11. Exercise sheet

Felsner/Micek
Introduction to Order Theory
Winter 2020/21

Due for the exercise session: February 16., 2021
(1) Consider a symmetric chain decomposition \mathcal{C} on the Boolean lattice \mathcal{B}_{n}. How many chains of size k are in \mathcal{C} for $1 \leq k \leq n+1$?
(2) Show that, if $A_{1}, \ldots A_{m}$ are distinct k-subsets of an n-set and $k \leq s \leq n-k$, then there exist distinct s-subsets B_{1}, \ldots, B_{m} such that $A_{i} \cap B_{i}=\emptyset$ for each $i=1, \ldots, m$.
(3) Prove that the families $\binom{[n]}{\lfloor n / 2\rfloor}$ and $\binom{[n]}{[n / 2\rceil}$ are the only antichains in \mathcal{B}_{n} of size $\binom{n}{[n / 2\rceil}$.
(4) [Littlewood Offord Problem] Let a_{1}, \ldots, a_{n} be a sequence of reals such that $\left|a_{i}\right| \geq 1$ for all $i \in[n]$. Let

$$
P\left(a_{1}, \ldots, a_{n}\right)=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\{-1,1\}^{n} \mid-1<\sum_{i=1}^{n} \varepsilon_{i} \cdot a_{i}<1\right\} .
$$

Show that $\left|P\left(a_{1}, \ldots, a_{n}\right)\right| \leq\binom{ n}{\lfloor n / 2\rfloor}$.
(5) Let \mathcal{F} be a family of subsets of $[n]$ with no $A_{1}, \ldots, A_{s+1} \in \mathcal{F}$ such that $A_{1} \subsetneq A_{2} \subsetneq$ $\cdots \subsetneq A_{s+1}$. Prove that the size of \mathcal{F} is at most the sum of s largest binomials of the form $\binom{n}{i}$.
(6) Let $1 \leq s<r<n$ and let \mathcal{F} be a family of r-subsets of [n] such that for every $A \neq B \in \mathcal{F}$ we have $|A \cap B| \leq s$. Show that

$$
|\mathcal{F}| \leq \frac{\binom{n}{s+1}}{\binom{r}{s+1}}
$$

(7) For each k with $1 \leq k \leq n / 2$ find an intersecting family \mathcal{F}_{k} of size 2^{n-1} in \mathcal{B}_{n} such that the smallest set in \mathcal{F}_{k} has size k.
(8) Fix $1 \leq k \leq n \leq 2 k$ and show that if \mathcal{F} is an antichain of subsets of [n] each of size at least k, and not containing two sets whose union is $[n]$ then $|\mathcal{F}| \leq\binom{ n-1}{k}$.
(9) A family of subsets \mathcal{F} of $[n]$ is distinguishing if for every $x \neq y \in[n]$ there is $F \in \mathcal{F}$ so that $|F \cap\{x, y\}|=1$. A family of subsets \mathcal{F} of $[n]$ is strongly distinguishing if for every $x \neq y \in[n]$ there are $F_{1}, F_{2} \in \mathcal{F}$ such that $x \in F_{1}-F_{2}$ and $y \in F_{2}-F_{1}$.

- What is the minimum size of a distinguishable subset of $[n]$?
- What is the minimum size of a strongly distinguishable subset of $[n]$?
(10) Let σ be a cyclic permutation of $[n]$ and let S be a family of k-arcs of σ with $\triangle_{\sigma}(S)$ we denote the σ-shadow of S, i.e., the set of all $(k-1)$-arcs contained in an arc of S. Show that unless $|S|=n$ we have $\left|\triangle_{\sigma}(S)\right|>|S|$.
(11) let \mathcal{A} be a family of k-subsets of $[n]$ such that for every h tuple $\left(A_{1}, A_{2}, \ldots, A_{h}\right)$ of sets from \mathcal{A} we have $A_{1} \cap A_{2} \cap \ldots \cap A_{h} \neq \emptyset$. Show that if $k \cdot h \leq(h-1) n$, then $|\mathcal{A}| \leq\binom{ n-1}{k-1}$.
(12) Let $F_{k}(m)$ be the collection of the first m sets in the colex order on k-sets. Show that for $m \geq 1$ we have $\left|\triangle F_{k}(m+1)\right| \leq\left|\triangle F_{k}(m)\right|+(k-1)$.

