7. Exercise sheet

Felsner/Micek

Introduction to Order Theory
Winter 2020/21

Due for the exercise session: January 5., 2021
(1) Identify the faces of the order polytope $\mathcal{O}(P)$, i.e., describe a class of combinatorial objects which are in bijection to the faces. Hint: It may be helpful to think of \hat{P}, i.e., of P enriched with additional global $\mathbf{0}$ and $\mathbf{1}$ elements.
(2) What are the facets of the chain polytope $\mathcal{C}(P)$?
(3) For a graph $G=(V, E)$ we define

$$
\mathcal{C}(G)=\left\{a \in[0,1]^{V} \mid \sum_{v \in C} a_{v} \leq 1 \quad \text { for every clique } C \text { of } G\right\}
$$

If P is an order with comparability graph G, then $\mathcal{C}(P)=\mathcal{C}(G)$.
Show that in general $\mathcal{C}(G)$ may have corners which are not characteristic vectors of stable sets.
(4) what is the maximum of $e(P)$ over all posets with n elements and width at most w ?
(5) what is the minimum of $e(P)$ over all posets with n elements and height at most h ?
(6) Consider the cover graph of randomly and uniformly selected n-element point set in the unit square. Let X be the random variable counting number of edges in this graph. Evaluate $\mathrm{E}(X)$.
(7) For a poset P, let $m(P)$ be the maximum integer m such that there are two disjoint subsets A and B of elements of P with $|A|=|B|=m$ and $\forall_{a \in A, b \in B} a<b$ in P or $\forall_{a \in A, b \in B} a \| b$ in P. Show that for every poset P with n elements and dimension d, we have

$$
m(P) \geq\left\lfloor\frac{n}{2 d}\right\rfloor
$$

Hint: Use the words low and high in your solution.
(8) Show that the maximum number of edges of a $K_{t, t}$-free incomparability graph of a 2-dimensional poset with n elements is at most

$$
2(t-1) n-\binom{2 t-1}{2}
$$

for every $t \geq 2$ and $n \geq 2 t-1$.
Hint: Show that such graphs are $(2 t-2)$-degenerate, look at first t points of a hypothetical counterexample.
(9) Show that every series-parallel order P on n elements satisfies

$$
e(P) \cdot e(\bar{P})=n!
$$

As usual \bar{P} is the conjugate of P.

