained by choosing a root x ∈ V in T and recursing on the connected 

components of G – x to produce the subtrees of x 
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 When does the algorithm work?  

• graph G is chordal ⇔ the algorithm finds all elimination trees 

• If G is not chordal, the algorithm terminates because of an ambiguous rotation 

or because there is no possible rotation. 

 

The algorithm terminates, because the rotation on T16 is ambiguous. 

 Efficient generation 

• The algorithm requires storing all previously 

visited elimination trees, in order to decide 
upon the next rotation, which should generate 
an unvisited elimination tree.  

• In the paper is shown, that we can get rid of 

this defect and make the algorithm 
memoryless.  

• For a chordal graph G = ([n], E) with m = |E| 

edges, the efficient algorithm visits each 
elimination tree for G in time  (m+n).  

• For trees, this can be improved to  (1).  
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 Motivation  

• generating all elimination trees for a graph generalizes 

algorithms for generating permutations, binary trees, ...  

  

• We look at the flip graph for any 
given graph G under tree 
rotations. 

• Algorithm, which generates all 
elimination trees for a graph G 
using rotations, finds a hamilton 
path on the flip graph of G.  
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 Rotation jᐃ 

• Make j parent of i (and i child of j). 

• A subtree S of j in T remains a subtree of j, unless the vertices 

of S belong to the same connected component of G – j as i, 
in which case S becomes a subtree of i. 

 

T and T‘ are elimination trees from graph G in definition 
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