

Efficient generation of elimination trees

The algorithm

generates all elimination trees for a chordal graph G = ([n], E)

1. Visit one initial elimination tree T0.
2. Generate an unvisited elimination tree from G by performing an rotation xᐃ or

xᐁ for the largest possible vertex x in the most recently visited elimination
tree. If no such rotation exists, or the rotation is ambiguous, then terminate.
Otherwise, visit this elimination forest and repeat 2.

 Definition: Elimination tree (recursively)

• G = (V, E) connected graph

• elimination tree T for G is a rooted tree with vertex set V

• obtained by choosing a root x ∈ V in T and recursing on the connected

components of G – x to produce the subtrees of x

 1

3

4 2

5 one of the elimination

trees of Graph G

 When does the algorithm work?

• graph G is chordal ⇔ the algorithm finds all elimination trees

• If G is not chordal, the algorithm terminates because of an ambiguous rotation

or because there is no possible rotation.

The algorithm terminates, because the rotation on T16 is ambiguous.

 Efficient generation

• The algorithm requires storing all previously

visited elimination trees, in order to decide
upon the next rotation, which should generate
an unvisited elimination tree.

• In the paper is shown, that we can get rid of

this defect and make the algorithm
memoryless.

• For a chordal graph G = ([n], E) with m = |E|

edges, the efficient algorithm visits each
elimination tree for G in time (m+n).

• For trees, this can be improved to (1).

References

• Jean Cardinal, Arturo Merino, and Torsten Mütze.

“Efficient generation of elimination trees and graph
associahedra”.
In: Proceedings of the 2022 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA). SIAM. 2022, pp. 2128–2140.

• poster by Julian Sampels

 Motivation

• generating all elimination trees for a graph generalizes

algorithms for generating permutations, binary trees, ...

• We look at the flip graph for any
given graph G under tree
rotations.

• Algorithm, which generates all
elimination trees for a graph G
using rotations, finds a hamilton
path on the flip graph of G.

binary tree
permutation 24876531

 Rotation jᐃ

• Make j parent of i (and i child of j).

• A subtree S of j in T remains a subtree of j, unless the vertices

of S belong to the same connected component of G – j as i,
in which case S becomes a subtree of i.

T and T‘ are elimination trees from graph G in definition

jᐃ

jᐁ

