Due for the exercise session: February 16., 2021

- (1) Consider a symmetric chain decomposition C on the Boolean lattice \mathcal{B}_n . How many chains of size k are in C for $1 \le k \le n+1$?
- (2) Show that, if A_1, \ldots, A_m are distinct k-subsets of an n-set and $k \leq s \leq n-k$, then there exist distinct s-subsets B_1, \ldots, B_m such that $A_i \cap B_i = \emptyset$ for each $i = 1, \ldots, m$.
- (3) Prove that the families $\binom{[n]}{\lfloor n/2 \rfloor}$ and $\binom{[n]}{\lceil n/2 \rceil}$ are the only antichains in \mathcal{B}_n of size $\binom{n}{\lceil n/2 \rceil}$.
- (4) [Littlewood Offord Problem] Let a_1, \ldots, a_n be a sequence of reals such that $|a_i| \ge 1$ for all $i \in [n]$. Let

$$P(a_1, \dots, a_n) = \{ (\varepsilon_1, \dots, \varepsilon_n) \in \{-1, 1\}^n \mid -1 < \sum_{i=1}^n \varepsilon_i \cdot a_i < 1 \}.$$

Show that $|P(a_1,\ldots,a_n)| \leq \binom{n}{\lfloor n/2 \rfloor}$.

- (5) Let \mathcal{F} be a family of subsets of [n] with no $A_1, \ldots, A_{s+1} \in \mathcal{F}$ such that $A_1 \subsetneq A_2 \subsetneq \cdots \subsetneq A_{s+1}$. Prove that the size of \mathcal{F} is at most the sum of s largest binomials of the form $\binom{n}{i}$.
- (6) Let $1 \leq s < r < n$ and let \mathcal{F} be a family of *r*-subsets of [n] such that for every $A \neq B \in \mathcal{F}$ we have $|A \cap B| \leq s$. Show that

$$|\mathcal{F}| \le \frac{\binom{n}{s+1}}{\binom{r}{s+1}}.$$

- (7) For each k with $1 \le k \le n/2$ find an intersecting family \mathcal{F}_k of size 2^{n-1} in \mathcal{B}_n such that the smallest set in \mathcal{F}_k has size k.
- (8) Fix $1 \le k \le n \le 2k$ and show that if \mathcal{F} is an antichain of subsets of [n] each of size at least k, and not containing two sets whose union is [n] then $|\mathcal{F}| \le {\binom{n-1}{k}}$.
- (9) A family of subsets \mathcal{F} of [n] is distinguishing if for every $x \neq y \in [n]$ there is $F \in \mathcal{F}$ so that $|F \cap \{x, y\}| = 1$. A family of subsets \mathcal{F} of [n] is strongly distinguishing if for every $x \neq y \in [n]$ there are $F_1, F_2 \in \mathcal{F}$ such that $x \in F_1 - F_2$ and $y \in F_2 - F_1$.
 - What is the minimum size of a distinguishable subset of [n]?
 - What is the minimum size of a strongly distinguishable subset of [n]?
- (10) Let σ be a cyclic permutation of [n] and let S be a family of k-arcs of σ with $\Delta_{\sigma}(S)$ we denote the σ -shadow of S, i.e., the set of all (k-1)-arcs contained in an arc of S. Show that unless |S| = n we have $|\Delta_{\sigma}(S)| > |S|$.
- (11) let \mathcal{A} be a family of k-subsets of [n] such that for every h tuple (A_1, A_2, \ldots, A_h) of sets from \mathcal{A} we have $A_1 \cap A_2 \cap \ldots \cap A_h \neq \emptyset$. Show that if $k \cdot h \leq (h-1)n$, then $|\mathcal{A}| \leq {n-1 \choose k-1}$.
- (12) Let $F_k(m)$ be the collection of the first m sets in the colex order on k-sets. Show that for $m \ge 1$ we have $|\bigtriangleup F_k(m+1)| \le |\bigtriangleup F_k(m)| + (k-1)$.