Due for the exercise session: January 5., 2021

- (1) Identify the faces of the order polytope $\mathcal{O}(P)$, i.e., describe a class of combinatorial objects which are in bijection to the faces. *Hint*: It may be helpful to think of \hat{P} , i.e., of P enriched with additional global **0** and **1** elements.
- (2) What are the facets of the chain polytope $\mathcal{C}(P)$?
- (3) For a graph G = (V, E) we define

$$\mathcal{C}(G) = \{ a \in [0,1]^V \mid \sum_{v \in C} a_v \le 1 \text{ for every clique } C \text{ of } G \}.$$

If P is an order with comparability graph G, then $\mathcal{C}(P) = \mathcal{C}(G)$.

Show that in general $\mathcal{C}(G)$ may have corners which are not characteristic vectors of stable sets.

- (4) what is the maximum of e(P) over all posets with n elements and width at most w?
- (5) what is the minimum of e(P) over all posets with n elements and height at most h?
- (6) Consider the cover graph of randomly and uniformly selected *n*-element point set in the unit square. Let X be the random variable counting number of edges in this graph. Evaluate $\mathsf{E}(X)$.
- (7) For a poset P, let m(P) be the maximum integer m such that there are two disjoint subsets A and B of elements of P with |A| = |B| = m and $\forall_{a \in A, b \in B} a < b$ in P or $\forall_{a \in A, b \in B} a \parallel b$ in P. Show that for every poset P with n elements and dimension d, we have

$$m(P) \ge \left\lfloor \frac{n}{2d} \right\rfloor.$$

Hint: Use the words low and high in your solution.

(8) Show that the maximum number of edges of a $K_{t,t}$ -free incomparability graph of a 2-dimensional poset with n elements is at most

$$2(t-1)n - \binom{2t-1}{2},$$

for every $t \ge 2$ and $n \ge 2t - 1$.

Hint: Show that such graphs are (2t - 2)-degenerate, look at first t points of a hypothetical counterexample.

(9) Show that every series-parallel order P on n elements satisfies

$$e(P) \cdot e(\bar{P}) = n!$$

As usual \overline{P} is the conjugate of P.