
9. Exercise sheet Introduction to Order Theory

Felsner/Micek Winter 2020/21

Due for the exercise session: January 26., 2021

(1) Consider the following method of shuffling n cards. At each step, a card is chosen
independently and uniformly at random and put on the top of the deck. We can
think of the shuffling process as a Markov chain, where the state is the current order
of the cards. Clearly, the chain is finite, irreducible, and aperiodic, so it has a unique
stationary distribution.

a) Determine the stationary distribution.

b) Consider the following coupling (Xt, Yt) of the described chain. Choose a position j
uniformly at random from 1 to n and then obtain Xt+1 from Xt by moving the jth
card to the top. Denote the value of this card by C. To obtain Yt+1 from Yt move
the card with value C to the top. Argue that the coupling is valid and use it to show
that the discussed chain is rapidly mixing.

c) Forget about the coupling and prove that at the moment that each card in the chain
was picked and put at the top at least once the distribution of the current state is
the stationary distribution.

(2) Construct a family of posets {Pn} with |Pn| = n such that the Karzanov-Khachian
chain has a mixing time Ω(n3).

(3) Construct a family of posets {Pn} with |Pn| = n such that the Bubley-Dyer chain
has a mixing time Ω(n3).

(4) Show that for every h ≥ 1 there is a poset P of height at most h with a planar
diagram such that

dim(P ) ≥ (4/3)h− 2.

Hint: This figure:
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(5) Show that for every h ≥ 1 there is a poset P of height at most h with a planar cover
graph such that

dim(P ) ≥ 2h− 2.

Hint: The figure on the top of the other side:
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(6) Let T be a tree. What is the maximum possible value of wcolr(T )? Give upper and
lower bounds.

Let G be a graph and π be a linear order on V (G). For v ∈ V (G) and r ≥ 0 we say that
u ∈ V (G) ist r-strongly reachable from v w.r.t. π in G if there is a path Q from v to u
in G such that u is the minimum vertex of Q in π and for all internal vertices w of Q we
have w > v in π.
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We define

SReachπr = {u ∈ V (G) | u is r-strongly reachable from v in π},
scolr(G) = min

π
max
v∈V (G)

|SReachπr (v)|.

(7) Show that for every graph G and every integer r ≥ 0 we have

scolr(G) ≤ wcolr(G) ≤ (scolr(G))r .

(8) The grid �n of order n is the graph with the vertex set {(i, j) | i, j ∈ {1, . . . , n}}
whose two distinct vertices (i, j), (i′, j′) are adjacent iff |i′ − i|+ |j′ − j| = 1. What
are the possible asymptotics for functions f and g such that

f(r) ≤ scolr(�n) ≤ wcolr(�n) ≤ g(r),

where n goes over all the natural numbers?

(9) Let G be an interval graph with ω(G) ≤ k. Prove that for every r ≥ 0

wcolr(G) ≤
(
r + k − 1

r

)
.

(10) Let G be a graph and p be an integer with p ≥ 1. The exact p-distance graph G[#p]

is the graph with the same vertex set as G and two vertices are adjacent in G[#p] if
they are of distnace exactly p in G. Show that whenever p is odd we have

χ(G[#p]) ≤ wcol2p−1(G).

Hint: Consider an auxilliary greedy coloring along an ordering witnessing wcol2p−1(G).
To devise the final coloring consider balls N bp/2c(v) in G, i.e. all vertices of distance
at most bp/2c from v in G.


