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THEOREM 1
Number of equivalence classes of

orientations of graph G for cycle reversing
U system is t(G; 2, 1).

THEOREM 2

Number of equivalence classes of
orientations of graph G for cocycle
“ reversing system is t(G; 1, 2).
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DEFINITION Gle | * G/e | Xt
e if eis not a bridge nor a loop

t(G; x, y) = t(G\e; x, y) + t(G/e; x, y) l \

=N
e if eis abridge
t(G; x,y) =x - t(G\e; x, y) THEOREM 3
e ifeisaloop x2 Number of stable configurations of sand-
(G x,y) =y t(G\e; x, y) pile model is exactly the number
of equivalence classes of the cocycle
reversing system of acyclic orientations.
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