
CYCLE-COCYCLE
DUALITY

if e is not a bridge nor a loop

if e is a bridge

if e is a loop

t(G; x, y) = t(G\e; x, y) + t(G/e; x, y)

t(G; x, y) = x · t(G\e; x, y)

t(G; x, y) = y · t(G\e; x, y)

enumerating degree sequences
in digraphs and a cycle-cocycle
reversing system

CYCLE REVERSING
SYSTEM

Given: graph G
Operation: cycle reversing
Equivalent orientations: there exists a sequence
of cycle reversings

stable
configuration

COCYCLE REVERSING
SYSTEM

Given: graph G
Operation: cocycle reversing
Equivalent orientations: there exists a sequence
of cocycle reversings

THEOREMS
Number of equivalence classes of
orientations of graph G for cycle reversing
system is t(G; 2, 1).

Number of equivalence classes of
orientations of graph G for cocycle
reversing system is t(G; 1, 2).
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SAND-PILE MODEL



unstable
configuration

Theorem 3
Number of stable configurations of sand-
pile model is exactly the number
of equivalence classes of the cocycle
reversing system of acyclic orientations.
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